Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):m1530–m1531. doi: 10.1107/S1600536808036337

[3-(Dimethyl­amino)benzoato]triphenyl­tin(IV)

Yip Foo Win a,, Siang Guan Teoh a, Sie Tiong Ha b, Reza Kia c, Hoong-Kun Fun c,*
PMCID: PMC2959792  PMID: 21581146

Abstract

In the title compound, [Sn(C6H5)3(C9H10NO2)], the Sn atom is coordinated by three phenyl groups and a carboxyl­ate anion in a distorted tetra­hedral geometry. An intra­molecular C—H⋯O inter­action forms an S(7) ring motif. The dihedral angles between the benzoate group and the other three phenyl rings are 76.94 (8), 66.82 (8) and 42.34 (9)°. The crystal structure is further stabilized by inter­molecular C—H⋯π inter­actions.

Related literature

For hydrogen-bond motifs, see Bernstein et al. (1995). For values of bond lengths, see Allen et al. (1987). For related literature on triorganotin(IV) complexes see, for example: Willem et al. (1997); Novelli et al. (1999); Gielen et al. (2000); Tian et al. (2005); Baul et al. (2001); Win et al. (2006, 2007a ,b ); Yeap & Teoh (2003).graphic file with name e-64-m1530-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)3(C9H10NO2)]

  • M r = 514.17

  • Triclinic, Inline graphic

  • a = 9.1140 (2) Å

  • b = 10.0027 (2) Å

  • c = 14.5066 (4) Å

  • α = 100.925 (1)°

  • β = 103.106 (1)°

  • γ = 110.778 (1)°

  • V = 1150.13 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 100.0 (1) K

  • 0.46 × 0.42 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.623, T max = 0.830

  • 18268 measured reflections

  • 5259 independent reflections

  • 5141 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.017

  • wR(F 2) = 0.049

  • S = 1.08

  • 5259 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036337/kp2195sup1.cif

e-64-m1530-sup1.cif (23.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036337/kp2195Isup2.hkl

e-64-m1530-Isup2.hkl (257.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sn1—O1 2.0649 (11)
Sn1—C1 2.1239 (15)
Sn1—C13 2.1260 (14)
Sn1—C7 2.1290 (14)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2 0.93 2.43 3.126 (2) 132
C24—H24ACg1i 0.93 2.88 3.6772 (19) 144
C26—H26BCg2ii 0.96 2.74 3.672 (2) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant 101/PKIMIA/815002 and facilities. HKF and RK thanks the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Triorganotin(IV) complexes are well known for their biological properties as well as industrial applications (Willem et al., 1997; Novelli et al., 1999; Gielen et al., 2000; Tian et al., 2005). Generally, triphenyltin(IV) carboxylate complexes are commonly found as monomeric structures with four-coordinated distorted tetrahedral or five-coordinated trigonal bipyramid geometries (Baul et al., 2001; Yeap & Teoh, 2003; Win et al., 2007b). In a recent study, the coordination geometry of (3,5-dinitrobenzoato)triphenyltin(IV) is found to be distorted tetrahedral due to the long range interaction of the carboxylate anion coordinated to the Sn moiety in an isobidentate fashion (Win et al., 2006). In addition, triphenyltin(IV) carboxylates are also able to form polymeric structures (Tian et al., 2005; Win et al., 2007a). In the polymeric system, the carboxylate anions act as bridging bidentate ligands in the bonding to the neighbouring tin(IV) resulting in a polymeric structure with the tin atom exhibiting trigonal bipyramid geometry as shown in the complex, catena-poly[[triphenyltin(IV)–2,4-dinitrobenzoato] (Win et al., 2007a). Based on the crystallographic structural study, the title complex [3-(dimethylamino)benzoato]triphenyltin(IV) has a monomeric four-coordinated distorted tetrahedral structure which is similar to that found for [4-(diethylamino)benzoato-κO]triphenyltin(IV) (Win et al., 2007b).

The bond lengths (Allen et al., 1987) and angles in the molecule (I, Fig. 1, Table 1) are within normal ranges. The Sn atom is coordinated by the three phenyl groups and a carboxylate anion in a distorted tetrahedral geometry. An intramolecular hydrogen bond C—H···O forms a seven-membered ring, characterized as S(7) motif (Bernstein et al., 1995). The dihedral angles between the phenyl-carboxylate group and the other three phenyl rings are 76.94 (8), 66.82 (8), and 42.34 (9)°, respectively. The crystal structure (Fig. 2), is further stabilized by intermolecular C—H···π (x 2) (Table 2) interactions.

Experimental

The complex [3-(dimethylamino)benzoato]triphenyltin(IV) was obtained by heating under reflux a 1:1 molar mixture of triphenyltin(IV) hydroxide (1.10 g, 3 mmol) and 3-(dimethylamino)benzoic acid (0.50 g, 3 mmol) in acetonitrile (50 ml) for an hour. The clear brown solution was isolated by filtration and kept in a bottle. After eight days, brown crystals (1.01 g, 65.7% yield) were collected. Melting point: 413.2–414.5 K. Analysis found for C27H25NO2Sn: C, 63.05; H, 4.91; N, 2.67; Sn, 23.00%. Calculated found for C27H25NO2Sn: C, 63.07; H, 4.90; N, 2.72; Sn, 23.08%. FTIR as KBr disc (cm-1): υ (C—H) aromatic 3065, 3051, 3026; υ (C—H) saturated 2989, 2908, 2810; υ (COO)as 1625, υ (COO)s 1322, υ (C—N) 1227, υ (Sn—O) 445. 1H-NMR: δ: phenyl protons 7.42–7.49 (9H, m); 7.79–7.81 (6H, m); benzene 6.86–6.88 (1H, dd); 7.24–7.28 (1H, t); 7.51–7.53 (2H, d); N-(CH3)2 2.95 (6H, s) p.p.m.. 13C-NMR: δ: phenyl carbons Cipso 139.01 (648.9 Hz), Cortho 137.36 (47.9 Hz), Cmeta 129.31 (63.2 Hz), Cpara 130.28; benzene 114.84, 117.18, 119.31, 129.57, 134.59, 150.85; N-(CH3)2 41.04; COO 174.05 p.p.m.. 119Sn-NMR: υ: -114.19 p.p.m..

Refinement

All of the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H and 0.96 Å for methyl H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom lables and the 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bonds is shown as dashed lines.

Fig. 2.

Fig. 2.

The crystal structure of (I), viewed down the b-axis. Intermolecular C—H···π interactions were shown as dashed lines.

Crystal data

[Sn(C6H5)3(C9H10NO2)] Z = 2
Mr = 514.17 F000 = 520
Triclinic, P1 Dx = 1.485 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.1140 (2) Å Cell parameters from 9986 reflections
b = 10.0027 (2) Å θ = 2.5–31.2º
c = 14.5066 (4) Å µ = 1.13 mm1
α = 100.925 (1)º T = 100.0 (1) K
β = 103.106 (1)º Block, colourless
γ = 110.778 (1)º 0.46 × 0.42 × 0.17 mm
V = 1150.13 (5) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5259 independent reflections
Radiation source: fine-focus sealed tube 5141 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.017
T = 100.0(1) K θmax = 27.5º
φ and ω scans θmin = 2.3º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −11→11
Tmin = 0.623, Tmax = 0.830 k = −12→12
18268 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017 H-atom parameters constrained
wR(F2) = 0.049   w = 1/[σ2(Fo2) + (0.0269P)2 + 0.592P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
5259 reflections Δρmax = 0.53 e Å3
282 parameters Δρmin = −0.56 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.091614 (11) 0.100499 (9) 0.838745 (6) 0.01429 (4)
O1 0.18084 (14) 0.11930 (12) 0.72088 (8) 0.0197 (2)
O2 0.11484 (14) 0.31350 (12) 0.73771 (8) 0.0204 (2)
N1 0.22892 (18) 0.51484 (16) 0.45101 (10) 0.0254 (3)
C1 0.22847 (18) 0.28442 (15) 0.96940 (10) 0.0159 (3)
C2 0.14887 (19) 0.36829 (17) 1.00604 (11) 0.0207 (3)
H2A 0.0400 0.3462 0.9710 0.025*
C3 0.2303 (2) 0.48439 (18) 1.09426 (12) 0.0244 (3)
H3A 0.1762 0.5399 1.1177 0.029*
C4 0.3920 (2) 0.51738 (17) 1.14722 (12) 0.0229 (3)
H4A 0.4465 0.5948 1.2064 0.028*
C5 0.4729 (2) 0.43461 (18) 1.11195 (12) 0.0232 (3)
H5A 0.5816 0.4570 1.1474 0.028*
C6 0.39153 (19) 0.31856 (17) 1.02389 (12) 0.0205 (3)
H6A 0.4459 0.2631 1.0010 0.025*
C7 −0.16663 (18) 0.04727 (16) 0.79258 (10) 0.0158 (3)
C8 −0.23183 (19) 0.14256 (16) 0.75791 (11) 0.0194 (3)
H8A −0.1615 0.2315 0.7516 0.023*
C9 −0.4012 (2) 0.10510 (18) 0.73291 (12) 0.0233 (3)
H9A −0.4435 0.1683 0.7089 0.028*
C10 −0.5073 (2) −0.02620 (19) 0.74368 (12) 0.0240 (3)
H10A −0.6201 −0.0501 0.7280 0.029*
C11 −0.4443 (2) −0.12170 (18) 0.77797 (12) 0.0230 (3)
H11A −0.5151 −0.2100 0.7849 0.028*
C12 −0.27509 (19) −0.08543 (17) 0.80205 (11) 0.0188 (3)
H12A −0.2338 −0.1501 0.8247 0.023*
C13 0.13625 (18) −0.08981 (16) 0.85493 (11) 0.0164 (3)
C14 0.2177 (2) −0.09087 (18) 0.94868 (12) 0.0215 (3)
H14A 0.2560 −0.0066 1.0028 0.026*
C15 0.2422 (2) −0.21653 (19) 0.96204 (12) 0.0251 (3)
H15A 0.2965 −0.2160 1.0248 0.030*
C16 0.1856 (2) −0.34238 (18) 0.88169 (13) 0.0245 (3)
H16A 0.1999 −0.4271 0.8907 0.029*
C17 0.1073 (2) −0.34218 (17) 0.78765 (13) 0.0225 (3)
H17A 0.0713 −0.4260 0.7336 0.027*
C18 0.08268 (18) −0.21649 (17) 0.77429 (11) 0.0193 (3)
H18A 0.0302 −0.2169 0.7112 0.023*
C19 0.16464 (18) 0.23129 (16) 0.69218 (11) 0.0168 (3)
C20 0.20934 (18) 0.25094 (16) 0.60128 (10) 0.0172 (3)
C21 0.20685 (18) 0.37521 (16) 0.57167 (11) 0.0184 (3)
H21A 0.1814 0.4443 0.6098 0.022*
C22 0.24224 (19) 0.39733 (17) 0.48506 (11) 0.0199 (3)
C23 0.2867 (2) 0.29256 (19) 0.43204 (11) 0.0239 (3)
H23A 0.3153 0.3064 0.3758 0.029*
C24 0.2888 (2) 0.16944 (19) 0.46203 (12) 0.0246 (3)
H24A 0.3171 0.1014 0.4251 0.030*
C25 0.24929 (19) 0.14608 (17) 0.54641 (11) 0.0207 (3)
H25A 0.2494 0.0627 0.5659 0.025*
C26 0.2998 (2) 0.5495 (2) 0.37333 (13) 0.0306 (4)
H26A 0.2477 0.4636 0.3157 0.046*
H26B 0.4166 0.5755 0.3964 0.046*
H26C 0.2817 0.6321 0.3568 0.046*
C27 0.2286 (2) 0.64104 (19) 0.52007 (14) 0.0318 (4)
H27A 0.1372 0.6063 0.5449 0.048*
H27B 0.2177 0.7127 0.4865 0.048*
H27C 0.3305 0.6873 0.5743 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.01477 (6) 0.01395 (6) 0.01457 (6) 0.00679 (4) 0.00447 (4) 0.00385 (4)
O1 0.0237 (5) 0.0211 (5) 0.0189 (5) 0.0116 (4) 0.0093 (4) 0.0091 (4)
O2 0.0243 (6) 0.0207 (5) 0.0194 (5) 0.0105 (4) 0.0108 (4) 0.0065 (4)
N1 0.0309 (7) 0.0256 (7) 0.0197 (6) 0.0100 (6) 0.0072 (6) 0.0110 (5)
C1 0.0177 (7) 0.0146 (6) 0.0149 (6) 0.0058 (5) 0.0057 (5) 0.0047 (5)
C2 0.0187 (7) 0.0234 (7) 0.0200 (7) 0.0105 (6) 0.0043 (6) 0.0057 (6)
C3 0.0273 (8) 0.0245 (8) 0.0235 (8) 0.0143 (7) 0.0097 (7) 0.0029 (6)
C4 0.0250 (8) 0.0190 (7) 0.0189 (7) 0.0055 (6) 0.0057 (6) 0.0018 (6)
C5 0.0176 (7) 0.0235 (7) 0.0231 (8) 0.0060 (6) 0.0035 (6) 0.0042 (6)
C6 0.0180 (7) 0.0206 (7) 0.0231 (7) 0.0093 (6) 0.0067 (6) 0.0041 (6)
C7 0.0155 (6) 0.0180 (6) 0.0125 (6) 0.0076 (5) 0.0041 (5) 0.0005 (5)
C8 0.0193 (7) 0.0170 (6) 0.0205 (7) 0.0079 (6) 0.0059 (6) 0.0028 (5)
C9 0.0210 (7) 0.0223 (7) 0.0268 (8) 0.0122 (6) 0.0050 (6) 0.0045 (6)
C10 0.0162 (7) 0.0289 (8) 0.0228 (8) 0.0082 (6) 0.0055 (6) 0.0023 (6)
C11 0.0200 (7) 0.0239 (7) 0.0205 (7) 0.0044 (6) 0.0067 (6) 0.0054 (6)
C12 0.0203 (7) 0.0198 (7) 0.0149 (7) 0.0077 (6) 0.0045 (6) 0.0042 (5)
C13 0.0151 (6) 0.0169 (6) 0.0198 (7) 0.0076 (5) 0.0072 (5) 0.0072 (5)
C14 0.0257 (8) 0.0234 (7) 0.0180 (7) 0.0120 (6) 0.0084 (6) 0.0064 (6)
C15 0.0289 (8) 0.0341 (9) 0.0236 (8) 0.0196 (7) 0.0119 (7) 0.0163 (7)
C16 0.0256 (8) 0.0245 (8) 0.0366 (9) 0.0162 (6) 0.0178 (7) 0.0167 (7)
C17 0.0217 (7) 0.0175 (7) 0.0296 (8) 0.0088 (6) 0.0115 (6) 0.0047 (6)
C18 0.0175 (7) 0.0195 (7) 0.0192 (7) 0.0073 (6) 0.0045 (6) 0.0050 (6)
C19 0.0147 (6) 0.0174 (6) 0.0152 (6) 0.0048 (5) 0.0031 (5) 0.0041 (5)
C20 0.0161 (7) 0.0199 (7) 0.0135 (6) 0.0063 (5) 0.0035 (5) 0.0041 (5)
C21 0.0186 (7) 0.0191 (7) 0.0158 (7) 0.0075 (5) 0.0044 (5) 0.0038 (5)
C22 0.0183 (7) 0.0223 (7) 0.0146 (7) 0.0053 (6) 0.0022 (5) 0.0055 (6)
C23 0.0256 (8) 0.0325 (8) 0.0127 (7) 0.0114 (7) 0.0068 (6) 0.0056 (6)
C24 0.0280 (8) 0.0300 (8) 0.0156 (7) 0.0150 (7) 0.0065 (6) 0.0009 (6)
C25 0.0228 (7) 0.0211 (7) 0.0170 (7) 0.0101 (6) 0.0043 (6) 0.0035 (6)
C26 0.0266 (8) 0.0360 (9) 0.0241 (8) 0.0052 (7) 0.0054 (7) 0.0164 (7)
C27 0.0408 (10) 0.0243 (8) 0.0311 (9) 0.0139 (7) 0.0091 (8) 0.0125 (7)

Geometric parameters (Å, °)

Sn1—O1 2.0649 (11) C12—H12A 0.9300
Sn1—C1 2.1239 (15) C13—C18 1.397 (2)
Sn1—C13 2.1260 (14) C13—C14 1.398 (2)
Sn1—C7 2.1290 (14) C14—C15 1.393 (2)
O1—C19 1.3101 (17) C14—H14A 0.9300
O2—C19 1.2303 (19) C15—C16 1.385 (2)
N1—C22 1.391 (2) C15—H15A 0.9300
N1—C27 1.457 (2) C16—C17 1.389 (2)
N1—C26 1.458 (2) C16—H16A 0.9300
C1—C2 1.397 (2) C17—C18 1.393 (2)
C1—C6 1.398 (2) C17—H17A 0.9300
C2—C3 1.390 (2) C18—H18A 0.9300
C2—H2A 0.9300 C19—C20 1.493 (2)
C3—C4 1.384 (2) C20—C21 1.396 (2)
C3—H3A 0.9300 C20—C25 1.397 (2)
C4—C5 1.391 (2) C21—C22 1.404 (2)
C4—H4A 0.9300 C21—H21A 0.9300
C5—C6 1.388 (2) C22—C23 1.411 (2)
C5—H5A 0.9300 C23—C24 1.386 (2)
C6—H6A 0.9300 C23—H23A 0.9300
C7—C12 1.399 (2) C24—C25 1.390 (2)
C7—C8 1.401 (2) C24—H24A 0.9300
C8—C9 1.393 (2) C25—H25A 0.9300
C8—H8A 0.9300 C26—H26A 0.9600
C9—C10 1.389 (2) C26—H26B 0.9600
C9—H9A 0.9300 C26—H26C 0.9600
C10—C11 1.389 (2) C27—H27A 0.9600
C10—H10A 0.9300 C27—H27B 0.9600
C11—C12 1.394 (2) C27—H27C 0.9600
C11—H11A 0.9300
O1—Sn1—C1 114.69 (5) C15—C14—C13 120.83 (15)
O1—Sn1—C13 95.46 (5) C15—C14—H14A 119.6
C1—Sn1—C13 110.92 (6) C13—C14—H14A 119.6
O1—Sn1—C7 109.89 (5) C16—C15—C14 119.87 (15)
C1—Sn1—C7 113.28 (6) C16—C15—H15A 120.1
C13—Sn1—C7 111.31 (5) C14—C15—H15A 120.1
C19—O1—Sn1 109.13 (9) C15—C16—C17 120.07 (14)
C22—N1—C27 118.52 (13) C15—C16—H16A 120.0
C22—N1—C26 118.12 (15) C17—C16—H16A 120.0
C27—N1—C26 115.85 (14) C16—C17—C18 120.06 (15)
C2—C1—C6 118.61 (14) C16—C17—H17A 120.0
C2—C1—Sn1 118.67 (11) C18—C17—H17A 120.0
C6—C1—Sn1 122.57 (11) C17—C18—C13 120.51 (14)
C3—C2—C1 120.82 (14) C17—C18—H18A 119.7
C3—C2—H2A 119.6 C13—C18—H18A 119.7
C1—C2—H2A 119.6 O2—C19—O1 121.43 (13)
C4—C3—C2 119.94 (15) O2—C19—C20 122.89 (13)
C4—C3—H3A 120.0 O1—C19—C20 115.68 (13)
C2—C3—H3A 120.0 C21—C20—C25 121.04 (14)
C3—C4—C5 119.97 (15) C21—C20—C19 118.15 (13)
C3—C4—H4A 120.0 C25—C20—C19 120.80 (13)
C5—C4—H4A 120.0 C20—C21—C22 120.90 (14)
C6—C5—C4 120.12 (15) C20—C21—H21A 119.6
C6—C5—H5A 119.9 C22—C21—H21A 119.6
C4—C5—H5A 119.9 N1—C22—C21 121.46 (15)
C5—C6—C1 120.54 (14) N1—C22—C23 121.24 (14)
C5—C6—H6A 119.7 C21—C22—C23 117.27 (14)
C1—C6—H6A 119.7 C24—C23—C22 121.36 (14)
C12—C7—C8 118.59 (13) C24—C23—H23A 119.3
C12—C7—Sn1 118.36 (10) C22—C23—H23A 119.3
C8—C7—Sn1 122.97 (11) C23—C24—C25 121.01 (15)
C9—C8—C7 120.51 (14) C23—C24—H24A 119.5
C9—C8—H8A 119.7 C25—C24—H24A 119.5
C7—C8—H8A 119.7 C24—C25—C20 118.36 (14)
C10—C9—C8 120.31 (15) C24—C25—H25A 120.8
C10—C9—H9A 119.8 C20—C25—H25A 120.8
C8—C9—H9A 119.8 N1—C26—H26A 109.5
C9—C10—C11 119.76 (15) N1—C26—H26B 109.5
C9—C10—H10A 120.1 H26A—C26—H26B 109.5
C11—C10—H10A 120.1 N1—C26—H26C 109.5
C10—C11—C12 120.11 (15) H26A—C26—H26C 109.5
C10—C11—H11A 119.9 H26B—C26—H26C 109.5
C12—C11—H11A 119.9 N1—C27—H27A 109.5
C11—C12—C7 120.71 (14) N1—C27—H27B 109.5
C11—C12—H12A 119.6 H27A—C27—H27B 109.5
C7—C12—H12A 119.6 N1—C27—H27C 109.5
C18—C13—C14 118.64 (13) H27A—C27—H27C 109.5
C18—C13—Sn1 121.68 (11) H27B—C27—H27C 109.5
C14—C13—Sn1 119.66 (11)
C1—Sn1—O1—C19 −65.43 (10) C7—Sn1—C13—C18 63.64 (13)
C13—Sn1—O1—C19 178.55 (10) O1—Sn1—C13—C14 131.33 (12)
C7—Sn1—O1—C19 63.54 (10) C1—Sn1—C13—C14 12.27 (13)
O1—Sn1—C1—C2 118.11 (11) C7—Sn1—C13—C14 −114.83 (12)
C13—Sn1—C1—C2 −135.17 (11) C18—C13—C14—C15 −1.3 (2)
C7—Sn1—C1—C2 −9.16 (13) Sn1—C13—C14—C15 177.23 (12)
O1—Sn1—C1—C6 −66.39 (13) C13—C14—C15—C16 0.1 (2)
C13—Sn1—C1—C6 40.33 (13) C14—C15—C16—C17 1.2 (2)
C7—Sn1—C1—C6 166.35 (11) C15—C16—C17—C18 −1.3 (2)
C6—C1—C2—C3 0.7 (2) C16—C17—C18—C13 0.0 (2)
Sn1—C1—C2—C3 176.37 (12) C14—C13—C18—C17 1.3 (2)
C1—C2—C3—C4 −0.4 (2) Sn1—C13—C18—C17 −177.23 (11)
C2—C3—C4—C5 0.2 (2) Sn1—O1—C19—O2 5.06 (17)
C3—C4—C5—C6 −0.2 (2) Sn1—O1—C19—C20 −174.58 (10)
C4—C5—C6—C1 0.5 (2) O2—C19—C20—C21 5.3 (2)
C2—C1—C6—C5 −0.7 (2) O1—C19—C20—C21 −175.11 (13)
Sn1—C1—C6—C5 −176.25 (11) O2—C19—C20—C25 −173.49 (14)
O1—Sn1—C7—C12 120.58 (11) O1—C19—C20—C25 6.1 (2)
C1—Sn1—C7—C12 −109.69 (11) C25—C20—C21—C22 0.9 (2)
C13—Sn1—C7—C12 16.12 (13) C19—C20—C21—C22 −177.86 (13)
O1—Sn1—C7—C8 −62.74 (13) C27—N1—C22—C21 18.9 (2)
C1—Sn1—C7—C8 67.00 (13) C26—N1—C22—C21 167.49 (15)
C13—Sn1—C7—C8 −167.20 (12) C27—N1—C22—C23 −163.14 (16)
C12—C7—C8—C9 −0.4 (2) C26—N1—C22—C23 −14.6 (2)
Sn1—C7—C8—C9 −177.08 (12) C20—C21—C22—N1 175.44 (14)
C7—C8—C9—C10 1.1 (2) C20—C21—C22—C23 −2.5 (2)
C8—C9—C10—C11 −1.1 (2) N1—C22—C23—C24 −175.42 (15)
C9—C10—C11—C12 0.4 (2) C21—C22—C23—C24 2.6 (2)
C10—C11—C12—C7 0.3 (2) C22—C23—C24—C25 −0.9 (3)
C8—C7—C12—C11 −0.3 (2) C23—C24—C25—C20 −0.8 (2)
Sn1—C7—C12—C11 176.53 (11) C21—C20—C25—C24 0.9 (2)
O1—Sn1—C13—C18 −50.20 (12) C19—C20—C25—C24 179.56 (14)
C1—Sn1—C13—C18 −169.26 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8A···O2 0.93 2.43 3.126 (2) 132
C24—H24A···Cg1i 0.93 2.88 3.6772 (19) 144
C26—H26B···Cg2ii 0.96 2.74 3.672 (2) 164

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2195).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Baul, T. S. B., Dhar, S., Pyke, S. M., Tiekink, E. R. T., Rivarola, E., Butcher, R. & Smith, F. E. (2001). J. Organomet. Chem.633, 7–17.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Gielen, M., Biesemans, M., Vos, D. d. & Willem, R. (2000). J. Inorg. Biochem.79, 139–145. [DOI] [PubMed]
  6. Novelli, F., Recine, M., Sparatore, F. & Juliano, C. (1999). Farmaco, 54, 237–241. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  9. Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem.99, 1646–1652. [DOI] [PubMed]
  10. Willem, R., Bunhdid, A., Mahieu, B., Ghys, L., Biesemans, M., Tiekink, E. R. T., Vos, D. d. & Gielen, M. (1997). J. Organomet. Chem.531, 151–158.
  11. Win, Y. F., Guan, T. S., Ismail, N. L. & Yamin, B. M. (2006). Acta Cryst. E62, m3146–m3148.
  12. Win, Y. F., Teoh, S.-G., Ng, S.-L., Fun, H.-K. & Ahmad, S. (2007a). Acta Cryst. E63, m2220–m2221.
  13. Win, Y. F., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Zakaria, L. (2007b). Acta Cryst. E63, m323–m325.
  14. Yeap, L.-L. & Teoh, S. G. (2003). J. Coord. Chem.56, 701–708.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036337/kp2195sup1.cif

e-64-m1530-sup1.cif (23.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036337/kp2195Isup2.hkl

e-64-m1530-Isup2.hkl (257.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES