Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 8;64(Pt 12):o2291. doi: 10.1107/S1600536808036015

3-Methoxy-4-(4-nitro­benz­yloxy)­benzaldehyde

Mei Li a,*, Xin Chen a
PMCID: PMC2959811  PMID: 21581269

Abstract

In the title compound, C15H13NO5, the vanillin group makes a dihedral angle of 4.95 (8)° with the benzene ring of the nitro­benzene group. The packing is stabilized by weak, non-classical inter­molecular C—H⋯O inter­actions which link mol­ecules into chains running along the c axis.

Related literature

For general background on Schiff bases, see: Kahwa et al. (1986); Santos et al. (2001). For bond-length data, see: Allen et al. (1987);graphic file with name e-64-o2291-scheme1.jpg

Experimental

Crystal data

  • C15H13NO5

  • M r = 287.26

  • Orthorhombic, Inline graphic

  • a = 13.743 (3) Å

  • b = 12.526 (3) Å

  • c = 16.384 (3) Å

  • V = 2820.4 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 (2) K

  • 0.23 × 0.18 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.932, T max = 0.988

  • 15172 measured reflections

  • 2877 independent reflections

  • 1540 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.132

  • S = 0.99

  • 2877 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, 71007a. DOI: 10.1107/S1600536808036015/at2666sup1.cif

e-64-o2291-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036015/at2666Isup2.hkl

e-64-o2291-Isup2.hkl (141.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O5i 0.93 2.60 3.405 (3) 146

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Schiff-base ligands have received a good deal of attention in biology and chemistry (Kahwa et al., 1986). Many Schiff base derivatives have been synthesized and employed to develop protein and enzyme mimics (Santos et al., 2001). As a part of our interest in the coordination properties of Schiff bases functioning as ligands, we investigated the title compound, (I), used as a precursor in the preparation of Schiff bases.

In the title molecule (Fig. 1), bond lengths and angles are within normal ranges (Allen et al., 1987). The vanillin group (C1—C7/O3/O4) is essentially planar (except the methyl H atoms), with an r.m.s. deviation for fitted atoms of 0.035 (3) Å. This group makes a dihedral angle of 4.95 (8)° with the benzene ring (C10—C15) of the nitrobenzene group.

The crystal packing is stabilized by weak, non-classical intermolecular C14—H14···O5═C7 interactions that link adjacent molecules into one-dimensional chains running along the c axis (Table 1, Fig. 2).

Experimental

An anhydrous acetonitrile solution (100 ml) of 4-hydroxy-3-methoxybenzaldehyde (1.52 g, 10 mmol) was added dropwise to a solution (50 ml) of 1-(bromomethyl)-4-nitrobenzene (2.16 g, 10 mmol) and pyridine (0.79 g, 10 mmol) in acetonitrile, in 30 min., and the mixture refluxed for 24 h under nitrogen atmosphere. The solvent was removed and the resultant mixture poured into ice-water (100 ml). The yellow precipitate was then isolated and recrystallized from acetonitrile, and then dried in a vacuum to give the pure compound in 74% yield. Pale-yellow single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Refinement

The H atoms were included in calculated positions and refined using a riding model approximation. Constrained C—H bond lengths and isotropic U parameters: 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2—H; 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene C—H; 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl C—H.

Figures

Fig. 1.

Fig. 1.

The structure of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Packing diagram for (I), with H bonds drawn as dashed lines.

Crystal data

C15H13NO5 F000 = 1200
Mr = 287.26 Dx = 1.353 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3156 reflections
a = 13.743 (3) Å θ = 2.2–26.5º
b = 12.526 (3) Å µ = 0.10 mm1
c = 16.384 (3) Å T = 294 (2) K
V = 2820.4 (10) Å3 Block, pale-yellow
Z = 8 0.23 × 0.18 × 0.12 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2877 independent reflections
Radiation source: fine-focus sealed tube 1540 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.045
T = 294(2) K θmax = 26.4º
φ and ω scans θmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −16→17
Tmin = 0.932, Tmax = 0.988 k = −14→15
15172 measured reflections l = −20→18

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044   w = 1/[σ2(Fo2) + (0.0424P)2 + 1.1393P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132 (Δ/σ)max = 0.001
S = 0.99 Δρmax = 0.16 e Å3
2877 reflections Δρmin = −0.17 e Å3
192 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0017 (5)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.14273 (18) −0.3678 (2) 1.20564 (17) 0.0880 (7)
O1 0.1166 (2) −0.34357 (19) 1.27401 (14) 0.1320 (9)
O2 0.1674 (2) −0.45767 (19) 1.18670 (15) 0.1303 (9)
O3 0.11868 (11) 0.05467 (12) 0.99132 (8) 0.0671 (5)
O4 0.07376 (11) 0.23118 (12) 1.05892 (9) 0.0705 (5)
O5 0.1082 (2) 0.5139 (2) 0.82786 (17) 0.1500 (12)
C1 0.09685 (14) 0.23830 (18) 0.97787 (13) 0.0570 (5)
C2 0.09799 (15) 0.33013 (19) 0.93261 (15) 0.0671 (6)
H2 0.0826 0.3950 0.9570 0.081*
C3 0.12223 (16) 0.3267 (2) 0.84953 (16) 0.0739 (7)
C4 0.14582 (18) 0.2313 (2) 0.81422 (15) 0.0772 (7)
H4 0.1626 0.2294 0.7592 0.093*
C5 0.14517 (17) 0.1375 (2) 0.85877 (14) 0.0704 (7)
H5 0.1610 0.0730 0.8340 0.085*
C6 0.12076 (15) 0.14069 (17) 0.94062 (13) 0.0572 (6)
C7 0.1230 (2) 0.4259 (3) 0.8018 (2) 0.1087 (12)
H7 0.1361 0.4199 0.7463 0.130*
C8 0.0516 (2) 0.3282 (2) 1.10024 (16) 0.0976 (10)
H8A 0.1071 0.3747 1.0985 0.146*
H8B 0.0354 0.3130 1.1560 0.146*
H8C −0.0027 0.3623 1.0741 0.146*
C9 0.14047 (18) −0.04690 (17) 0.95782 (13) 0.0680 (6)
H9A 0.2033 −0.0447 0.9309 0.082*
H9B 0.0917 −0.0660 0.9176 0.082*
C10 0.14211 (15) −0.12841 (17) 1.02476 (13) 0.0562 (5)
C11 0.16208 (16) −0.23375 (19) 1.00431 (14) 0.0665 (6)
H11 0.1746 −0.2516 0.9502 0.080*
C12 0.16355 (17) −0.31198 (19) 1.06322 (16) 0.0707 (7)
H12 0.1777 −0.3824 1.0496 0.085*
C13 0.14380 (16) −0.28411 (19) 1.14254 (15) 0.0637 (6)
C14 0.12433 (18) −0.18140 (19) 1.16476 (14) 0.0709 (7)
H14 0.1117 −0.1644 1.2190 0.085*
C15 0.12358 (17) −0.10322 (19) 1.10550 (14) 0.0668 (6)
H15 0.1105 −0.0329 1.1200 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0997 (17) 0.0762 (17) 0.0882 (18) −0.0093 (13) −0.0130 (14) 0.0156 (14)
O1 0.212 (3) 0.1117 (17) 0.0727 (14) −0.0042 (16) 0.0010 (16) 0.0221 (13)
O2 0.177 (2) 0.0729 (15) 0.141 (2) 0.0080 (15) 0.0028 (17) 0.0271 (14)
O3 0.0910 (12) 0.0563 (10) 0.0541 (9) 0.0010 (8) 0.0058 (8) −0.0018 (7)
O4 0.0939 (12) 0.0657 (10) 0.0520 (9) 0.0107 (8) 0.0013 (8) −0.0026 (8)
O5 0.175 (3) 0.1065 (19) 0.169 (2) 0.0499 (18) 0.0663 (19) 0.0703 (18)
C1 0.0525 (12) 0.0661 (15) 0.0524 (12) −0.0001 (10) −0.0015 (10) 0.0039 (11)
C2 0.0595 (14) 0.0662 (15) 0.0757 (16) 0.0055 (11) 0.0020 (12) 0.0117 (12)
C3 0.0561 (14) 0.0888 (19) 0.0768 (17) 0.0040 (13) 0.0062 (12) 0.0297 (15)
C4 0.0726 (16) 0.104 (2) 0.0555 (14) −0.0001 (15) 0.0069 (12) 0.0140 (15)
C5 0.0762 (16) 0.0778 (17) 0.0573 (14) −0.0025 (13) 0.0029 (12) −0.0004 (13)
C6 0.0584 (13) 0.0597 (14) 0.0536 (13) −0.0043 (10) −0.0026 (10) 0.0043 (11)
C7 0.090 (2) 0.122 (3) 0.114 (2) 0.029 (2) 0.0266 (18) 0.057 (2)
C8 0.148 (3) 0.0751 (19) 0.0700 (16) 0.0201 (18) −0.0029 (17) −0.0147 (14)
C9 0.0865 (17) 0.0611 (15) 0.0563 (13) 0.0032 (12) 0.0080 (12) −0.0068 (11)
C10 0.0538 (12) 0.0587 (14) 0.0562 (13) −0.0018 (10) 0.0038 (10) −0.0046 (10)
C11 0.0712 (15) 0.0645 (16) 0.0640 (14) 0.0029 (12) 0.0158 (11) −0.0088 (12)
C12 0.0698 (15) 0.0577 (15) 0.0847 (18) 0.0049 (11) 0.0114 (13) −0.0043 (13)
C13 0.0598 (13) 0.0628 (15) 0.0685 (15) −0.0028 (11) −0.0047 (12) 0.0070 (12)
C14 0.0905 (18) 0.0715 (17) 0.0509 (13) −0.0038 (13) −0.0053 (12) −0.0051 (12)
C15 0.0865 (17) 0.0584 (14) 0.0555 (14) −0.0008 (12) −0.0029 (12) −0.0085 (11)

Geometric parameters (Å, °)

N1—O1 1.215 (3) C7—H7 0.9300
N1—O2 1.216 (3) C8—H8A 0.9600
N1—C13 1.472 (3) C8—H8B 0.9600
O3—C6 1.361 (2) C8—H8C 0.9600
O3—C9 1.418 (2) C9—C10 1.499 (3)
O4—C1 1.368 (2) C9—H9A 0.9700
O4—C8 1.424 (3) C9—H9B 0.9700
O5—C7 1.199 (4) C10—C15 1.384 (3)
C1—C2 1.369 (3) C10—C11 1.389 (3)
C1—C6 1.406 (3) C11—C12 1.376 (3)
C2—C3 1.402 (3) C11—H11 0.9300
C2—H2 0.9300 C12—C13 1.373 (3)
C3—C4 1.367 (3) C12—H12 0.9300
C3—C7 1.468 (4) C13—C14 1.364 (3)
C4—C5 1.383 (3) C14—C15 1.379 (3)
C4—H4 0.9300 C14—H14 0.9300
C5—C6 1.383 (3) C15—H15 0.9300
C5—H5 0.9300
O1—N1—O2 123.3 (3) H8A—C8—H8B 109.5
O1—N1—C13 118.2 (3) O4—C8—H8C 109.5
O2—N1—C13 118.5 (3) H8A—C8—H8C 109.5
C6—O3—C9 118.02 (16) H8B—C8—H8C 109.5
C1—O4—C8 117.09 (18) O3—C9—C10 109.34 (17)
O4—C1—C2 125.7 (2) O3—C9—H9A 109.8
O4—C1—C6 114.77 (19) C10—C9—H9A 109.8
C2—C1—C6 119.5 (2) O3—C9—H9B 109.8
C1—C2—C3 120.2 (2) C10—C9—H9B 109.8
C1—C2—H2 119.9 H9A—C9—H9B 108.3
C3—C2—H2 119.9 C15—C10—C11 118.9 (2)
C4—C3—C2 119.6 (2) C15—C10—C9 122.8 (2)
C4—C3—C7 120.9 (3) C11—C10—C9 118.28 (19)
C2—C3—C7 119.5 (3) C12—C11—C10 120.7 (2)
C3—C4—C5 121.2 (2) C12—C11—H11 119.6
C3—C4—H4 119.4 C10—C11—H11 119.6
C5—C4—H4 119.4 C13—C12—C11 118.7 (2)
C4—C5—C6 119.3 (2) C13—C12—H12 120.7
C4—C5—H5 120.4 C11—C12—H12 120.7
C6—C5—H5 120.4 C14—C13—C12 122.1 (2)
O3—C6—C5 125.1 (2) C14—C13—N1 118.8 (2)
O3—C6—C1 114.76 (19) C12—C13—N1 119.1 (2)
C5—C6—C1 120.2 (2) C13—C14—C15 118.9 (2)
O5—C7—C3 126.0 (3) C13—C14—H14 120.5
O5—C7—H7 117.0 C15—C14—H14 120.5
C3—C7—H7 117.0 C14—C15—C10 120.7 (2)
O4—C8—H8A 109.5 C14—C15—H15 119.7
O4—C8—H8B 109.5 C10—C15—H15 119.7
C8—O4—C1—C2 −1.8 (3) C2—C3—C7—O5 3.3 (5)
C8—O4—C1—C6 178.3 (2) C6—O3—C9—C10 175.41 (18)
O4—C1—C2—C3 −179.5 (2) O3—C9—C10—C15 0.6 (3)
C6—C1—C2—C3 0.4 (3) O3—C9—C10—C11 179.86 (19)
C1—C2—C3—C4 −0.8 (3) C15—C10—C11—C12 −0.1 (3)
C1—C2—C3—C7 179.9 (2) C9—C10—C11—C12 −179.4 (2)
C2—C3—C4—C5 0.7 (4) C10—C11—C12—C13 0.7 (3)
C7—C3—C4—C5 −179.9 (2) C11—C12—C13—C14 −1.0 (4)
C3—C4—C5—C6 −0.4 (4) C11—C12—C13—N1 178.4 (2)
C9—O3—C6—C5 −1.8 (3) O1—N1—C13—C14 6.0 (4)
C9—O3—C6—C1 179.01 (19) O2—N1—C13—C14 −174.4 (2)
C4—C5—C6—O3 −179.1 (2) O1—N1—C13—C12 −173.5 (3)
C4—C5—C6—C1 0.0 (3) O2—N1—C13—C12 6.1 (4)
O4—C1—C6—O3 −1.0 (3) C12—C13—C14—C15 0.6 (4)
C2—C1—C6—O3 179.12 (19) N1—C13—C14—C15 −178.8 (2)
O4—C1—C6—C5 179.83 (19) C13—C14—C15—C10 0.1 (4)
C2—C1—C6—C5 −0.1 (3) C11—C10—C15—C14 −0.4 (3)
C4—C3—C7—O5 −176.1 (3) C9—C10—C15—C14 178.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14···O5i 0.93 2.60 3.405 (3) 146

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2666).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (1999). SMART and SAINT for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
  4. Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, 71007a. DOI: 10.1107/S1600536808036015/at2666sup1.cif

e-64-o2291-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036015/at2666Isup2.hkl

e-64-o2291-Isup2.hkl (141.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES