Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 31;64(Pt 11):o2241. doi: 10.1107/S1600536808034995

Ethyl 3,7-dichloro­quinoline-8-carboxyl­ate

Fengxia Zhu a, Li-Tao An a,*, Min Xia a, Jian-Feng Zhou a
PMCID: PMC2959780  PMID: 21581095

Abstract

The title compound, C12H9Cl2NO2, was prepared by the esterification of 3,7-dichloro­quinoline-8-carboxylic acid with triethyl phosphite. The crystal structure is stabilized by aromatic π–π stacking between the benzene and the pyridine rings of neighbouring mol­ecules [centroid–centroid distances = 3.716 (2) and 3.642 (2) Å]. In addition, weak inter­molecular C—H⋯N hydrogen bonds are present in the structure.

Related literature

For the use of 3,7-dichloro­quinoline-8-carboxylic acid as a herbicide, see: Nuria et al. (1997); Pornprom et al. (2006); Sunohara & Matsumoto (2004); Tresch & Grossmann (2002). For the usual preparative route, see: Yang et al. (2002). For related complexes, see: An et al. (2008); Che et al. (2005); Guo (2008); Li et al. (2008); Turel et al. (2004); Zhang et al. (2007). For 3,7-dichloro­quinoline-8-carboxylic acid derivatives, see: Liang et al. (2006);graphic file with name e-64-o2241-scheme1.jpg

Experimental

Crystal data

  • C12H9Cl2NO2

  • M r = 270.10

  • Tetragonal, Inline graphic

  • a = 25.4806 (3) Å

  • c = 7.3497 (2) Å

  • V = 4771.87 (15) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 296 (2) K

  • 0.10 × 0.08 × 0.06 mm

Data collection

  • Bruker SMART APEX2 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.950, T max = 0.969

  • 19332 measured reflections

  • 2750 independent reflections

  • 1625 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.117

  • S = 1.05

  • 2750 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034995/lx2075sup1.cif

e-64-o2241-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034995/lx2075Isup2.hkl

e-64-o2241-Isup2.hkl (135.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯N1i 0.97 2.46 3.299 (3) 145

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported financially by Jiangsu Key Laboratory for the Chemistry of Low-dimensional Materials.

supplementary crystallographic information

Comment

Quinclorac (3,7-dichloroquinoline-8-carboxylic acid) is one of the most effective herbicides (Nuria et al., 1997; Pornprom et al., 2006; Sunohara & Matsumoto, 2004; Tresch & Grossmann, 2002). Usually, it was prepared via Skraup cyclization from 2-methyl-3- chloroaniline, followed by chlorination and oxidation (Yang et al., 2002). Furthermore, quinolinecarboxylates can chelate to metal atoms, forming the complexes, such as trans-Dimethanolbis(quinoline-8-carboxylato-κ2N,O)- cobalt(II) (Che et al.,2005),catena-Poly[nickel(II)-bis(µ-3,7-dichloroquinoline-8-χarboxylato-κ3N,O:O')] (Zhang et al., 2007), catena-Poly[cobalt(II)-bis (l-3,7-dichloroquinoline-8-carboxylato-κ3N,O:O')] (Li et al., 2008). More recently, we also have reported a Zinc-quinclorac complex (An et al., 2008) and quinclorac (Guo, 2008). But the derivatives of 3,7-dichloroquinoline-8-carboxylic acid have been less reported (Liang et al., 2006). Here we report the crystal structure of the title compound, ethyl 3,7-dichloroquinoline-8-carboxylate (I) (Fig. 1).

In the title compound (I), as shown in Fig. 1, the plane (O1—C10—O2—C11) is nearly vertical to the quinoline ring, in which the dihedral angel is 86.6 (1). The quinoline unit is essentially planar, with a mean deviation of 0.007 (2) Å from the least-squares plane defined by the ten constituent atoms. The molecular packing (Fig. 2) is stabilized by aromatic π—π stackings between the benzene and the pyridine rings of the adjacent molecules. The Cg1···Cg2ii and Cg1···Cg2iii distances are 3.716 (2) and 3.642 (2) Å (Fig. 2; Cg1 and Cg2 are the centroids of the C1/C2/C3/C4/C9/C8 benzene ring and the N1/C7/C6/C5/C9/C8 pyridine ring, respectively, symmetry code as in Fig. 2). The crystal structure is further stabilized by intermolecular C11—H11A···Ni hydrogen bonds (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Experimental

Ethyl 3,7-dichloroquinoline-8-carboxylate was obtained from the reaction of 3,7-dichloroquinoline-8-carboxylic acid with triethyl phosphite in refluxing condition. After recrystallization from ethanol, then it was dissolved the mixture of acetone/petroleum ether (1:4, V/V). The suitable single-crystal for X-ray analysis was obtained by slow evaporation.

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.96 Å (methyl) H atoms, and with Uiso(H) = 1.2Ueq(C) (aromatic, methylene) and 1.5Ueq(C) (methyl) H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

π—π stackings and C—H···N interactions (dotted lines) in the title compound. Cg denotes ring centroid. [Symmetry code: (i) -y+5/4, x+1/4, -z+5/4; (ii) -x+1, -y+1, -z+2; (iii)-x+1, -y+1, -z+1.]

Crystal data

C12H9Cl2NO2 Dx = 1.504 Mg m3
Mr = 270.10 Melting point: not measured K
Tetragonal, I41/a Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -I_4ad Cell parameters from 2208 reflections
a = 25.4806 (3) Å θ = 1.6–26.0°
c = 7.3497 (2) Å µ = 0.53 mm1
V = 4771.87 (15) Å3 T = 296 K
Z = 16 Needle, colorless
F(000) = 2208 0.10 × 0.08 × 0.06 mm

Data collection

Bruker SMART APEX2 diffractometer 2750 independent reflections
Radiation source: fine-focus sealed tube 1625 reflections with I > 2σ(I)
graphite Rint = 0.045
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 1.6°
φ and ω scans h = −32→33
Absorption correction: multi-scan (SADABS; Bruker, 1999) k = −33→32
Tmin = 0.950, Tmax = 0.969 l = −9→9
19332 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0469P)2 + 1.2301P] where P = (Fo2 + 2Fc2)/3
2750 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.65771 (2) 0.53635 (3) 0.60570 (9) 0.0725 (2)
Cl2 0.34654 (3) 0.47136 (3) 0.89519 (10) 0.0809 (3)
O1 0.57642 (7) 0.63042 (6) 0.8389 (2) 0.0714 (5)
O2 0.55721 (6) 0.62556 (5) 0.5418 (2) 0.0560 (4)
N1 0.46789 (7) 0.56227 (7) 0.7898 (3) 0.0535 (5)
C1 0.55677 (8) 0.54727 (8) 0.7053 (3) 0.0479 (5)
C2 0.59627 (8) 0.51296 (8) 0.6642 (3) 0.0511 (5)
C3 0.58827 (9) 0.45826 (9) 0.6676 (3) 0.0582 (6)
H3 0.6157 0.4356 0.6390 0.070*
C4 0.54076 (9) 0.43888 (9) 0.7125 (3) 0.0594 (6)
H4 0.5358 0.4027 0.7144 0.071*
C5 0.44775 (9) 0.45445 (8) 0.8039 (3) 0.0574 (6)
H5 0.4405 0.4187 0.8107 0.069*
C6 0.40972 (9) 0.49023 (9) 0.8394 (3) 0.0555 (6)
C7 0.42156 (9) 0.54368 (9) 0.8316 (3) 0.0577 (6)
H7 0.3949 0.5675 0.8577 0.069*
C8 0.50652 (8) 0.52712 (8) 0.7514 (3) 0.0458 (5)
C9 0.49847 (8) 0.47219 (8) 0.7565 (3) 0.0492 (5)
C10 0.56464 (8) 0.60545 (8) 0.7069 (3) 0.0505 (5)
C11 0.56478 (9) 0.68194 (8) 0.5254 (3) 0.0609 (6)
H11A 0.5999 0.6915 0.5639 0.073*
H11B 0.5398 0.7004 0.6015 0.073*
C12 0.55684 (13) 0.69615 (10) 0.3318 (4) 0.0967 (10)
H12A 0.5809 0.6766 0.2574 0.145*
H12B 0.5630 0.7330 0.3160 0.145*
H12C 0.5215 0.6880 0.2967 0.145*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0602 (4) 0.0814 (5) 0.0760 (5) 0.0005 (3) 0.0113 (3) −0.0024 (3)
Cl2 0.0661 (4) 0.1000 (5) 0.0765 (5) −0.0247 (4) −0.0006 (3) 0.0114 (4)
O1 0.0916 (13) 0.0584 (10) 0.0642 (12) −0.0132 (9) −0.0061 (9) −0.0109 (8)
O2 0.0650 (10) 0.0406 (8) 0.0624 (11) −0.0065 (7) −0.0037 (8) 0.0032 (7)
N1 0.0524 (11) 0.0480 (10) 0.0601 (12) 0.0009 (9) −0.0024 (9) 0.0023 (8)
C1 0.0560 (13) 0.0447 (12) 0.0430 (13) −0.0014 (10) −0.0049 (10) 0.0001 (9)
C2 0.0580 (13) 0.0529 (13) 0.0424 (12) 0.0009 (10) −0.0021 (10) −0.0015 (10)
C3 0.0704 (16) 0.0530 (14) 0.0511 (14) 0.0128 (11) −0.0018 (11) −0.0042 (10)
C4 0.0804 (17) 0.0423 (12) 0.0555 (15) 0.0022 (12) −0.0030 (12) −0.0035 (10)
C5 0.0778 (17) 0.0462 (12) 0.0483 (14) −0.0158 (12) −0.0057 (11) 0.0036 (10)
C6 0.0584 (14) 0.0637 (15) 0.0445 (13) −0.0129 (11) −0.0065 (10) 0.0043 (10)
C7 0.0557 (14) 0.0595 (14) 0.0578 (15) 0.0034 (11) −0.0035 (11) 0.0037 (11)
C8 0.0567 (13) 0.0418 (12) 0.0389 (12) 0.0007 (10) −0.0072 (9) 0.0002 (9)
C9 0.0667 (15) 0.0412 (12) 0.0397 (13) −0.0033 (10) −0.0077 (10) 0.0014 (9)
C10 0.0456 (12) 0.0497 (13) 0.0562 (15) −0.0038 (10) 0.0016 (10) −0.0020 (11)
C11 0.0583 (14) 0.0392 (12) 0.0851 (18) −0.0080 (10) 0.0071 (12) 0.0011 (11)
C12 0.139 (3) 0.0547 (16) 0.097 (2) −0.0178 (17) −0.0243 (19) 0.0215 (15)

Geometric parameters (Å, °)

Cl1—C2 1.729 (2) C4—H4 0.9300
Cl2—C6 1.730 (2) C5—C6 1.356 (3)
O1—C10 1.198 (2) C5—C9 1.413 (3)
O2—C10 1.331 (2) C5—H5 0.9300
O2—C11 1.454 (2) C6—C7 1.396 (3)
N1—C7 1.309 (3) C7—H7 0.9300
N1—C8 1.360 (2) C8—C9 1.415 (3)
C1—C2 1.367 (3) C11—C12 1.482 (3)
C1—C8 1.420 (3) C11—H11A 0.9700
C1—C10 1.496 (3) C11—H11B 0.9700
C2—C3 1.409 (3) C12—H12A 0.9600
C3—C4 1.348 (3) C12—H12B 0.9600
C3—H3 0.9300 C12—H12C 0.9600
C4—C9 1.409 (3)
C10—O2—C11 115.91 (17) C6—C7—H7 118.1
C7—N1—C8 117.60 (18) N1—C8—C9 122.72 (19)
C2—C1—C8 119.03 (18) N1—C8—C1 117.63 (17)
C2—C1—C10 122.47 (18) C9—C8—C1 119.65 (19)
C8—C1—C10 118.49 (18) C4—C9—C5 124.3 (2)
C1—C2—C3 121.5 (2) C4—C9—C8 118.6 (2)
C1—C2—Cl1 120.06 (16) C5—C9—C8 117.1 (2)
C3—C2—Cl1 118.45 (17) O1—C10—O2 124.7 (2)
C4—C3—C2 119.8 (2) O1—C10—C1 124.5 (2)
C4—C3—H3 120.1 O2—C10—C1 110.81 (18)
C2—C3—H3 120.1 O2—C11—C12 107.63 (19)
C3—C4—C9 121.5 (2) O2—C11—H11A 110.2
C3—C4—H4 119.3 C12—C11—H11A 110.2
C9—C4—H4 119.3 O2—C11—H11B 110.2
C6—C5—C9 119.07 (19) C12—C11—H11B 110.2
C6—C5—H5 120.5 H11A—C11—H11B 108.5
C9—C5—H5 120.5 C11—C12—H12A 109.5
C5—C6—C7 119.6 (2) C11—C12—H12B 109.5
C5—C6—Cl2 121.59 (18) H12A—C12—H12B 109.5
C7—C6—Cl2 118.82 (19) C11—C12—H12C 109.5
N1—C7—C6 123.9 (2) H12A—C12—H12C 109.5
N1—C7—H7 118.1 H12B—C12—H12C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C11—H11A···N1i 0.97 2.46 3.299 (3) 145

Symmetry codes: (i) −y+5/4, x+1/4, −z+5/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2075).

References

  1. An, L.-T., Zhou, J., Zhou, J.-F. & Xia, M. (2008). Acta Cryst. E64, m1170. [DOI] [PMC free article] [PubMed]
  2. Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Che, G.-B., Liu, C.-B., Cui, Y.-C. & Li, C.-B. (2005). Acta Cryst. E61, m2207–m2208.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Guo, X.-H. (2008). Acta Cryst. E64, o1786. [DOI] [PMC free article] [PubMed]
  7. Li, Z., Wu, F., Gong, Y., Zhang, Y. & Bai, C. (2008). Acta Cryst. E64, m227. [DOI] [PMC free article] [PubMed]
  8. Liang, Y., He, H.-W., Wang, Y.-Z. & Chen, T. (2006). Acta Cryst. E62, o3652–o3654.
  9. Nuria, L. M., George, M. & Rafael, D. P. (1997). Pestic. Sci.51, 171–175.
  10. Pornprom, T., Mahatamuchoke, P. & Usui, K. (2006). Pest Manag. Sci.62, 1109–1115. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Sunohara, Y. & Matsumoto, H. (2004). Plant Sci.167, 597–606.
  14. Tresch, S. & Grossmann, K. (2002). Pestic. Biochem. Physiol.75, 73–78.
  15. Turel, I., Milena, P., Amalija, G., Enzo, A., Barbara, S., Alberta, B. & Gianni, S. (2004). Inorg. Chim. Acta, 98, 239–401.
  16. Yang, L., Wang, P. & Zhou, D. R. (2002). J. Harbin Inst. Technol 9, 401–404.
  17. Zhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63, m1557.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034995/lx2075sup1.cif

e-64-o2241-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034995/lx2075Isup2.hkl

e-64-o2241-Isup2.hkl (135.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES