Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 31;64(Pt 11):o2243. doi: 10.1107/S1600536808034697

(E)-3-(4-Methyl­phen­yl)-3-[3-(4-methyl­phen­yl)-1H-pyrazol-1-yl]-2-propenal

P Ramesh a, A Subbiahpandi a, Ramaiyan Manikannan b, S Muthusubramanian b, M N Ponnuswamy c,*
PMCID: PMC2959754  PMID: 21581097

Abstract

In the title compound, C20H18N2O, the pyrazole ring adopts a planar conformation. The C—N bond lengths in the pyrazole ring are shorter than a standard C—N single bond (1.443 Å), but longer than a standard double bond (1.269 Å), indicating electron delocalization. The propenal group assumes an extended conformation. Inter­molecular C—H⋯O hydrogen bonds connect mol­ecules into cyclic centrosymmetric R 2 2(26) dimers, which are cross-linked via C—H⋯π inter­actions.

Related literature

For the properties of pyrazole derivatives, see: Baraldi et al. (1998); Bruno et al. (1990); Chen & Li (1998); Cottineau et al. (2002); Londershausen (1996); Mishra et al. (1998); Smith et al. (2001). For related literature, see: Beddoes et al. (1986); Jin et al. (2004); Bernstein et al. (1995); Cordell (1981).graphic file with name e-64-o2243-scheme1.jpg

Experimental

Crystal data

  • C20H18N2O

  • M r = 302.36

  • Triclinic, Inline graphic

  • a = 10.0560 (9) Å

  • b = 10.0786 (8) Å

  • c = 10.3176 (9) Å

  • α = 62.040 (4)°

  • β = 79.356 (4)°

  • γ = 63.038 (4)°

  • V = 822.73 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.30 × 0.22 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.980, T max = 0.985

  • 14086 measured reflections

  • 2887 independent reflections

  • 2315 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.154

  • S = 1.03

  • 2887 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034697/gw2051sup1.cif

e-64-o2243-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034697/gw2051Isup2.hkl

e-64-o2243-Isup2.hkl (138.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22B⋯O1i 0.96 2.60 3.446 (3) 148
C9—H9⋯Cg1ii 0.93 2.80 3.690 (3) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the C16–C21 ring.

Acknowledgments

PR thanks Dr Babu Varghese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

Some pyrazole derivatives are successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) properties. These derivatives also possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen,1996) activities.

The pyrazole ring adopts planar conformation. The sum of the angles at N1 of the pyrazole ring (360.0°) is in accordance with sp2 hybridization (Beddoes et al., 1986). The C—N bond lengths in the pyrazole ring are 1.321 (2) and 1.360 (2) Å, which are shorter than a C—N single bond length of 1.443 Å, but longer than a double bond length of 1.269 Å, (Jin et al., 2004), indicating electron delocalization. The pyrazole ring A and methylphenyl ring C are near-coplanar with the inter-ring dihedral angle of 4.50 (13)°, whereas the pyrazole ring is twisted by an angle of 66.31 (12)° to the methylphenyl ring B. The propenal group assumes an extended conformation which is evidenced from the torsion angles [N1—C6—C14—C15]-169.74 (16) ° and [C5—N1—C6—C14]-160.85 (19)°. The crystal packing is stabilized by C—H···O and C—H-π interactions in addition to van der Waals forces. The molecules at (x, y, z) and (2 - x,-y,1 - z) are linked by C22—H22B···O1 hydrogen bonds into cyclic cenrosymmetric R22(26) dimers,

Experimental

The mixture of 1-(4-methylphenyl)-1-ethanone N-[(E)-1-phenylethylidene] hydrazone (0.003 mole) and 3 ml of dimethyl formamide kept in an ice bath at 0° C, phosphorus oxycholride (0.024 mole) was added dropwise for 5–10 minutes. The reaction mixture was then kept in a microwave oven at 600 W for 30–60 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. This isolated compound was recrystallized in dichloromethane to obtain (E)-3-(4-methylphenyl)-3-[3-(4-methylphenyl)-1H -pyrazol-1-yl]-2-propenal in 34% yield.

Refinement

H atoms were positioned geometrically (C—H=0.93–0.96 Å)and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H, 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

Perspective view of the molecule showing the thermal ellipsoids are drawn at 50% probability level. The H atoms are shown as small circles of arbitrary radii.

Fig. 2.

Fig. 2.

The crystal packing of the molecules viewed down the a axis.

Crystal data

C20H18N2O Z = 2
Mr = 302.36 F(000) = 320
Triclinic, P1 Dx = 1.221 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.0560 (9) Å Cell parameters from 2865 reflections
b = 10.0786 (8) Å θ = 2.2–25.0°
c = 10.3176 (9) Å µ = 0.08 mm1
α = 62.040 (4)° T = 293 K
β = 79.356 (4)° Block, colorless
γ = 63.038 (4)° 0.30 × 0.22 × 0.20 mm
V = 822.73 (12) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 2887 independent reflections
Radiation source: fine-focus sealed tube 2315 reflections with I > 2σ(I)
graphite Rint = 0.035
ω and φ scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −11→11
Tmin = 0.980, Tmax = 0.985 k = −11→11
14086 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0885P)2 + 0.2614P] where P = (Fo2 + 2Fc2)/3
2887 reflections (Δ/σ)max = 0.037
210 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.67828 (17) 0.53579 (18) 0.72181 (16) 0.0625 (4)
N1 0.60777 (16) 0.58095 (17) 0.26253 (16) 0.0432 (4)
N2 0.68095 (16) 0.41223 (17) 0.31521 (16) 0.0427 (4)
C3 0.69279 (19) 0.3841 (2) 0.19979 (19) 0.0416 (4)
C4 0.6304 (2) 0.5334 (2) 0.0717 (2) 0.0519 (5)
H4 0.6267 0.5457 −0.0229 0.062*
C5 0.5774 (2) 0.6543 (2) 0.1158 (2) 0.0515 (5)
H5 0.5288 0.7675 0.0565 0.062*
C6 0.57725 (18) 0.6542 (2) 0.35731 (19) 0.0400 (4)
C7 0.45725 (19) 0.8246 (2) 0.30619 (18) 0.0396 (4)
C8 0.3162 (2) 0.8596 (2) 0.2667 (2) 0.0450 (4)
H8 0.2986 0.7771 0.2657 0.054*
C9 0.2021 (2) 1.0156 (2) 0.2292 (2) 0.0477 (5)
H9 0.1077 1.0364 0.2051 0.057*
C10 0.2255 (2) 1.1425 (2) 0.2264 (2) 0.0472 (5)
C11 0.3665 (2) 1.1077 (2) 0.2624 (2) 0.0490 (5)
H11 0.3847 1.1916 0.2597 0.059*
C12 0.4818 (2) 0.9513 (2) 0.3023 (2) 0.0451 (4)
H12 0.5759 0.9308 0.3267 0.054*
C13 0.1000 (3) 1.3122 (3) 0.1849 (3) 0.0705 (6)
H13A 0.1319 1.3799 0.2011 0.106*
H13B 0.0158 1.3034 0.2439 0.106*
H13C 0.0719 1.3618 0.0831 0.106*
C14 0.65218 (19) 0.5672 (2) 0.48724 (19) 0.0439 (4)
H14 0.7338 0.4666 0.5039 0.053*
C15 0.6144 (2) 0.6193 (2) 0.6020 (2) 0.0465 (4)
H15 0.5367 0.7228 0.5837 0.056*
C16 0.75914 (19) 0.2135 (2) 0.21612 (19) 0.0431 (4)
C17 0.8059 (2) 0.0785 (2) 0.3526 (2) 0.0541 (5)
H17 0.7965 0.0953 0.4357 0.065*
C18 0.8664 (2) −0.0813 (3) 0.3660 (2) 0.0600 (5)
H18 0.8978 −0.1702 0.4583 0.072*
C19 0.8812 (2) −0.1120 (3) 0.2463 (3) 0.0563 (5)
C20 0.8340 (2) 0.0235 (3) 0.1112 (3) 0.0614 (6)
H20 0.8430 0.0064 0.0284 0.074*
C21 0.7740 (2) 0.1837 (3) 0.0956 (2) 0.0548 (5)
H21 0.7432 0.2722 0.0029 0.066*
C22 0.9457 (3) −0.2851 (3) 0.2607 (3) 0.0817 (8)
H22A 0.9448 −0.3606 0.3615 0.123*
H22B 1.0465 −0.3148 0.2285 0.123*
H22C 0.8869 −0.2905 0.2013 0.123*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0725 (10) 0.0569 (9) 0.0525 (9) −0.0170 (7) −0.0167 (7) −0.0231 (7)
N1 0.0508 (9) 0.0338 (8) 0.0399 (8) −0.0144 (6) −0.0021 (6) −0.0144 (6)
N2 0.0462 (8) 0.0361 (8) 0.0409 (8) −0.0128 (6) −0.0014 (6) −0.0167 (6)
C3 0.0412 (9) 0.0424 (10) 0.0394 (9) −0.0158 (8) 0.0026 (7) −0.0187 (8)
C4 0.0643 (12) 0.0491 (11) 0.0379 (10) −0.0213 (9) 0.0008 (8) −0.0182 (8)
C5 0.0641 (12) 0.0397 (10) 0.0405 (10) −0.0178 (9) −0.0035 (8) −0.0119 (8)
C6 0.0423 (9) 0.0363 (9) 0.0435 (9) −0.0187 (8) 0.0016 (7) −0.0173 (7)
C7 0.0441 (9) 0.0334 (9) 0.0386 (9) −0.0171 (7) −0.0002 (7) −0.0127 (7)
C8 0.0505 (10) 0.0400 (10) 0.0487 (10) −0.0225 (8) −0.0043 (8) −0.0172 (8)
C9 0.0428 (10) 0.0464 (10) 0.0493 (10) −0.0182 (8) −0.0047 (8) −0.0161 (8)
C10 0.0526 (11) 0.0360 (9) 0.0432 (10) −0.0146 (8) −0.0030 (8) −0.0121 (8)
C11 0.0620 (12) 0.0333 (9) 0.0515 (11) −0.0230 (9) −0.0056 (9) −0.0131 (8)
C12 0.0458 (10) 0.0401 (10) 0.0494 (10) −0.0220 (8) −0.0037 (8) −0.0140 (8)
C13 0.0647 (14) 0.0433 (12) 0.0827 (16) −0.0084 (10) −0.0120 (11) −0.0206 (11)
C14 0.0445 (10) 0.0376 (9) 0.0472 (10) −0.0147 (8) −0.0026 (8) −0.0179 (8)
C15 0.0504 (10) 0.0400 (10) 0.0494 (11) −0.0177 (8) −0.0057 (8) −0.0185 (8)
C16 0.0397 (9) 0.0449 (10) 0.0449 (10) −0.0164 (8) 0.0043 (7) −0.0224 (8)
C17 0.0643 (12) 0.0479 (11) 0.0458 (11) −0.0184 (9) 0.0031 (9) −0.0231 (9)
C18 0.0643 (13) 0.0425 (11) 0.0598 (13) −0.0175 (10) 0.0041 (10) −0.0179 (9)
C19 0.0412 (10) 0.0528 (12) 0.0819 (15) −0.0178 (9) 0.0089 (9) −0.0391 (11)
C20 0.0588 (12) 0.0667 (14) 0.0698 (14) −0.0182 (11) 0.0022 (10) −0.0463 (12)
C21 0.0574 (12) 0.0539 (12) 0.0506 (11) −0.0145 (9) −0.0029 (9) −0.0280 (9)
C22 0.0724 (16) 0.0617 (15) 0.123 (2) −0.0251 (12) 0.0162 (15) −0.0569 (16)

Geometric parameters (Å, °)

O1—C15 1.215 (2) C12—H12 0.9300
N1—C5 1.360 (2) C13—H13A 0.9600
N1—N2 1.369 (2) C13—H13B 0.9600
N1—C6 1.399 (2) C13—H13C 0.9600
N2—C3 1.321 (2) C14—C15 1.435 (3)
C3—C4 1.411 (3) C14—H14 0.9300
C3—C16 1.469 (2) C15—H15 0.9300
C4—C5 1.348 (3) C16—C21 1.379 (3)
C4—H4 0.9300 C16—C17 1.387 (3)
C5—H5 0.9300 C17—C18 1.384 (3)
C6—C14 1.344 (2) C17—H17 0.9300
C6—C7 1.480 (2) C18—C19 1.375 (3)
C7—C12 1.388 (2) C18—H18 0.9300
C7—C8 1.388 (2) C19—C20 1.380 (3)
C8—C9 1.377 (3) C19—C22 1.501 (3)
C8—H8 0.9300 C20—C21 1.380 (3)
C9—C10 1.388 (3) C20—H20 0.9300
C9—H9 0.9300 C21—H21 0.9300
C10—C11 1.376 (3) C22—H22A 0.9600
C10—C13 1.503 (3) C22—H22B 0.9600
C11—C12 1.382 (3) C22—H22C 0.9600
C11—H11 0.9300
C5—N1—N2 110.87 (14) C10—C13—H13B 109.5
C5—N1—C6 129.15 (15) H13A—C13—H13B 109.5
N2—N1—C6 119.97 (14) C10—C13—H13C 109.5
C3—N2—N1 104.85 (14) H13A—C13—H13C 109.5
N2—C3—C4 111.37 (16) H13B—C13—H13C 109.5
N2—C3—C16 120.39 (16) C6—C14—C15 124.24 (16)
C4—C3—C16 128.20 (16) C6—C14—H14 117.9
C5—C4—C3 105.21 (17) C15—C14—H14 117.9
C5—C4—H4 127.4 O1—C15—C14 123.68 (17)
C3—C4—H4 127.4 O1—C15—H15 118.2
C4—C5—N1 107.70 (16) C14—C15—H15 118.2
C4—C5—H5 126.2 C21—C16—C17 118.12 (17)
N1—C5—H5 126.2 C21—C16—C3 120.56 (17)
C14—C6—N1 119.58 (15) C17—C16—C3 121.31 (16)
C14—C6—C7 124.72 (15) C18—C17—C16 120.45 (19)
N1—C6—C7 115.65 (14) C18—C17—H17 119.8
C12—C7—C8 118.61 (16) C16—C17—H17 119.8
C12—C7—C6 120.61 (15) C19—C18—C17 121.7 (2)
C8—C7—C6 120.73 (15) C19—C18—H18 119.1
C9—C8—C7 120.48 (16) C17—C18—H18 119.1
C9—C8—H8 119.8 C18—C19—C20 117.22 (19)
C7—C8—H8 119.8 C18—C19—C22 121.8 (2)
C8—C9—C10 121.20 (17) C20—C19—C22 120.9 (2)
C8—C9—H9 119.4 C19—C20—C21 121.90 (19)
C10—C9—H9 119.4 C19—C20—H20 119.1
C11—C10—C9 117.95 (17) C21—C20—H20 119.1
C11—C10—C13 121.45 (18) C16—C21—C20 120.6 (2)
C9—C10—C13 120.60 (18) C16—C21—H21 119.7
C10—C11—C12 121.59 (17) C20—C21—H21 119.7
C10—C11—H11 119.2 C19—C22—H22A 109.5
C12—C11—H11 119.2 C19—C22—H22B 109.5
C11—C12—C7 120.15 (16) H22A—C22—H22B 109.5
C11—C12—H12 119.9 C19—C22—H22C 109.5
C7—C12—H12 119.9 H22A—C22—H22C 109.5
C10—C13—H13A 109.5 H22B—C22—H22C 109.5
C5—N1—N2—C3 −0.79 (19) C9—C10—C11—C12 −1.0 (3)
C6—N1—N2—C3 −179.57 (15) C13—C10—C11—C12 179.22 (19)
N1—N2—C3—C4 1.1 (2) C10—C11—C12—C7 0.4 (3)
N1—N2—C3—C16 −176.65 (15) C8—C7—C12—C11 1.1 (3)
N2—C3—C4—C5 −1.1 (2) C6—C7—C12—C11 −176.32 (16)
C16—C3—C4—C5 176.50 (18) N1—C6—C14—C15 −169.74 (16)
C3—C4—C5—N1 0.5 (2) C7—C6—C14—C15 7.8 (3)
N2—N1—C5—C4 0.1 (2) C6—C14—C15—O1 176.16 (18)
C6—N1—C5—C4 178.78 (17) N2—C3—C16—C21 −178.92 (17)
C5—N1—C6—C14 −160.85 (19) C4—C3—C16—C21 3.7 (3)
N2—N1—C6—C14 17.7 (2) N2—C3—C16—C17 2.4 (3)
C5—N1—C6—C7 21.4 (3) C4—C3—C16—C17 −175.02 (19)
N2—N1—C6—C7 −160.09 (14) C21—C16—C17—C18 0.4 (3)
C14—C6—C7—C12 54.5 (2) C3—C16—C17—C18 179.17 (18)
N1—C6—C7—C12 −127.83 (17) C16—C17—C18—C19 −0.5 (3)
C14—C6—C7—C8 −122.9 (2) C17—C18—C19—C20 0.4 (3)
N1—C6—C7—C8 54.8 (2) C17—C18—C19—C22 −179.5 (2)
C12—C7—C8—C9 −2.0 (3) C18—C19—C20—C21 −0.1 (3)
C6—C7—C8—C9 175.42 (16) C22—C19—C20—C21 179.7 (2)
C7—C8—C9—C10 1.4 (3) C17—C16—C21—C20 −0.2 (3)
C8—C9—C10—C11 0.1 (3) C3—C16—C21—C20 −178.93 (17)
C8—C9—C10—C13 179.87 (19) C19—C20—C21—C16 0.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C22—H22B···O1i 0.96 2.60 3.446 (3) 148
C9—H9···Cg1ii 0.93 2.80 3.690 (3) 161

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2051).

References

  1. Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.
  2. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147–66. [PubMed]
  6. Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ.19, 572–576.
  7. Cordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach New York: Wiley International.
  8. Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem.12, 2105–2108. [DOI] [PubMed]
  9. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  10. Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643. [DOI] [PubMed]
  11. Londershausen, M. (1996). Pestic. Sci.48, 269–274.
  12. Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.
  13. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol.432, 107–119. [DOI] [PubMed]
  16. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034697/gw2051sup1.cif

e-64-o2243-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034697/gw2051Isup2.hkl

e-64-o2243-Isup2.hkl (138.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES