Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Jun;95(6):2903–2909. doi: 10.1172/JCI117997

Glucosylceramides stimulate murine epidermal hyperproliferation.

N L Marsh 1, P M Elias 1, W M Holleran 1
PMCID: PMC295978  PMID: 7769132

Abstract

Hydrolysis of glucosylceramides (GlcCer) by beta-glucocerebrosidase generates ceramides, critical components of the epidermal permeability barrier. Ceramides also are involved in the regulation of cellular proliferation and differentiation in a variety of cell types. Whereas most studies have focused on ceramides and their sphingoid base metabolites as growth inhibitors, GlcCer apparently acts oppositely (i.e., as a mitogen). To determine whether enhancement of GlcCer content stimulates epidermal mitogenesis, we examined the response of hairless mouse epidermis to alterations in endogenous and/or exogenous GlcCer. Topical applications of conduritol B epoxide, a specific irreversible inhibitor of beta-glucocerebrosidase, increased epidermal GlcCer levels twofold, an alteration localized largely to the basal, proliferative cell layer (fourfold increase); and stimulated epidermal proliferation (2.3-fold elevation in [3H]thymidine incorporation; P < or = 0.001), localized autoradiographically again to the basal layer, and resulting in epidermal hyperplasia. Intracutaneous administration of GlcCer (2.0 mg) also stimulated epidermal DNA synthesis, while simultaneous treatment with conduritol B epoxide plus GlcCer resulted in an additive increase in DNA synthesis. These increases in epidermal proliferation could not be attributed either to altered epidermal permeability barrier function, or to nonspecific irritant effects, as determined by four separate criteria. These results strongly suggest that GlcCer directly stimulates epidermal mitogenesis.

Full text

PDF
2903

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. BRADY R. O., KANFER J. N., SHAPIRO D. METABOLISM OF GLUCOCEREBROSIDES. II. EVIDENCE OF AN ENZYMATIC DEFICIENCY IN GAUCHER'S DISEASE. Biochem Biophys Res Commun. 1965 Jan 18;18:221–225. doi: 10.1016/0006-291x(65)90743-6. [DOI] [PubMed] [Google Scholar]
  3. Brabec R. K., Peters B. P., Bernstein I. A., Gray R. H., Goldstein I. J. Differential lectin binding to cellular membranes in the epidermis of the newborn rat. Proc Natl Acad Sci U S A. 1980 Jan;77(1):477–479. doi: 10.1073/pnas.77.1.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Chatterjee S. Lactosylceramide stimulates aortic smooth muscle cell proliferation. Biochem Biophys Res Commun. 1991 Dec 16;181(2):554–561. doi: 10.1016/0006-291x(91)91225-2. [DOI] [PubMed] [Google Scholar]
  6. Dabelsteen E., Buschard K., Hakomori S., Young W. W. Pattern of distribution of blood group antigens on human epidermal cells during maturation. J Invest Dermatol. 1984 Jan;82(1):13–17. doi: 10.1111/1523-1747.ep12258874. [DOI] [PubMed] [Google Scholar]
  7. Datta S. C., Radin N. S. Stimulation of liver growth and DNA synthesis by glucosylceramide. Lipids. 1988 May;23(5):508–510. doi: 10.1007/BF02535529. [DOI] [PubMed] [Google Scholar]
  8. Elias P. M., Brown B. E., Fritsch P., Goerke J., Gray G. M., White R. J. Localization and composition of lipids in neonatal mouse stratum granulosum and stratum corneum. J Invest Dermatol. 1979 Nov;73(5):339–348. doi: 10.1111/1523-1747.ep12550377. [DOI] [PubMed] [Google Scholar]
  9. Elias P. M., Brown B. E., Fritsch P., Goerke J., Gray G. M., White R. J. Localization and composition of lipids in neonatal mouse stratum granulosum and stratum corneum. J Invest Dermatol. 1979 Nov;73(5):339–348. doi: 10.1111/1523-1747.ep12550377. [DOI] [PubMed] [Google Scholar]
  10. Fürstenberger G., Marks F. Early prostaglandin E synthesis is an obligatory event in the induction of cell proliferation in mouse epidermis in vivo by the phorbol ester TPA. Biochem Biophys Res Commun. 1980 Feb 12;92(3):749–756. doi: 10.1016/0006-291x(80)90767-6. [DOI] [PubMed] [Google Scholar]
  11. Gray G. M., Yardley H. J. Different populations of pig epidermal cells: isolation and lipid composition. J Lipid Res. 1975 Nov;16(6):441–447. [PubMed] [Google Scholar]
  12. Hanai N., Dohi T., Nores G. A., Hakomori S. A novel ganglioside, de-N-acetyl-GM3 (II3NeuNH2LacCer), acting as a strong promoter for epidermal growth factor receptor kinase and as a stimulator for cell growth. J Biol Chem. 1988 May 5;263(13):6296–6301. [PubMed] [Google Scholar]
  13. Hannun Y. A. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem. 1994 Feb 4;269(5):3125–3128. [PubMed] [Google Scholar]
  14. Hara A., Radin N. S. Enzymic effects of beta-glucosidase destruction in mice. Changes in glucuronidase levels. Biochim Biophys Acta. 1979 Feb 1;582(3):423–433. doi: 10.1016/0304-4165(79)90134-x. [DOI] [PubMed] [Google Scholar]
  15. Holleran W. M., Feingold K. R., Man M. Q., Gao W. N., Lee J. M., Elias P. M. Regulation of epidermal sphingolipid synthesis by permeability barrier function. J Lipid Res. 1991 Jul;32(7):1151–1158. [PubMed] [Google Scholar]
  16. Holleran W. M., Gao W. N., Feingold K. R., Elias P. M. Localization of epidermal sphingolipid synthesis and serine palmitoyl transferase activity: alterations imposed by permeability barrier requirements. Arch Dermatol Res. 1995;287(3-4):254–258. doi: 10.1007/BF01105075. [DOI] [PubMed] [Google Scholar]
  17. Holleran W. M., Ginns E. I., Menon G. K., Grundmann J. U., Fartasch M., McKinney C. E., Elias P. M., Sidransky E. Consequences of beta-glucocerebrosidase deficiency in epidermis. Ultrastructure and permeability barrier alterations in Gaucher disease. J Clin Invest. 1994 Apr;93(4):1756–1764. doi: 10.1172/JCI117160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holleran W. M., Man M. Q., Gao W. N., Menon G. K., Elias P. M., Feingold K. R. Sphingolipids are required for mammalian epidermal barrier function. Inhibition of sphingolipid synthesis delays barrier recovery after acute perturbation. J Clin Invest. 1991 Oct;88(4):1338–1345. doi: 10.1172/JCI115439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Holleran W. M., Takagi Y., Imokawa G., Jackson S., Lee J. M., Elias P. M. beta-Glucocerebrosidase activity in murine epidermis: characterization and localization in relation to differentiation. J Lipid Res. 1992 Aug;33(8):1201–1209. [PubMed] [Google Scholar]
  20. Holleran W. M., Takagi Y., Menon G. K., Legler G., Feingold K. R., Elias P. M. Processing of epidermal glucosylceramides is required for optimal mammalian cutaneous permeability barrier function. J Clin Invest. 1993 Apr;91(4):1656–1664. doi: 10.1172/JCI116374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Katoh-Semba R., Facci L., Skaper S. D., Varon S. Gangliosides stimulate astroglial cell proliferation in the absence of serum. J Cell Physiol. 1986 Jan;126(1):147–153. doi: 10.1002/jcp.1041260120. [DOI] [PubMed] [Google Scholar]
  22. Kolesnick R. N. Sphingomyelin and derivatives as cellular signals. Prog Lipid Res. 1991;30(1):1–38. doi: 10.1016/0163-7827(91)90005-p. [DOI] [PubMed] [Google Scholar]
  23. Kolesnick R., Golde D. W. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell. 1994 May 6;77(3):325–328. doi: 10.1016/0092-8674(94)90147-3. [DOI] [PubMed] [Google Scholar]
  24. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  25. Levin J., Tomasulo P. A., Oser R. S. Detection of endotoxin in human blood and demonstration of an inhibitor. J Lab Clin Med. 1970 Jun;75(6):903–911. [PubMed] [Google Scholar]
  26. Lipson A. H., Rogers M., Berry A. Collodion babies with Gaucher's disease--a further case. Arch Dis Child. 1991 May;66(5):667–667. doi: 10.1136/adc.66.5.667-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lui K., Commens C., Choong R., Jaworski R. Collodion babies with Gaucher's disease. Arch Dis Child. 1988 Jul;63(7):854–856. doi: 10.1136/adc.63.7.854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Menon G. K., Feingold K. R., Moser A. H., Brown B. E., Elias P. M. De novo sterologenesis in the skin. II. Regulation by cutaneous barrier requirements. J Lipid Res. 1985 Apr;26(4):418–427. [PubMed] [Google Scholar]
  29. Nemanic M. K., Whitehead J. S., Elias P. M. Alterations in membrane sugars during epidermal differentiation: visualization with lectins and role of glycosidases. J Histochem Cytochem. 1983 Jul;31(7):887–897. doi: 10.1177/31.7.6854004. [DOI] [PubMed] [Google Scholar]
  30. Okazaki T., Bielawska A., Bell R. M., Hannun Y. A. Role of ceramide as a lipid mediator of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem. 1990 Sep 15;265(26):15823–15831. [PubMed] [Google Scholar]
  31. Olivera A., Buckley N. E., Spiegel S. Sphingomyelinase and cell-permeable ceramide analogs stimulate cellular proliferation in quiescent Swiss 3T3 fibroblasts. J Biol Chem. 1992 Dec 25;267(36):26121–26127. [PubMed] [Google Scholar]
  32. Ponec M., Weerheim A., Kempenaar J., Mommaas A. M., Nugteren D. H. Lipid composition of cultured human keratinocytes in relation to their differentiation. J Lipid Res. 1988 Jul;29(7):949–961. [PubMed] [Google Scholar]
  33. Proksch E., Feingold K. R., Man M. Q., Elias P. M. Barrier function regulates epidermal DNA synthesis. J Clin Invest. 1991 May;87(5):1668–1673. doi: 10.1172/JCI115183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shayman J. A., Deshmukh G. D., Mahdiyoun S., Thomas T. P., Wu D., Barcelon F. S., Radin N. S. Modulation of renal epithelial cell growth by glucosylceramide. Association with protein kinase C, sphingosine, and diacylglycerol. J Biol Chem. 1991 Dec 5;266(34):22968–22974. [PubMed] [Google Scholar]
  35. Sherer D. M., Metlay L. A., Sinkin R. A., Mongeon C., Lee R. E., Woods J. R., Jr Congenital ichthyosis with restrictive dermopathy and Gaucher disease: a new syndrome with associated prenatal diagnostic and pathology findings. Obstet Gynecol. 1993 May;81(5 ):842–844. [PubMed] [Google Scholar]
  36. Sidransky E., Sherer D. M., Ginns E. I. Gaucher disease in the neonate: a distinct Gaucher phenotype is analogous to a mouse model created by targeted disruption of the glucocerebrosidase gene. Pediatr Res. 1992 Oct;32(4):494–498. doi: 10.1203/00006450-199210000-00023. [DOI] [PubMed] [Google Scholar]
  37. Su Y., Rosenthal D., Smulson M., Spiegel S. Sphingosine 1-phosphate, a novel signaling molecule, stimulates DNA binding activity of AP-1 in quiescent Swiss 3T3 fibroblasts. J Biol Chem. 1994 Jun 10;269(23):16512–16517. [PubMed] [Google Scholar]
  38. Tsuji S., Arita M., Nagai Y. GQ1b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cell lines. J Biochem. 1983 Jul;94(1):303–306. doi: 10.1093/oxfordjournals.jbchem.a134344. [DOI] [PubMed] [Google Scholar]
  39. Yao J. K., Yoshino J. E. Association of glucocerebroside homolog biosynthesis with Schwann cell proliferation. Neurochem Res. 1994 Jan;19(1):31–35. doi: 10.1007/BF00966725. [DOI] [PubMed] [Google Scholar]
  40. Zador I. Z., Deshmukh G. D., Kunkel R., Johnson K., Radin N. S., Shayman J. A. A role for glycosphingolipid accumulation in the renal hypertrophy of streptozotocin-induced diabetes mellitus. J Clin Invest. 1993 Mar;91(3):797–803. doi: 10.1172/JCI116299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zhang H., Buckley N. E., Gibson K., Spiegel S. Sphingosine stimulates cellular proliferation via a protein kinase C-independent pathway. J Biol Chem. 1990 Jan 5;265(1):76–81. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES