Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 22;64(Pt 11):m1450. doi: 10.1107/S1600536808029462

Di-μ-acetato-κ3 O,O′:O3 O:O,O′-bis­[(acetato-κ2 O,O′)(1,10-phenan­throline-κ2 N,N′)cadmium(II)]

Miguel Angel Harvey a,b,*, Sergio Baggio b,c, María Teresa Garland d, Ricardo Baggio e
PMCID: PMC2959765  PMID: 21580889

Abstract

The title compound, [Cd2(C2H3O2)4(C12H8N2)2], consists of dimeric units built up around a crystallographic symmetry centre. Each cadmium(II) unit is chelated by a 1,10-phenanthroline (phen) group and two acetate ligands, one of which also acts as a bridge, linking both seven-coordinated cadmium(II) centres. The crystal structure is governed by a single π–π inter­action between stacked phen groups [centroid–centroid distance 3.5209 (11) Å], leading to a planar structure parallel to (010).

Related literature

For related literature, see: Brown & Altermatt (1985); Janiak (2000); Harvey et al. (2006).graphic file with name e-64-m1450-scheme1.jpg

Experimental

Crystal data

  • [Cd2(C2H3O2)4(C12H8N2)2]

  • M r = 821.40

  • Orthorhombic, Inline graphic

  • a = 8.4422 (7) Å

  • b = 15.6384 (13) Å

  • c = 22.2195 (18) Å

  • V = 2933.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 150 (2) K

  • 0.50 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.50, T max = 0.74

  • 22676 measured reflections

  • 3331 independent reflections

  • 3062 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.064

  • S = 1.06

  • 3331 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 1.58 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029462/kj2097sup1.cif

e-64-m1450-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029462/kj2097Isup2.hkl

e-64-m1450-Isup2.hkl (163.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—O13 2.2594 (15)
Cd1—O14 2.3239 (13)
Cd1—N1 2.3466 (15)
Cd1—N2 2.3890 (18)
Cd1—O14i 2.4398 (13)
Cd1—O24 2.4561 (15)
Cd1—O23 2.5425 (16)

Symmetry code: (i) Inline graphic.

Acknowledgments

We acknowledge the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD (Allen, 2002).

supplementary crystallographic information

Comment

The title compound consists of dimeric units located around a crystallographic symmetry centre (Fig. 1) and made up of two Cd cations, two 1,10-phenanthroline (phen) molecules and four acetate anions. Each cadmium(II) unit is chelated by a phen group (through both nitrogen atoms), and two acetates (through their carboxylato oxygens). A seventh coordination bond adds to these three chelating bites, by way of one of the latter oxygens which acts also as a bridge linking both cadmium(II) centres (Fig. 1). Table 1 presents the coordination distances achieved. The Cd-Cd distance (Cd1···Cd1i: 3.846 (1)Å, (i): 2-x, 1-y, 1-z) as well as the O-Cd-O angle (O14-Cd1-O14i: 72.37 (5) °) are unexceptional.

This coordination scheme of the bis(µ2-acetato)-bis(acetato)-bis(L) type (L: a chelating aromatic amine) leading to a dimeric unit is not common among transition metal cations and in fact this is the first case reported.

The description of coordination geometries when chelating ligands are involved usually poses intrinsic difficulties which can be elegantly surmounted through a vectorial description of the ligand geometry, as proposed by Harvey et al. (2006) based on the Bond Valence Theory (Brown and Altermatt, 1985). When applied to the present case, the geometrical outcome turns out to be a tetrahedron, with angles between ligand vectors spanning the range 91.3 (1)–124.6 (1)°. The fact that the two main values associated with the theory, i.e. the bond valence sum (2.01 valence units, (v.u).) and the modulus of the bond valence vector (0.06 v.u.), agree almost perfectly with expected values (2.00 v.u. and 0.00 v.u., respectively) suggests a significant stability of this coordination sphere.

Regarding non-covalent interactions, there are just a few and not too strong either. The only hydrogen bond present (Table 2) is a non conventional, intramolecular one linking one of the methyl hydrogens to a carboxylato oxygen (Fig. 1). In fact the packing is governed by a single π···π interaction (Table 3 and Fig. 2) between staked phen groups, which gives raise to weakly interacting planar structures paralell to (010).

Experimental

The title compound was obtained by direct mixing of two 0.15 M solutions of cadmium acetate dihydrate and 1,10-phenanthroline in dimethylformamide. Colorless needles began to develop at once, and after one day adequate crystals for X-ray diffraction could be extracted.

Refinement

The hydrogen atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms with C—H = 0.96–0.98Å and Uiso(H) = 1.2/1.5× Uequiv(C). Methyl groups were allowed to rotate around their 3-fold axis as well. A peak of ca. 1.5 eA-3 appears at 0.05 Å from Cd1. The next largest peak is less than 1.0 eA-3 in height.

Figures

Fig. 1.

Fig. 1.

The dimeric unit of the title compound: the symmetry-independent part shown in full thermal ellipsoids, drawn at the 40% level. The intradimeric H-bond is shown in dashed lines.

Fig. 2.

Fig. 2.

Packing view of the title compund down the [010] direction, showing the π···π bonded two-dimensional network.

Crystal data

[Cd2(C2H3O2)4(C12H8N2)2] F(000) = 1632
Mr = 821.40 Dx = 1.860 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 11288 reflections
a = 8.4422 (7) Å θ = 2.7–27.8°
b = 15.6384 (13) Å µ = 1.51 mm1
c = 22.2195 (18) Å T = 150 K
V = 2933.5 (4) Å3 Block, colourless
Z = 4 0.50 × 0.40 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3331 independent reflections
Radiation source: fine-focus sealed tube 3062 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −10→11
Tmin = 0.50, Tmax = 0.74 k = −19→20
22676 measured reflections l = −28→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0401P)2 + 1.4472P] where P = (Fo2 + 2Fc2)/3
3331 reflections (Δ/σ)max = 0.003
210 parameters Δρmax = 1.58 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 1.020491 (17) 0.537614 (8) 0.417981 (6) 0.01764 (7)
N1 0.88137 (18) 0.41531 (9) 0.38716 (7) 0.0202 (3)
N2 1.02282 (19) 0.52821 (10) 0.31067 (8) 0.0216 (4)
C1 0.8037 (2) 0.36453 (13) 0.42461 (9) 0.0235 (4)
H1 0.8129 0.3746 0.4666 0.028*
C2 0.7084 (2) 0.29656 (12) 0.40510 (9) 0.0254 (4)
H2 0.6519 0.2626 0.4333 0.030*
C3 0.6983 (2) 0.28003 (12) 0.34466 (9) 0.0262 (4)
H3 0.6364 0.2334 0.3305 0.031*
C4 0.7800 (2) 0.33252 (12) 0.30367 (9) 0.0239 (4)
C5 0.7738 (2) 0.32032 (14) 0.23972 (9) 0.0302 (4)
H5 0.7160 0.2734 0.2238 0.036*
C6 0.8487 (3) 0.37424 (14) 0.20153 (9) 0.0312 (5)
H6 0.8441 0.3641 0.1594 0.037*
C7 0.9354 (2) 0.44695 (13) 0.22400 (9) 0.0256 (4)
C8 1.0118 (2) 0.50644 (16) 0.18593 (10) 0.0294 (5)
H8 1.0089 0.4993 0.1435 0.035*
C9 1.0896 (3) 0.57412 (14) 0.21075 (9) 0.0308 (4)
H9 1.1416 0.6147 0.1858 0.037*
C10 1.0919 (2) 0.58316 (13) 0.27331 (9) 0.0273 (4)
H10 1.1455 0.6310 0.2900 0.033*
C11 0.9455 (2) 0.46042 (11) 0.28630 (9) 0.0209 (4)
C12 0.8686 (2) 0.40117 (11) 0.32713 (8) 0.0199 (4)
C13 1.2479 (2) 0.66285 (12) 0.41072 (8) 0.0207 (4)
C23 1.3877 (3) 0.72303 (14) 0.40927 (9) 0.0286 (4)
H23A 1.3759 0.7629 0.3755 0.043*
H23B 1.4855 0.6901 0.4043 0.043*
H23C 1.3923 0.7552 0.4471 0.043*
O13 1.27330 (18) 0.58473 (9) 0.42176 (6) 0.0282 (3)
O23 1.11146 (17) 0.69086 (10) 0.40168 (8) 0.0354 (3)
C14 0.7547 (2) 0.58393 (11) 0.48087 (8) 0.0192 (3)
C24 0.6115 (2) 0.59980 (13) 0.51958 (9) 0.0252 (4)
H24A 0.6170 0.6576 0.5365 0.038*
H24B 0.6088 0.5579 0.5523 0.038*
H24C 0.5155 0.5943 0.4951 0.038*
O14 0.88527 (15) 0.56447 (8) 0.50710 (6) 0.0229 (3)
O24 0.74741 (18) 0.59082 (9) 0.42510 (6) 0.0247 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.01769 (10) 0.01872 (10) 0.01652 (10) −0.00151 (4) −0.00046 (4) −0.00019 (4)
N1 0.0207 (7) 0.0190 (7) 0.0210 (7) 0.0005 (6) −0.0011 (6) −0.0009 (6)
N2 0.0212 (9) 0.0241 (8) 0.0196 (8) −0.0004 (6) 0.0005 (6) −0.0009 (6)
C1 0.0231 (10) 0.0235 (10) 0.0238 (9) 0.0010 (8) −0.0003 (7) 0.0000 (7)
C2 0.0223 (9) 0.0189 (9) 0.0350 (10) −0.0002 (7) 0.0037 (8) 0.0016 (8)
C3 0.0209 (9) 0.0206 (9) 0.0372 (11) −0.0006 (7) −0.0017 (8) −0.0047 (8)
C4 0.0205 (9) 0.0224 (9) 0.0290 (10) 0.0038 (7) −0.0037 (7) −0.0060 (7)
C5 0.0285 (10) 0.0310 (11) 0.0310 (10) −0.0005 (8) −0.0076 (8) −0.0124 (9)
C6 0.0326 (11) 0.0398 (12) 0.0213 (9) 0.0053 (9) −0.0055 (8) −0.0101 (8)
C7 0.0231 (10) 0.0318 (10) 0.0220 (9) 0.0070 (8) −0.0013 (8) −0.0021 (8)
C8 0.0299 (11) 0.0401 (13) 0.0180 (9) 0.0071 (9) 0.0009 (7) 0.0013 (9)
C9 0.0321 (11) 0.0364 (12) 0.0240 (10) 0.0012 (9) 0.0056 (8) 0.0074 (8)
C10 0.0273 (10) 0.0292 (10) 0.0255 (10) −0.0034 (8) 0.0028 (8) 0.0029 (8)
C11 0.0168 (9) 0.0213 (9) 0.0248 (10) 0.0044 (7) −0.0034 (8) −0.0024 (7)
C12 0.0169 (8) 0.0213 (9) 0.0217 (9) 0.0032 (7) −0.0018 (7) −0.0028 (7)
C13 0.0198 (9) 0.0245 (10) 0.0179 (8) −0.0030 (8) 0.0003 (7) −0.0008 (7)
C23 0.0239 (10) 0.0263 (10) 0.0355 (11) −0.0050 (8) −0.0032 (8) 0.0055 (8)
O13 0.0225 (7) 0.0234 (7) 0.0387 (8) −0.0037 (6) −0.0055 (6) 0.0065 (6)
O23 0.0200 (7) 0.0277 (8) 0.0584 (10) 0.0019 (6) −0.0047 (7) −0.0034 (7)
C14 0.0204 (8) 0.0138 (8) 0.0233 (9) −0.0002 (6) −0.0008 (7) 0.0005 (7)
C24 0.0228 (9) 0.0286 (10) 0.0243 (9) 0.0047 (8) 0.0014 (7) 0.0004 (8)
O14 0.0195 (6) 0.0261 (7) 0.0229 (6) 0.0029 (5) −0.0011 (5) 0.0022 (5)
O24 0.0248 (7) 0.0291 (7) 0.0201 (6) 0.0023 (6) −0.0005 (5) 0.0011 (5)

Geometric parameters (Å, °)

Cd1—O13 2.2594 (15) C6—H6 0.9500
Cd1—O14 2.3239 (13) C7—C11 1.403 (3)
Cd1—N1 2.3466 (15) C7—C8 1.413 (3)
Cd1—N2 2.3890 (18) C8—C9 1.362 (3)
Cd1—O14i 2.4398 (13) C8—H8 0.9500
Cd1—O24 2.4561 (15) C9—C10 1.397 (3)
Cd1—O23 2.5425 (16) C9—H9 0.9500
N1—C1 1.324 (2) C10—H10 0.9500
N1—C12 1.356 (2) C11—C12 1.450 (3)
N2—C10 1.329 (3) C13—O23 1.248 (2)
N2—C11 1.358 (2) C13—O13 1.265 (2)
C1—C2 1.402 (3) C13—C23 1.510 (3)
C1—H1 0.9500 C23—H23A 0.9800
C2—C3 1.370 (3) C23—H23B 0.9800
C2—H2 0.9500 C23—H23C 0.9800
C3—C4 1.407 (3) C14—O24 1.246 (2)
C3—H3 0.9500 C14—O14 1.283 (2)
C4—C12 1.409 (3) C14—C24 1.504 (2)
C4—C5 1.435 (3) C24—H24A 0.9800
C5—C6 1.353 (3) C24—H24B 0.9800
C5—H5 0.9500 C24—H24C 0.9800
C6—C7 1.442 (3) O14—Cd1i 2.4398 (13)
O13—Cd1—O14 111.92 (5) C8—C7—C6 122.93 (19)
O13—Cd1—N1 138.54 (5) C9—C8—C7 119.28 (19)
O14—Cd1—N1 98.64 (5) C9—C8—H8 120.4
O13—Cd1—N2 92.83 (5) C7—C8—H8 120.4
O14—Cd1—N2 149.95 (5) C8—C9—C10 119.21 (19)
N1—Cd1—N2 70.28 (5) C8—C9—H9 120.4
O13—Cd1—O14i 83.11 (5) C10—C9—H9 120.4
O14—Cd1—O14i 72.37 (5) N2—C10—C9 123.3 (2)
N1—Cd1—O14i 80.16 (5) N2—C10—H10 118.3
N2—Cd1—O14i 129.64 (5) C9—C10—H10 118.3
O13—Cd1—O24 140.70 (6) N2—C11—C7 122.70 (19)
O14—Cd1—O24 54.75 (4) N2—C11—C12 117.68 (18)
N1—Cd1—O24 79.93 (5) C7—C11—C12 119.61 (17)
N2—Cd1—O24 95.33 (5) N1—C12—C4 122.03 (17)
O14i—Cd1—O24 118.94 (4) N1—C12—C11 118.39 (16)
O13—Cd1—O23 54.03 (5) C4—C12—C11 119.55 (17)
O14—Cd1—O23 95.70 (5) O23—C13—O13 121.80 (18)
N1—Cd1—O23 151.38 (5) O23—C13—C23 119.94 (18)
N2—Cd1—O23 85.03 (6) O13—C13—C23 118.26 (18)
O14i—Cd1—O23 127.99 (5) O23—C13—Cd1 67.36 (11)
O24—Cd1—O23 88.47 (5) O13—C13—Cd1 54.44 (10)
C1—N1—C12 118.75 (16) C23—C13—Cd1 172.67 (14)
C1—N1—Cd1 123.59 (13) C13—C23—H23A 109.5
C12—N1—Cd1 117.36 (12) C13—C23—H23B 109.5
C10—N2—C11 117.80 (18) H23A—C23—H23B 109.5
C10—N2—Cd1 125.95 (13) C13—C23—H23C 109.5
C11—N2—Cd1 116.25 (13) H23A—C23—H23C 109.5
N1—C1—C2 123.00 (18) H23B—C23—H23C 109.5
N1—C1—H1 118.5 C13—O13—Cd1 98.47 (12)
C2—C1—H1 118.5 C13—O23—Cd1 85.70 (12)
C3—C2—C1 118.82 (18) O24—C14—O14 120.99 (17)
C3—C2—H2 120.6 O24—C14—C24 120.98 (17)
C1—C2—H2 120.6 O14—C14—C24 118.02 (16)
C2—C3—C4 119.59 (18) O24—C14—Cd1 63.65 (10)
C2—C3—H3 120.2 O14—C14—Cd1 57.71 (9)
C4—C3—H3 120.2 C24—C14—Cd1 173.24 (13)
C3—C4—C12 117.74 (17) C14—C24—H24A 109.5
C3—C4—C5 123.09 (18) C14—C24—H24B 109.5
C12—C4—C5 119.15 (18) H24A—C24—H24B 109.5
C6—C5—C4 121.43 (19) C14—C24—H24C 109.5
C6—C5—H5 119.3 H24A—C24—H24C 109.5
C4—C5—H5 119.3 H24B—C24—H24C 109.5
C5—C6—C7 120.77 (18) C14—O14—Cd1 94.46 (10)
C5—C6—H6 119.6 C14—O14—Cd1i 138.16 (11)
C7—C6—H6 119.6 Cd1—O14—Cd1i 107.63 (5)
C11—C7—C8 117.7 (2) C14—O24—Cd1 89.32 (11)
C11—C7—C6 119.41 (19)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C24—H24B···O13i 0.98 2.51 3.313 (2) 139

Symmetry codes: (i) −x+2, −y+1, −z+1.

Table 3 Table 3. π-π interactions (Å, °) for (I)

Group 1/Group 2 ccd ipd sa
Cg1/Cg2ii 3.5209 (11) 3.50 (1) 4(2)

Symmetry code: (ii) 1/2+x,y,1/2-zCg1: N2,C10,C9,C8,C7,C11 Cg2: C4,C5,C6,C7,C11,C12ccd: center-to-center distance (distance between ring centroids); sa: mean slippage angle (angle subtended by the intercentroid vector to the plane normal); ipd: mean interplanar distance (distance from one plane to the neighbouring centroid). For details, see Janiak (2000).

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2097).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  3. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Harvey, M. A., Baggio, S. & Baggio, R. (2006). Acta Cryst. B62, 1038–1042. [DOI] [PubMed]
  5. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3898.
  6. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029462/kj2097sup1.cif

e-64-m1450-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029462/kj2097Isup2.hkl

e-64-m1450-Isup2.hkl (163.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES