Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2342. doi: 10.1107/S1600536808037070

4-[(4-Amino-3-pyrid­yl)imino­meth­yl]benzonitrile

Hoong-Kun Fun a,*, Hadi Kargar b,, Reza Kia a
PMCID: PMC2959807  PMID: 21581317

Abstract

The asymmetric unit of the potential mono-Schiff base ligand title compound, C13H10N4, contains two crystallographically independent mol­ecules, A and B. In mol­ecule A, the two rings are twisted from each other by 13.90 (18)°. By contrast, the dihedral angle between the two rings in mol­ecule B is 0.67 (19)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯N inter­actions via R44(32) motifs, forming two-dimensional arrays. The short distances between the centroids of the six-membered rings indicate the existence of π–π inter­actions [centroid–centroid distances = 3.6880 (17)–3.7466 (15) Å].

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Li et al. (2005); Bomfim et al. (2005); Glidewell et al. (2005, 2006); Sun et al. (2004); Fun et al. (2008).graphic file with name e-64-o2342-scheme1.jpg

Experimental

Crystal data

  • C13H10N4

  • M r = 222.25

  • Monoclinic, Inline graphic

  • a = 13.5560 (8) Å

  • b = 12.3000 (7) Å

  • c = 15.7514 (8) Å

  • β = 124.651 (2)°

  • V = 2160.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100.0 (1) K

  • 0.45 × 0.09 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.962, T max = 0.994

  • 18251 measured reflections

  • 3810 independent reflections

  • 2372 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.074

  • wR(F 2) = 0.219

  • S = 1.03

  • 3810 reflections

  • 323 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037070/tk2327sup1.cif

e-64-o2342-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037070/tk2327Isup2.hkl

e-64-o2342-Isup2.hkl (186.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H2NA⋯N4Ai 0.92 (4) 2.26 (4) 3.155 (4) 165 (3)
N3A—H1NA⋯N1Bii 0.89 (4) 2.33 (5) 3.080 (4) 143 (4)
N3B—H2NB⋯N1Aiii 0.89 (4) 2.42 (4) 3.112 (4) 136 (4)
N3B—H1NB⋯N4Bi 0.90 (4) 2.36 (4) 3.220 (4) 159 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

supplementary crystallographic information

Comment

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry and play an important role in the development of coordination chemistry (Fun et al., 2008). Structures of Schiff bases derived from substituted benzaldehydes have been reported previously (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004; Fun et al., 2008).

Each imino (C ═N) functional group is co-planar with the adjacent benzene ring in (I), Fig. 1. Two independent molecules, A and B, comprise the crystallographic asymmetric unit. In molecule A, the two phenyl rings are twisted from each other by 13.90 (18)°. The dihedral angle between the two phenyl rings in molecule B is 0.67 (19)° which indicates the molecule is planar. In the crystal structure, molecules are linked together through intermolecular N—H···N interactions via R44(32) motifs to form 2-D arrays parallel to the ab-plane, Fig. 2 & Table 1. The short distances between the centroids of the six-membered rings prove the existence of π–π interactions [Cg1···Cg4i = 3.7466 (15) Å, (i) x, 1/2 - y, -1/2 + z; Cg2···Cg3i = 3.6894 (14) Å; Cg3···Cg4ii, (ii) 1 - x,-y, 1 - z; Cg1, Cg2, Cg3, and Cg4 are the centroids of the N1A/C1A–C5A, C7A–C12A, N1B/C1B–C5B, and C7B–C12B rings, respectively.

Experimental

The synthetic method has been described earlier (Fun et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution of (I) held at room temperature.

Refinement

The hydrogen atoms of the amino groups were located from the difference Fourier map and refined freely. The remaining hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq (H).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with atom labels and 50% displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed down the c-axis showing a part of the 2-D array and R44(32) ring motifs. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C13H10N4 F000 = 928
Mr = 222.25 Dx = 1.367 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1699 reflections
a = 13.5560 (8) Å θ = 2.3–30.1º
b = 12.3000 (7) Å µ = 0.09 mm1
c = 15.7514 (8) Å T = 100 (1) K
β = 124.651 (2)º Needle, yellow
V = 2160.5 (2) Å3 0.45 × 0.09 × 0.07 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3810 independent reflections
Radiation source: fine-focus sealed tube 2372 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.060
T = 100(1) K θmax = 25.0º
φ and ω scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −16→16
Tmin = 0.962, Tmax = 0.994 k = −14→13
18251 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.219   w = 1/[σ2(Fo2) + (0.1298P)2 + 0.1507P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3810 reflections Δρmax = 0.63 e Å3
323 parameters Δρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1A 0.6639 (2) 0.12555 (19) 0.38263 (17) 0.0217 (6)
N2A 0.85668 (19) 0.33048 (19) 0.36498 (16) 0.0148 (6)
N3A 0.9556 (2) 0.1387 (2) 0.3572 (2) 0.0277 (7)
N4A 1.0578 (2) 0.9061 (2) 0.36363 (17) 0.0227 (6)
C1A 0.8618 (2) 0.1349 (2) 0.36579 (19) 0.0185 (7)
C2A 0.8126 (2) 0.0361 (2) 0.36880 (19) 0.0200 (7)
H2AA 0.8447 −0.0292 0.3654 0.024*
C3A 0.7163 (2) 0.0359 (2) 0.3769 (2) 0.0210 (7)
H3AA 0.6856 −0.0312 0.3784 0.025*
C4A 0.7119 (2) 0.2198 (2) 0.37969 (19) 0.0184 (7)
H4AA 0.6773 0.2833 0.3834 0.022*
C5A 0.8084 (2) 0.2316 (2) 0.37159 (19) 0.0156 (6)
C6A 0.8305 (2) 0.4207 (2) 0.38827 (19) 0.0173 (7)
H6AA 0.7799 0.4207 0.4104 0.021*
C7A 0.8790 (2) 0.5238 (2) 0.38050 (18) 0.0140 (6)
C8A 0.9575 (2) 0.5272 (2) 0.34913 (18) 0.0189 (7)
H8AA 0.9781 0.4632 0.3313 0.023*
C9A 1.0037 (2) 0.6245 (2) 0.34472 (19) 0.0203 (7)
H9AA 1.0551 0.6263 0.3234 0.024*
C10A 0.9739 (2) 0.7212 (2) 0.37224 (19) 0.0156 (6)
C11A 0.8961 (2) 0.7180 (2) 0.40366 (19) 0.0185 (7)
H11A 0.8755 0.7819 0.4217 0.022*
C12A 0.8499 (2) 0.6198 (2) 0.40791 (19) 0.0168 (7)
H12A 0.7987 0.6179 0.4294 0.020*
C13A 1.0218 (2) 0.8236 (2) 0.36773 (19) 0.0173 (6)
C3B 0.7831 (2) −0.3515 (2) 0.62159 (19) 0.0202 (7)
H3BA 0.8150 −0.4183 0.6211 0.024*
N2B 0.63747 (19) −0.05867 (19) 0.62738 (16) 0.0183 (6)
N3B 0.5661 (2) −0.2465 (2) 0.66987 (19) 0.0236 (6)
N4B 0.4350 (2) 0.5212 (2) 0.62229 (18) 0.0269 (6)
C1B 0.6482 (2) −0.2527 (2) 0.64597 (19) 0.0160 (7)
C2B 0.6988 (2) −0.3504 (2) 0.6444 (2) 0.0191 (7)
H2BA 0.6757 −0.4152 0.6588 0.023*
N1B 0.8223 (2) −0.26157 (19) 0.59977 (17) 0.0225 (6)
C4B 0.7739 (3) −0.1680 (2) 0.6022 (2) 0.0232 (7)
H4BA 0.7994 −0.1047 0.5878 0.028*
C5B 0.6885 (2) −0.1573 (2) 0.62439 (19) 0.0153 (6)
C6B 0.6661 (2) 0.0318 (2) 0.6087 (2) 0.0207 (7)
H6BA 0.7215 0.0325 0.5916 0.025*
C7B 0.6158 (2) 0.1352 (2) 0.61273 (19) 0.0156 (6)
C8B 0.5309 (2) 0.1391 (2) 0.63648 (19) 0.0177 (7)
H8BA 0.5058 0.0751 0.6501 0.021*
C9B 0.4837 (3) 0.2381 (2) 0.6398 (2) 0.0197 (7)
H9BA 0.4278 0.2407 0.6562 0.024*
C10B 0.5212 (2) 0.3334 (2) 0.6183 (2) 0.0183 (7)
C11B 0.6066 (3) 0.3310 (2) 0.5956 (2) 0.0219 (7)
H11B 0.6321 0.3950 0.5823 0.026*
C12B 0.6525 (3) 0.2323 (2) 0.5929 (2) 0.0242 (7)
H12B 0.7094 0.2303 0.5776 0.029*
C13B 0.4722 (3) 0.4381 (3) 0.6207 (2) 0.0222 (7)
H2NA 0.999 (3) 0.077 (3) 0.366 (2) 0.028 (9)*
H1NA 0.996 (3) 0.199 (3) 0.365 (3) 0.048 (12)*
H2NB 0.527 (3) −0.184 (3) 0.654 (2) 0.044 (11)*
H1NB 0.538 (3) −0.311 (3) 0.675 (2) 0.039 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.0241 (14) 0.0159 (14) 0.0297 (13) −0.0010 (11) 0.0180 (12) 0.0011 (11)
N2A 0.0128 (12) 0.0135 (14) 0.0182 (11) 0.0012 (10) 0.0089 (10) 0.0005 (9)
N3A 0.0293 (16) 0.0154 (17) 0.0494 (17) 0.0009 (13) 0.0290 (14) −0.0006 (13)
N4A 0.0240 (14) 0.0166 (15) 0.0305 (13) 0.0020 (11) 0.0173 (12) 0.0021 (11)
C1A 0.0197 (15) 0.0196 (18) 0.0157 (13) −0.0026 (12) 0.0097 (12) −0.0022 (12)
C2A 0.0239 (16) 0.0113 (17) 0.0263 (15) −0.0020 (13) 0.0152 (13) 0.0005 (12)
C3A 0.0225 (16) 0.0148 (17) 0.0260 (15) −0.0034 (13) 0.0140 (13) 0.0002 (12)
C4A 0.0154 (15) 0.0197 (18) 0.0203 (14) 0.0019 (12) 0.0103 (13) −0.0010 (12)
C5A 0.0153 (14) 0.0134 (16) 0.0165 (13) 0.0020 (12) 0.0082 (12) −0.0009 (11)
C6A 0.0141 (14) 0.0202 (18) 0.0179 (13) 0.0025 (12) 0.0094 (12) −0.0004 (12)
C7A 0.0119 (13) 0.0140 (16) 0.0130 (12) −0.0016 (11) 0.0053 (11) 0.0002 (11)
C8A 0.0216 (15) 0.0155 (17) 0.0191 (14) 0.0006 (12) 0.0113 (13) −0.0034 (12)
C9A 0.0213 (16) 0.0210 (18) 0.0226 (14) −0.0014 (13) 0.0149 (13) −0.0006 (12)
C10A 0.0147 (14) 0.0136 (16) 0.0161 (13) 0.0008 (12) 0.0073 (12) 0.0008 (11)
C11A 0.0171 (15) 0.0163 (17) 0.0209 (14) 0.0033 (12) 0.0101 (13) −0.0015 (12)
C12A 0.0151 (14) 0.0175 (17) 0.0209 (14) 0.0008 (12) 0.0121 (12) −0.0004 (12)
C13A 0.0169 (15) 0.0178 (17) 0.0178 (14) 0.0000 (13) 0.0102 (12) 0.0006 (12)
C3B 0.0184 (15) 0.0199 (18) 0.0216 (15) −0.0007 (12) 0.0109 (13) −0.0029 (12)
N2B 0.0195 (13) 0.0145 (15) 0.0220 (12) 0.0044 (10) 0.0124 (11) 0.0027 (10)
N3B 0.0266 (15) 0.0137 (17) 0.0392 (15) 0.0009 (13) 0.0239 (13) 0.0023 (12)
N4B 0.0262 (14) 0.0168 (16) 0.0405 (15) 0.0033 (12) 0.0206 (13) 0.0012 (12)
C1B 0.0094 (13) 0.0216 (18) 0.0130 (13) −0.0003 (12) 0.0040 (11) 0.0003 (11)
C2B 0.0182 (15) 0.0154 (17) 0.0218 (14) 0.0008 (12) 0.0103 (13) 0.0033 (12)
N1B 0.0213 (14) 0.0181 (15) 0.0310 (13) 0.0015 (11) 0.0166 (12) −0.0030 (11)
C4B 0.0260 (16) 0.0171 (18) 0.0287 (15) −0.0014 (13) 0.0169 (14) 0.0023 (13)
C5B 0.0126 (14) 0.0164 (17) 0.0142 (13) 0.0026 (11) 0.0060 (11) −0.0008 (11)
C6B 0.0220 (15) 0.0198 (18) 0.0285 (15) 0.0034 (13) 0.0193 (13) 0.0038 (13)
C7B 0.0137 (14) 0.0169 (17) 0.0163 (13) −0.0002 (12) 0.0087 (12) −0.0007 (11)
C8B 0.0206 (16) 0.0141 (17) 0.0195 (14) −0.0015 (12) 0.0120 (13) 0.0015 (11)
C9B 0.0192 (15) 0.0211 (18) 0.0238 (14) −0.0015 (13) 0.0152 (13) 0.0001 (12)
C10B 0.0188 (15) 0.0151 (17) 0.0168 (13) 0.0004 (12) 0.0077 (12) −0.0021 (11)
C11B 0.0264 (16) 0.0172 (18) 0.0264 (15) −0.0005 (13) 0.0175 (14) −0.0001 (12)
C12B 0.0269 (17) 0.0200 (18) 0.0345 (17) 0.0018 (13) 0.0227 (15) 0.0034 (13)
C13B 0.0192 (15) 0.0229 (19) 0.0246 (15) −0.0025 (14) 0.0124 (13) 0.0000 (13)

Geometric parameters (Å, °)

N1A—C3A 1.343 (3) C3B—N1B 1.354 (3)
N1A—C4A 1.343 (3) C3B—C2B 1.379 (4)
N2A—C6A 1.281 (3) C3B—H3BA 0.9300
N2A—C5A 1.413 (3) N2B—C6B 1.267 (3)
N3A—C1A 1.354 (4) N2B—C5B 1.411 (3)
N3A—H2NA 0.93 (3) N3B—C1B 1.366 (4)
N3A—H1NA 0.88 (4) N3B—H2NB 0.88 (4)
N4A—C13A 1.143 (3) N3B—H1NB 0.90 (4)
C1A—C2A 1.399 (4) N4B—C13B 1.147 (4)
C1A—C5A 1.422 (4) C1B—C2B 1.391 (4)
C2A—C3A 1.381 (4) C1B—C5B 1.415 (4)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—H3AA 0.9300 N1B—C4B 1.336 (4)
C4A—C5A 1.392 (4) C4B—C5B 1.393 (4)
C4A—H4AA 0.9300 C4B—H4BA 0.9300
C6A—C7A 1.466 (4) C6B—C7B 1.461 (4)
C6A—H6AA 0.9300 C6B—H6BA 0.9300
C7A—C12A 1.389 (4) C7B—C12B 1.396 (4)
C7A—C8A 1.406 (4) C7B—C8B 1.399 (4)
C8A—C9A 1.370 (4) C8B—C9B 1.390 (4)
C8A—H8AA 0.9300 C8B—H8BA 0.9300
C9A—C10A 1.402 (4) C9B—C10B 1.394 (4)
C9A—H9AA 0.9300 C9B—H9BA 0.9300
C10A—C11A 1.398 (4) C10B—C11B 1.393 (4)
C10A—C13A 1.437 (4) C10B—C13B 1.458 (4)
C11A—C12A 1.379 (4) C11B—C12B 1.375 (4)
C11A—H11A 0.9300 C11B—H11B 0.9300
C12A—H12A 0.9300 C12B—H12B 0.9300
C3A—N1A—C4A 114.9 (2) N1B—C3B—C2B 124.1 (3)
C6A—N2A—C5A 120.6 (2) N1B—C3B—H3BA 117.9
C1A—N3A—H2NA 121.2 (19) C2B—C3B—H3BA 117.9
C1A—N3A—H1NA 123 (2) C6B—N2B—C5B 121.8 (2)
H2NA—N3A—H1NA 112 (3) C1B—N3B—H2NB 115 (2)
N3A—C1A—C2A 121.7 (3) C1B—N3B—H1NB 115 (2)
N3A—C1A—C5A 121.2 (3) H2NB—N3B—H1NB 125 (3)
C2A—C1A—C5A 117.0 (3) N3B—C1B—C2B 122.7 (3)
C3A—C2A—C1A 119.9 (3) N3B—C1B—C5B 120.4 (3)
C3A—C2A—H2AA 120.0 C2B—C1B—C5B 116.8 (3)
C1A—C2A—H2AA 120.0 C3B—C2B—C1B 120.2 (3)
N1A—C3A—C2A 124.6 (3) C3B—C2B—H2BA 119.9
N1A—C3A—H3AA 117.7 C1B—C2B—H2BA 119.9
C2A—C3A—H3AA 117.7 C4B—N1B—C3B 115.3 (3)
N1A—C4A—C5A 126.3 (3) N1B—C4B—C5B 125.4 (3)
N1A—C4A—H4AA 116.9 N1B—C4B—H4BA 117.3
C5A—C4A—H4AA 116.9 C5B—C4B—H4BA 117.3
C4A—C5A—N2A 126.5 (3) C4B—C5B—N2B 125.6 (3)
C4A—C5A—C1A 117.2 (3) C4B—C5B—C1B 118.2 (3)
N2A—C5A—C1A 116.2 (2) N2B—C5B—C1B 116.2 (2)
N2A—C6A—C7A 121.0 (2) N2B—C6B—C7B 122.8 (3)
N2A—C6A—H6AA 119.5 N2B—C6B—H6BA 118.6
C7A—C6A—H6AA 119.5 C7B—C6B—H6BA 118.6
C12A—C7A—C8A 119.3 (3) C12B—C7B—C8B 118.8 (3)
C12A—C7A—C6A 119.3 (2) C12B—C7B—C6B 120.0 (2)
C8A—C7A—C6A 121.3 (3) C8B—C7B—C6B 121.2 (3)
C9A—C8A—C7A 120.2 (3) C9B—C8B—C7B 120.4 (3)
C9A—C8A—H8AA 119.9 C9B—C8B—H8BA 119.8
C7A—C8A—H8AA 119.9 C7B—C8B—H8BA 119.8
C8A—C9A—C10A 120.3 (3) C8B—C9B—C10B 119.2 (3)
C8A—C9A—H9AA 119.8 C8B—C9B—H9BA 120.4
C10A—C9A—H9AA 119.8 C10B—C9B—H9BA 120.4
C11A—C10A—C9A 119.6 (3) C11B—C10B—C9B 121.0 (3)
C11A—C10A—C13A 119.7 (3) C11B—C10B—C13B 118.9 (3)
C9A—C10A—C13A 120.7 (3) C9B—C10B—C13B 120.1 (3)
C12A—C11A—C10A 119.8 (3) C12B—C11B—C10B 118.9 (3)
C12A—C11A—H11A 120.1 C12B—C11B—H11B 120.5
C10A—C11A—H11A 120.1 C10B—C11B—H11B 120.5
C11A—C12A—C7A 120.8 (3) C11B—C12B—C7B 121.6 (3)
C11A—C12A—H12A 119.6 C11B—C12B—H12B 119.2
C7A—C12A—H12A 119.6 C7B—C12B—H12B 119.2
N4A—C13A—C10A 178.6 (3) N4B—C13B—C10B 178.8 (3)
N3A—C1A—C2A—C3A −179.5 (3) N1B—C3B—C2B—C1B 0.1 (4)
C5A—C1A—C2A—C3A 0.1 (4) N3B—C1B—C2B—C3B −178.8 (2)
C4A—N1A—C3A—C2A 0.2 (4) C5B—C1B—C2B—C3B −0.7 (4)
C1A—C2A—C3A—N1A −0.3 (4) C2B—C3B—N1B—C4B 0.4 (4)
C3A—N1A—C4A—C5A −0.1 (4) C3B—N1B—C4B—C5B −0.3 (4)
N1A—C4A—C5A—N2A 177.7 (2) N1B—C4B—C5B—N2B 179.8 (2)
N1A—C4A—C5A—C1A 0.0 (4) N1B—C4B—C5B—C1B −0.3 (4)
C6A—N2A—C5A—C4A 15.3 (4) C6B—N2B—C5B—C4B 0.4 (4)
C6A—N2A—C5A—C1A −167.0 (2) C6B—N2B—C5B—C1B −179.5 (2)
N3A—C1A—C5A—C4A 179.6 (2) N3B—C1B—C5B—C4B 178.9 (2)
C2A—C1A—C5A—C4A −0.1 (3) C2B—C1B—C5B—C4B 0.7 (4)
N3A—C1A—C5A—N2A 1.7 (4) N3B—C1B—C5B—N2B −1.1 (4)
C2A—C1A—C5A—N2A −178.0 (2) C2B—C1B—C5B—N2B −179.3 (2)
C5A—N2A—C6A—C7A −179.3 (2) C5B—N2B—C6B—C7B −179.1 (2)
N2A—C6A—C7A—C12A −179.0 (2) N2B—C6B—C7B—C12B 178.9 (3)
N2A—C6A—C7A—C8A −1.2 (4) N2B—C6B—C7B—C8B −0.9 (4)
C12A—C7A—C8A—C9A −0.7 (4) C12B—C7B—C8B—C9B 0.3 (4)
C6A—C7A—C8A—C9A −178.5 (2) C6B—C7B—C8B—C9B −179.9 (2)
C7A—C8A—C9A—C10A 0.5 (4) C7B—C8B—C9B—C10B 0.6 (4)
C8A—C9A—C10A—C11A −0.4 (4) C8B—C9B—C10B—C11B −1.2 (4)
C8A—C9A—C10A—C13A −179.9 (2) C8B—C9B—C10B—C13B 179.5 (2)
C9A—C10A—C11A—C12A 0.4 (4) C9B—C10B—C11B—C12B 1.0 (4)
C13A—C10A—C11A—C12A 179.9 (2) C13B—C10B—C11B—C12B −179.7 (2)
C10A—C11A—C12A—C7A −0.5 (4) C10B—C11B—C12B—C7B −0.1 (4)
C8A—C7A—C12A—C11A 0.7 (4) C8B—C7B—C12B—C11B −0.5 (4)
C6A—C7A—C12A—C11A 178.6 (2) C6B—C7B—C12B—C11B 179.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3A—H2NA···N4Ai 0.92 (4) 2.26 (4) 3.155 (4) 165 (3)
N3A—H1NA···N1Bii 0.89 (4) 2.33 (5) 3.080 (4) 143 (4)
N3B—H2NB···N1Aiii 0.89 (4) 2.42 (4) 3.112 (4) 136 (4)
N3B—H1NB···N4Bi 0.90 (4) 2.36 (4) 3.220 (4) 159 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x+2, −y, −z+1; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2327).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
  2. Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56. [DOI] [PubMed]
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  5. Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308. [DOI] [PMC free article] [PubMed]
  6. Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551–o3553. [DOI] [PubMed]
  7. Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4. [DOI] [PubMed]
  8. Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  11. Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037070/tk2327sup1.cif

e-64-o2342-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037070/tk2327Isup2.hkl

e-64-o2342-Isup2.hkl (186.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES