Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):m1524. doi: 10.1107/S1600536808036490

catena-Poly[[[(dimethyl­malonato-κ2 O:O′)(perchlorato-κO)copper(II)]-μ-bis­(3-pyridylmeth­yl)piperazinediium-κ2 N 1′:N 4′] perchlorate dihydrate]

Gregory A Farnum a, Robert L LaDuca a,*
PMCID: PMC2959823  PMID: 21581141

Abstract

In the title compound, {[Cu(C5H6O4)(ClO4)(C16H22N4)]ClO4·2H2O}n, square-pyramidally coordinated Cu atoms with perchlorate and dimethyl­malonate ligands are connected into cationic sinusoidal coordination polymer chains by doubly protonated bis­(3-pyridylmeth­yl)piperazine (3-bpmp) ligands. The chains aggregate into pseudo-layers parallel to the (101) crystal planes by N—H⋯O hydrogen bonding. Unligated perchlorate anions and water mol­ecules of crystallization provide additional hydrogen bonding between pseudo-layers.

Related literature

For copper carboxyl­ate coordination polymers containing 3-bpmp, see: Johnston et al. (2008). For the synthesis of 3-bpmp, see: Pocic et al. (2005).graphic file with name e-64-m1524-scheme1.jpg

Experimental

Crystal data

  • [Cu(C5H6O4)(ClO4)(C16H22N4)]ClO4·2H2O

  • M r = 698.95

  • Triclinic, Inline graphic

  • a = 9.6284 (15) Å

  • b = 10.5140 (16) Å

  • c = 14.061 (2) Å

  • α = 86.950 (2)°

  • β = 82.634 (2)°

  • γ = 84.638 (2)°

  • V = 1404.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 173 (2) K

  • 0.40 × 0.30 × 0.15 mm

Data collection

  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.680, T max = 0.859

  • 14378 measured reflections

  • 6309 independent reflections

  • 4904 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.099

  • S = 1.05

  • 6309 reflections

  • 397 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2007); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036490/lh2730sup1.cif

e-64-m1524-sup1.cif (27.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036490/lh2730Isup2.hkl

e-64-m1524-Isup2.hkl (308.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O12 0.894 (18) 1.98 (2) 2.838 (4) 160 (4)
O1W—H1WB⋯O8i 0.875 (18) 2.35 (3) 3.053 (4) 137 (3)
O1W—H1WB⋯O2ii 0.875 (18) 2.46 (3) 3.120 (3) 133 (3)
O2W—H2WA⋯O7 0.929 (19) 2.14 (2) 3.044 (4) 164 (4)
O2W—H2WB⋯O1Wiii 0.941 (19) 1.95 (3) 2.807 (5) 150 (5)
N2—H2N⋯O2iv 0.887 (17) 1.804 (18) 2.673 (3) 166 (3)
N4—H4N⋯O4v 0.923 (17) 1.727 (17) 2.647 (3) 175 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund and Michigan State University for funding this work.

supplementary crystallographic information

Comment

In comparison to coordination polymers based on the rigid rod tether 4,4'- bipyridine, extended phases based on the flexible and hydrogen-bonding capable bis(3-pyridylmethyl)piperazine (3-bpmp) ligand are much less common (Johnston et al., 2008).

The asymmetric unit of the title compound contains a divalent copper atom, two halves of two 3-bpmp molecules protonated at their piperazinyl nitrogen atoms, one dimethylmalonate dianion, one bound and one unbound perchlorate ion and two water molecules of crystallization (Figure 1). The Cu atoms are square pyramidally coordinated in a {CuN2O3} arrangement, with the basal plane occupied by two cis N atom donors from two crystallographically distinct 3-bpmp ligands and two cis O atom donors from a dimethylmalonate ligand in a 1,3-chelating binding mode. The apical position is filled by a ligated perchlorate anion.

The 3-bpmp ligands link the Cu atoms into sinusoidal cationic coordination polymer chains with formulation [Cu(3-bpmpH2)(dimethylmalonate)(ClO4)]nn+ (Figure 2), in which the through ligand Cu···Cu contact distance is 15.441 Å. The "wavelength" of this chain, defined by unbridged Cu···Cu contacts, is 15.991 Å. The chains are aligned parallel to the [1 0 1] crystal direction.

Neighboring chains interdigitate and aggregate into a pseudolayer (Figure 3) parallel to the (1 0 1) crystal plane by N—H···O hydrogen bonding between protonated piperazinyl N atoms and unligated dimethylmalonate O atoms. These stack into three dimensions (Figure 4) through additional hydrogen bonding patterns involving unligated perchlorate anions and water molecule dimers, and dimethylmalonate O atoms within the coordination polymer chains.

Experimental

All chemicals were obtained commercially, except for 3-bpmp which was synthesized by a literature method (Pocic et al., 2005). Copper perchlorate hexahydrate (19 mg, 0.051 mmol) and dimethylmalonic acid (7 mg, 0.05 mmol) were dissolved in 3 ml water in a glass vial. A 1 ml aliquot of a 1:1 water:ethanol solution was carefully layered onto the aqueous solution, followed by 3 ml of an ethanolic solution of 3-bpmp (27 mg, 0.10 mmol). Blue blocks of the title compound formed after 1 week.

Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 - 0.99 Å and refined in riding mode with Uiso = 1.2Ueq(C) or 1.5Ueq(C) for methyl C atoms. All H atoms bound to O atoms were found via Fourier difference map, restrained with O—H = 0.89 Å, and refined with Uiso=1.2Ueq(O). All H atoms bound to N atoms were found via Fourier difference map, restrained with N—H = 0.89 Å, and refined with Uiso=1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

Coordination environment of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atoms are not shown. Color codes: dark blue Cu, light blue N, red O, black C, green Cl and orange O atoms of water molecules.

Fig. 2.

Fig. 2.

A single cationic [Cu(dimethylmalonate)(ClO4)(3-bpmpH2)]n chain in the title compound.

Fig. 3.

Fig. 3.

A supramolecular [Cu(dimethylmalonate)(ClO4)(3-bpmpH2)]n layer in the title compound. Hydrogen bonding between protonated piperazinyl N atoms and unligated dimethylmalonate carboxylate O atoms is shown as dashed lines.

Fig. 4.

Fig. 4.

Packing diagram illustrating the interaction of pseudolayers via hydrogen bonding involving the dimethylmalonate carboxylate O atoms, co-crystallized water molecules, and unligated perchlorate anions.

Crystal data

[Cu(C5H6O4)(ClO4)(C16H22N4)]ClO4·2H2O Z = 2
Mr = 698.95 F000 = 722
Triclinic, P1 Dx = 1.653 Mg m3
a = 9.6284 (15) Å Mo Kα radiation λ = 0.71073 Å
b = 10.5140 (16) Å Cell parameters from 14378 reflections
c = 14.061 (2) Å θ = 1.5–28.3º
α = 86.950 (2)º µ = 1.04 mm1
β = 82.634 (2)º T = 173 (2) K
γ = 84.638 (2)º Block, blue
V = 1404.3 (4) Å3 0.40 × 0.30 × 0.15 mm

Data collection

Bruker SMART 1K diffractometer 6309 independent reflections
Radiation source: fine-focus sealed tube 4904 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.035
T = 173(2) K θmax = 28.3º
ω scans θmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.680, Tmax = 0.859 k = −13→13
14378 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099   w = 1/[σ2(Fo2) + (0.0402P)2 + 1.0163P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
6309 reflections Δρmax = 0.57 e Å3
397 parameters Δρmin = −0.44 e Å3
8 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.73682 (3) 0.38286 (3) 0.22768 (2) 0.01649 (9)
Cl1 0.52659 (6) 0.15993 (6) 0.15616 (4) 0.01940 (14)
Cl2 0.04531 (7) 0.26708 (7) 0.67794 (5) 0.02767 (17)
O1 0.89350 (18) 0.26684 (16) 0.17600 (12) 0.0185 (4)
O1W −0.3036 (3) 0.0931 (2) 0.7673 (2) 0.0524 (7)
H1WA −0.221 (3) 0.124 (3) 0.747 (3) 0.063*
H1WB −0.284 (4) 0.013 (2) 0.785 (3) 0.063*
O2 1.06366 (18) 0.11347 (16) 0.18831 (12) 0.0196 (4)
O2W 0.6049 (5) 0.2872 (3) −0.1037 (2) 0.0946 (12)
H2WA 0.573 (6) 0.247 (4) −0.045 (2) 0.114*
H2WB 0.602 (6) 0.218 (4) −0.143 (3) 0.114*
O3 0.71336 (18) 0.28139 (17) 0.34603 (13) 0.0211 (4)
O4 0.78008 (19) 0.12856 (17) 0.44779 (13) 0.0211 (4)
O5 0.6183 (2) 0.07458 (18) 0.20754 (14) 0.0282 (5)
O6 0.5848 (2) 0.28179 (18) 0.13822 (15) 0.0287 (5)
O7 0.5127 (2) 0.1087 (2) 0.06554 (15) 0.0362 (5)
O8 0.3908 (2) 0.1798 (2) 0.21162 (16) 0.0370 (5)
O9 0.1580 (3) 0.1796 (2) 0.70439 (19) 0.0536 (7)
O10 0.0031 (3) 0.3535 (2) 0.75267 (17) 0.0514 (7)
O11 0.0911 (3) 0.3375 (3) 0.59195 (18) 0.0571 (7)
O12 −0.0708 (3) 0.2017 (2) 0.6593 (2) 0.0650 (9)
N1 0.7670 (2) 0.50054 (19) 0.11139 (15) 0.0167 (5)
N2 0.8888 (2) 0.91571 (19) 0.00109 (15) 0.0144 (4)
H2N 0.908 (3) 0.893 (2) −0.0593 (13) 0.017*
N3 0.5816 (2) 0.50287 (19) 0.29083 (15) 0.0182 (5)
N4 0.4942 (2) 0.8624 (2) 0.49802 (15) 0.0156 (4)
H4N 0.3982 (18) 0.863 (3) 0.514 (2) 0.019*
C1 0.9729 (3) 0.1943 (2) 0.22604 (18) 0.0153 (5)
C2 0.9626 (3) 0.2108 (2) 0.33488 (18) 0.0166 (5)
C3 0.8085 (3) 0.2046 (2) 0.37928 (18) 0.0161 (5)
C4 1.0062 (3) 0.3455 (3) 0.3502 (2) 0.0300 (7)
H4A 0.9451 0.4102 0.3190 0.045*
H4B 1.1041 0.3516 0.3223 0.045*
H4C 0.9969 0.3600 0.4191 0.045*
C5 1.0578 (3) 0.1103 (3) 0.3830 (2) 0.0255 (6)
H5A 1.0483 0.1242 0.4520 0.038*
H5B 1.1557 0.1172 0.3553 0.038*
H5C 1.0309 0.0250 0.3728 0.038*
C11 0.7887 (3) 0.4505 (3) 0.02408 (19) 0.0221 (6)
H11 0.7937 0.3602 0.0201 0.027*
C12 0.8040 (3) 0.5242 (3) −0.0596 (2) 0.0246 (6)
H12 0.8197 0.4854 −0.1200 0.029*
C13 0.7962 (3) 0.6561 (3) −0.05452 (19) 0.0211 (6)
H13 0.8042 0.7092 −0.1114 0.025*
C14 0.7766 (3) 0.7096 (2) 0.03496 (19) 0.0169 (5)
C15 0.7619 (3) 0.6285 (2) 0.11544 (19) 0.0166 (5)
H15 0.7475 0.6649 0.1767 0.020*
C16 0.7611 (3) 0.8529 (2) 0.0465 (2) 0.0196 (6)
H16A 0.6780 0.8906 0.0169 0.024*
H16B 0.7447 0.8704 0.1157 0.024*
C17 1.0141 (3) 0.8795 (2) 0.05230 (18) 0.0164 (5)
H17A 1.0344 0.7855 0.0539 0.020*
H17B 0.9939 0.9070 0.1193 0.020*
C18 0.8594 (3) 1.0583 (2) −0.00249 (19) 0.0165 (5)
H18A 0.8365 1.0888 0.0636 0.020*
H18B 0.7774 1.0827 −0.0375 0.020*
C21 0.4487 (3) 0.5093 (3) 0.2703 (2) 0.0247 (6)
H21 0.4271 0.4612 0.2197 0.030*
C22 0.3425 (3) 0.5851 (3) 0.3216 (2) 0.0307 (7)
H22 0.2487 0.5871 0.3069 0.037*
C23 0.3727 (3) 0.6571 (3) 0.3935 (2) 0.0254 (6)
H23 0.3001 0.7085 0.4293 0.031*
C24 0.5109 (3) 0.6542 (2) 0.41357 (18) 0.0187 (5)
C25 0.6108 (3) 0.5742 (2) 0.36102 (18) 0.0176 (5)
H25 0.7050 0.5694 0.3753 0.021*
C26 0.5575 (3) 0.7270 (2) 0.49164 (19) 0.0196 (6)
H26A 0.5329 0.6812 0.5540 0.023*
H26B 0.6611 0.7272 0.4807 0.023*
C27 0.5498 (3) 0.9241 (2) 0.57676 (18) 0.0194 (6)
H27A 0.6525 0.9282 0.5606 0.023*
H27B 0.5336 0.8714 0.6369 0.023*
C28 0.5198 (3) 0.9422 (2) 0.40762 (18) 0.0174 (5)
H28A 0.4809 0.9038 0.3551 0.021*
H28B 0.6222 0.9457 0.3891 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01812 (17) 0.01517 (16) 0.01464 (17) 0.00267 (12) 0.00069 (12) −0.00020 (12)
Cl1 0.0194 (3) 0.0213 (3) 0.0175 (3) −0.0024 (2) −0.0016 (2) −0.0016 (2)
Cl2 0.0217 (3) 0.0271 (4) 0.0340 (4) −0.0028 (3) −0.0008 (3) −0.0043 (3)
O1 0.0208 (9) 0.0205 (9) 0.0129 (9) 0.0050 (7) −0.0027 (7) −0.0007 (7)
O1W 0.0443 (15) 0.0369 (14) 0.074 (2) −0.0042 (12) −0.0019 (14) 0.0062 (14)
O2 0.0199 (9) 0.0211 (9) 0.0160 (9) 0.0040 (8) 0.0009 (7) −0.0013 (7)
O2W 0.160 (4) 0.070 (2) 0.050 (2) −0.014 (2) 0.005 (2) 0.0045 (17)
O3 0.0181 (9) 0.0240 (10) 0.0182 (10) 0.0053 (8) 0.0020 (7) 0.0040 (8)
O4 0.0197 (9) 0.0232 (10) 0.0179 (10) 0.0010 (8) 0.0024 (7) 0.0048 (8)
O5 0.0284 (11) 0.0276 (11) 0.0268 (11) 0.0047 (9) −0.0029 (9) 0.0028 (9)
O6 0.0333 (11) 0.0223 (10) 0.0330 (12) −0.0087 (9) −0.0098 (9) 0.0009 (9)
O7 0.0451 (13) 0.0387 (13) 0.0287 (12) −0.0031 (10) −0.0144 (10) −0.0129 (10)
O8 0.0193 (10) 0.0534 (14) 0.0336 (12) 0.0031 (10) 0.0056 (9) 0.0099 (11)
O9 0.0453 (15) 0.0555 (16) 0.0568 (17) 0.0255 (12) −0.0116 (13) −0.0118 (13)
O10 0.0655 (17) 0.0493 (15) 0.0382 (14) 0.0187 (13) −0.0128 (13) −0.0165 (12)
O11 0.0573 (17) 0.079 (2) 0.0366 (15) −0.0206 (15) −0.0037 (12) 0.0089 (14)
O12 0.0332 (14) 0.0416 (15) 0.123 (3) −0.0146 (11) −0.0043 (15) −0.0191 (16)
N1 0.0172 (11) 0.0154 (10) 0.0169 (11) −0.0011 (8) 0.0000 (9) −0.0012 (9)
N2 0.0158 (10) 0.0127 (10) 0.0138 (11) −0.0002 (8) 0.0014 (8) −0.0008 (8)
N3 0.0207 (11) 0.0150 (10) 0.0175 (12) 0.0014 (9) 0.0005 (9) 0.0010 (9)
N4 0.0148 (10) 0.0183 (11) 0.0130 (11) −0.0004 (9) 0.0012 (8) −0.0016 (8)
C1 0.0150 (12) 0.0135 (12) 0.0169 (13) −0.0041 (10) 0.0018 (10) 0.0004 (10)
C2 0.0165 (13) 0.0186 (13) 0.0148 (13) −0.0019 (10) −0.0015 (10) −0.0015 (10)
C3 0.0177 (13) 0.0142 (12) 0.0158 (13) 0.0000 (10) 0.0013 (10) −0.0052 (10)
C4 0.0348 (17) 0.0286 (16) 0.0288 (17) −0.0155 (13) −0.0019 (13) −0.0060 (13)
C5 0.0197 (14) 0.0377 (17) 0.0172 (14) 0.0049 (12) −0.0015 (11) 0.0023 (12)
C11 0.0282 (15) 0.0166 (13) 0.0208 (14) 0.0000 (11) −0.0007 (11) −0.0025 (11)
C12 0.0336 (16) 0.0228 (14) 0.0167 (14) −0.0034 (12) 0.0009 (12) −0.0040 (11)
C13 0.0248 (14) 0.0204 (13) 0.0175 (14) −0.0060 (11) 0.0005 (11) 0.0030 (11)
C14 0.0139 (12) 0.0141 (12) 0.0224 (14) −0.0037 (10) 0.0003 (10) 0.0005 (10)
C15 0.0174 (13) 0.0161 (12) 0.0164 (13) −0.0031 (10) −0.0006 (10) −0.0028 (10)
C16 0.0171 (13) 0.0155 (12) 0.0250 (15) −0.0033 (10) 0.0037 (11) 0.0000 (11)
C17 0.0189 (13) 0.0128 (12) 0.0170 (13) 0.0008 (10) −0.0031 (10) 0.0029 (10)
C18 0.0165 (12) 0.0117 (11) 0.0203 (14) 0.0010 (10) −0.0009 (10) 0.0003 (10)
C21 0.0272 (15) 0.0213 (14) 0.0261 (15) 0.0033 (12) −0.0073 (12) −0.0052 (12)
C22 0.0218 (15) 0.0313 (16) 0.0394 (19) 0.0047 (12) −0.0073 (13) −0.0101 (14)
C23 0.0203 (14) 0.0266 (15) 0.0283 (16) 0.0031 (12) 0.0004 (12) −0.0088 (12)
C24 0.0209 (13) 0.0172 (13) 0.0172 (13) −0.0013 (10) 0.0000 (11) 0.0011 (10)
C25 0.0177 (13) 0.0171 (12) 0.0175 (13) −0.0008 (10) −0.0007 (10) 0.0004 (10)
C26 0.0198 (13) 0.0186 (13) 0.0190 (14) 0.0035 (11) −0.0010 (11) −0.0020 (11)
C27 0.0244 (14) 0.0211 (13) 0.0133 (13) −0.0012 (11) −0.0041 (11) −0.0018 (10)
C28 0.0212 (13) 0.0197 (13) 0.0107 (12) −0.0030 (10) 0.0016 (10) −0.0018 (10)

Geometric parameters (Å, °)

Cu1—O3 1.9283 (18) C4—H4C 0.9800
Cu1—O1 1.9394 (17) C5—H5A 0.9800
Cu1—N1 2.005 (2) C5—H5B 0.9800
Cu1—N3 2.010 (2) C5—H5C 0.9800
Cu1—O6 2.400 (2) C11—C12 1.374 (4)
Cl1—O5 1.433 (2) C11—H11 0.9500
Cl1—O7 1.436 (2) C12—C13 1.387 (4)
Cl1—O8 1.438 (2) C12—H12 0.9500
Cl1—O6 1.443 (2) C13—C14 1.389 (4)
Cl2—O10 1.420 (2) C13—H13 0.9500
Cl2—O12 1.425 (3) C14—C15 1.381 (3)
Cl2—O11 1.426 (3) C14—C16 1.516 (3)
Cl2—O9 1.429 (2) C15—H15 0.9500
O1—C1 1.278 (3) C16—H16A 0.9900
O1W—H1WA 0.894 (18) C16—H16B 0.9900
O1W—H1WB 0.875 (18) C17—C18i 1.511 (3)
O2—C1 1.248 (3) C17—H17A 0.9900
O2W—H2WA 0.929 (19) C17—H17B 0.9900
O2W—H2WB 0.941 (19) C18—C17i 1.511 (3)
O3—C3 1.281 (3) C18—H18A 0.9900
O4—C3 1.239 (3) C18—H18B 0.9900
N1—C11 1.345 (3) C21—C22 1.386 (4)
N1—C15 1.346 (3) C21—H21 0.9500
N2—C17 1.492 (3) C22—C23 1.370 (4)
N2—C18 1.499 (3) C22—H22 0.9500
N2—C16 1.503 (3) C23—C24 1.392 (4)
N2—H2N 0.887 (17) C23—H23 0.9500
N3—C21 1.342 (4) C24—C25 1.383 (3)
N3—C25 1.343 (3) C24—C26 1.507 (4)
N4—C28 1.492 (3) C25—H25 0.9500
N4—C27 1.493 (3) C26—H26A 0.9900
N4—C26 1.498 (3) C26—H26B 0.9900
N4—H4N 0.923 (17) C27—C28ii 1.514 (3)
C1—C2 1.539 (4) C27—H27A 0.9900
C2—C5 1.522 (3) C27—H27B 0.9900
C2—C3 1.540 (3) C28—C27ii 1.514 (3)
C2—C4 1.548 (4) C28—H28A 0.9900
C4—H4A 0.9800 C28—H28B 0.9900
C4—H4B 0.9800
O3—Cu1—O1 91.49 (7) H5B—C5—H5C 109.5
O3—Cu1—N1 174.84 (8) N1—C11—C12 122.9 (2)
O1—Cu1—N1 90.38 (8) N1—C11—H11 118.6
O3—Cu1—N3 85.44 (8) C12—C11—H11 118.6
O1—Cu1—N3 175.47 (8) C11—C12—C13 118.9 (3)
N1—Cu1—N3 92.41 (8) C11—C12—H12 120.5
O3—Cu1—O6 99.44 (7) C13—C12—H12 120.5
O1—Cu1—O6 89.56 (7) C12—C13—C14 119.1 (2)
N1—Cu1—O6 85.38 (8) C12—C13—H13 120.5
N3—Cu1—O6 94.23 (8) C14—C13—H13 120.5
O5—Cl1—O7 110.03 (13) C15—C14—C13 118.2 (2)
O5—Cl1—O8 110.26 (12) C15—C14—C16 119.5 (2)
O7—Cl1—O8 109.95 (14) C13—C14—C16 122.2 (2)
O5—Cl1—O6 109.60 (12) N1—C15—C14 123.3 (2)
O7—Cl1—O6 108.42 (13) N1—C15—H15 118.4
O8—Cl1—O6 108.54 (13) C14—C15—H15 118.4
O10—Cl2—O12 110.28 (17) N2—C16—C14 112.3 (2)
O10—Cl2—O11 109.08 (17) N2—C16—H16A 109.1
O12—Cl2—O11 107.14 (19) C14—C16—H16A 109.1
O10—Cl2—O9 109.14 (15) N2—C16—H16B 109.1
O12—Cl2—O9 111.41 (17) C14—C16—H16B 109.1
O11—Cl2—O9 109.75 (16) H16A—C16—H16B 107.9
C1—O1—Cu1 125.13 (16) N2—C17—C18i 110.5 (2)
H1WA—O1W—H1WB 106 (3) N2—C17—H17A 109.5
H2WA—O2W—H2WB 98 (3) C18i—C17—H17A 109.5
C3—O3—Cu1 125.71 (16) N2—C17—H17B 109.5
Cl1—O6—Cu1 129.66 (12) C18i—C17—H17B 109.5
C11—N1—C15 117.6 (2) H17A—C17—H17B 108.1
C11—N1—Cu1 118.88 (17) N2—C18—C17i 110.23 (19)
C15—N1—Cu1 123.45 (17) N2—C18—H18A 109.6
C17—N2—C18 109.43 (19) C17i—C18—H18A 109.6
C17—N2—C16 112.43 (19) N2—C18—H18B 109.6
C18—N2—C16 110.56 (18) C17i—C18—H18B 109.6
C17—N2—H2N 109.4 (18) H18A—C18—H18B 108.1
C18—N2—H2N 106.6 (17) N3—C21—C22 121.2 (3)
C16—N2—H2N 108.2 (18) N3—C21—H21 119.4
C21—N3—C25 118.6 (2) C22—C21—H21 119.4
C21—N3—Cu1 123.14 (19) C23—C22—C21 120.0 (3)
C25—N3—Cu1 118.18 (17) C23—C22—H22 120.0
C28—N4—C27 108.84 (19) C21—C22—H22 120.0
C28—N4—C26 114.45 (19) C22—C23—C24 119.3 (3)
C27—N4—C26 109.3 (2) C22—C23—H23 120.3
C28—N4—H4N 107.8 (17) C24—C23—H23 120.3
C27—N4—H4N 107.2 (18) C25—C24—C23 117.4 (2)
C26—N4—H4N 109.1 (17) C25—C24—C26 117.9 (2)
O2—C1—O1 121.6 (2) C23—C24—C26 124.5 (2)
O2—C1—C2 118.6 (2) N3—C25—C24 123.4 (2)
O1—C1—C2 119.7 (2) N3—C25—H25 118.3
C5—C2—C1 112.0 (2) C24—C25—H25 118.3
C5—C2—C3 110.5 (2) N4—C26—C24 114.5 (2)
C1—C2—C3 108.9 (2) N4—C26—H26A 108.6
C5—C2—C4 109.5 (2) C24—C26—H26A 108.6
C1—C2—C4 107.7 (2) N4—C26—H26B 108.6
C3—C2—C4 108.1 (2) C24—C26—H26B 108.6
O4—C3—O3 121.7 (2) H26A—C26—H26B 107.6
O4—C3—C2 119.4 (2) N4—C27—C28ii 111.7 (2)
O3—C3—C2 118.9 (2) N4—C27—H27A 109.3
C2—C4—H4A 109.5 C28ii—C27—H27A 109.3
C2—C4—H4B 109.5 N4—C27—H27B 109.3
H4A—C4—H4B 109.5 C28ii—C27—H27B 109.3
C2—C4—H4C 109.5 H27A—C27—H27B 107.9
H4A—C4—H4C 109.5 N4—C28—C27ii 109.3 (2)
H4B—C4—H4C 109.5 N4—C28—H28A 109.8
C2—C5—H5A 109.5 C27ii—C28—H28A 109.8
C2—C5—H5B 109.5 N4—C28—H28B 109.8
H5A—C5—H5B 109.5 C27ii—C28—H28B 109.8
C2—C5—H5C 109.5 H28A—C28—H28B 108.3
H5A—C5—H5C 109.5
O3—Cu1—O1—C1 −25.1 (2) C1—C2—C3—O3 −55.3 (3)
N1—Cu1—O1—C1 150.0 (2) C4—C2—C3—O3 61.4 (3)
O6—Cu1—O1—C1 −124.6 (2) C15—N1—C11—C12 −0.7 (4)
O1—Cu1—O3—C3 23.3 (2) Cu1—N1—C11—C12 177.0 (2)
N3—Cu1—O3—C3 −153.4 (2) N1—C11—C12—C13 −0.3 (4)
O6—Cu1—O3—C3 113.1 (2) C11—C12—C13—C14 1.5 (4)
O5—Cl1—O6—Cu1 −27.77 (19) C12—C13—C14—C15 −1.7 (4)
O7—Cl1—O6—Cu1 −147.89 (15) C12—C13—C14—C16 −177.5 (2)
O8—Cl1—O6—Cu1 92.71 (17) C11—N1—C15—C14 0.5 (4)
O3—Cu1—O6—Cl1 −15.88 (17) Cu1—N1—C15—C14 −177.01 (19)
O1—Cu1—O6—Cl1 75.56 (16) C13—C14—C15—N1 0.7 (4)
N1—Cu1—O6—Cl1 165.97 (17) C16—C14—C15—N1 176.6 (2)
N3—Cu1—O6—Cl1 −101.95 (16) C17—N2—C16—C14 −68.1 (3)
O1—Cu1—N1—C11 45.5 (2) C18—N2—C16—C14 169.3 (2)
N3—Cu1—N1—C11 −138.1 (2) C15—C14—C16—N2 123.4 (3)
O6—Cu1—N1—C11 −44.05 (19) C13—C14—C16—N2 −60.9 (3)
O1—Cu1—N1—C15 −137.0 (2) C18—N2—C17—C18i −58.4 (3)
N3—Cu1—N1—C15 39.4 (2) C16—N2—C17—C18i 178.3 (2)
O6—Cu1—N1—C15 133.5 (2) C17—N2—C18—C17i 58.2 (3)
O3—Cu1—N3—C21 −103.2 (2) C16—N2—C18—C17i −177.4 (2)
N1—Cu1—N3—C21 81.5 (2) C25—N3—C21—C22 −1.7 (4)
O6—Cu1—N3—C21 −4.0 (2) Cu1—N3—C21—C22 174.1 (2)
O3—Cu1—N3—C25 72.62 (18) N3—C21—C22—C23 1.3 (4)
N1—Cu1—N3—C25 −102.68 (19) C21—C22—C23—C24 0.6 (4)
O6—Cu1—N3—C25 171.78 (18) C22—C23—C24—C25 −2.1 (4)
Cu1—O1—C1—O2 173.27 (17) C22—C23—C24—C26 −178.9 (3)
Cu1—O1—C1—C2 −9.9 (3) C21—N3—C25—C24 0.0 (4)
O2—C1—C2—C5 −7.0 (3) Cu1—N3—C25—C24 −175.96 (19)
O1—C1—C2—C5 176.1 (2) C23—C24—C25—N3 1.9 (4)
O2—C1—C2—C3 −129.6 (2) C26—C24—C25—N3 178.8 (2)
O1—C1—C2—C3 53.5 (3) C28—N4—C26—C24 −56.9 (3)
O2—C1—C2—C4 113.4 (3) C27—N4—C26—C24 −179.2 (2)
O1—C1—C2—C4 −63.5 (3) C25—C24—C26—N4 139.4 (2)
Cu1—O3—C3—O4 −168.75 (18) C23—C24—C26—N4 −43.9 (4)
Cu1—O3—C3—C2 13.4 (3) C28—N4—C27—C28ii 59.3 (3)
C5—C2—C3—O4 3.3 (3) C26—N4—C27—C28ii −175.1 (2)
C1—C2—C3—O4 126.8 (2) C27—N4—C28—C27ii −57.8 (3)
C4—C2—C3—O4 −116.5 (3) C26—N4—C28—C27ii 179.7 (2)
C5—C2—C3—O3 −178.8 (2)

Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O12 0.894 (18) 1.98 (2) 2.838 (4) 160 (4)
O1W—H1WB···O8iii 0.875 (18) 2.35 (3) 3.053 (4) 137 (3)
O1W—H1WB···O2iv 0.875 (18) 2.46 (3) 3.120 (3) 133 (3)
O2W—H2WA···O7 0.929 (19) 2.14 (2) 3.044 (4) 164 (4)
O2W—H2WB···O1Wv 0.941 (19) 1.95 (3) 2.807 (5) 150 (5)
N2—H2N···O2vi 0.887 (17) 1.804 (18) 2.673 (3) 166 (3)
N4—H4N···O4vii 0.923 (17) 1.727 (17) 2.647 (3) 175 (3)

Symmetry codes: (iii) −x, −y, −z+1; (iv) −x+1, −y, −z+1; (v) x+1, y, z−1; (vi) −x+2, −y+1, −z; (vii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2730).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Johnston, L. L., Martin, D. P. & LaDuca, R. L. (2008). Inorg. Chim. Acta, 361, 2887–2894.
  3. Palmer, D. (2007). Crystal Maker Crystal Maker, Bicester, Oxfordshire, England.
  4. Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624–628.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036490/lh2730sup1.cif

e-64-m1524-sup1.cif (27.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036490/lh2730Isup2.hkl

e-64-m1524-Isup2.hkl (308.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES