Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 29;64(Pt 12):o2464. doi: 10.1107/S1600536808038865

4′-Chloro­biphenyl-4-yl 2,2,2-trichloro­ethyl sulfate

Xueshu Li a, Sean Parkin b, Larry W Robertson a, Hans-Joachim Lehmler a,*
PMCID: PMC2959825  PMID: 21581432

Abstract

The title compound, C14H10Cl4O4S, is an inter­mediate in the synthesis of the PCB sulfate monoester of 4′-chloro-biphenyl-4-ol. Both the sulfate monoester and 4′-chloro-biphenyl-4-ol are metabolites of PCB 3 (4-chloro­biphen­yl). There are two mol­ecules with different conformations in the asymmetric unit. The solid state dihedral angles between the benzene rings are 18.52 (10) and 41.84 (16)° in the two mol­ecules, whereas the dihedral angles between the least-squares plane of the sulfated benzene ring and O—S (Ar—C—O—S) are 66.2 (3) and 89.3 (3)°. The crystal was an inversion twin with a refined component fraction of 0.44 (7).

Related literature

For similar structures of hydroxy­lated chloro­biphenyls and their derivatives, see: Rissanen et al. (1988a ,b ); Lehmler et al. (2001, 2002); Desiraju et al. (1979); Vyas et al. (2006). For a review of structures of sulfuric acid aryl mono esters, see: Brandao et al. (2005). For additional background, see: Letcher et al. (2000); Liu et al. (2004, 2006); Sacco & James (2005); Shaikh et al. (2008); Tampal et al. (2002); Hansen (1999); Robertson & Hansen (2001).graphic file with name e-64-o2464-scheme1.jpg

Experimental

Crystal data

  • C14H10Cl4O4S

  • M r = 416.08

  • Orthorhombic, Inline graphic

  • a = 9.6305 (19) Å

  • b = 30.273 (6) Å

  • c = 11.330 (2) Å

  • V = 3303.3 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 90.0 (2) K

  • 0.40 × 0.34 × 0.18 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.679, T max = 0.861

  • 25566 measured reflections

  • 6476 independent reflections

  • 4862 reflections with I > 2σ(I)

  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.109

  • S = 1.05

  • 6476 reflections

  • 415 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983), 2481 Friedel Pairs

  • Flack parameter: 0.44 (7)

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and local procedures.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038865/dn2403sup1.cif

e-64-o2464-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038865/dn2403Isup2.hkl

e-64-o2464-Isup2.hkl (317KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by grants ES05605, ES012475 and ES013661 from the National Institute of Environmental Health Sciences, NIH.

supplementary crystallographic information

Comment

Polychlorinated biphenyls (PCBs) are a major class of man-made, persistent organic pollutants and represent an environmental and health concern due to their toxicity and resistance to biodegradation (Robertson & Hansen, 2001; Hansen, 1999). PCB congeners with a lower degree of chlorination are especially prone to undergo oxidative metabolism to hydroxylated (OH)-PCBs (Letcher et al., 2000). OH-PCBs can be further transformed to glucuronides (Tampal et al., 2002) or sulfates (Liu et al., 2006, Sacco & James, 2005). These PCB metabolites are more hydrophilic than PCBs and OH-PCBs and are expected to be more easily excreted. Despite the potential importance of sulfated PCB metabolites, PCB sulfate monoesters and analogous compounds have not been synthesized experimentally and their detailed molecular structure is unknown. Similarly, only few structures of hydroxylated chlorobiphenyl derivatives (Rissanen et al. 1988a, 1988b; Lehmler et al., 2001, 2002; Desiraju et al., 1979; Vyas et al., 2006) and sulfuric acid aryl mono esters (Brandao et al., 2005) have been reported.

Herein we report the crystal structure of the title compound, a trichloro-ethyl PCB sulfate diester intermediate of a putative sulfate metabolite of PCB3 (4-chlorobiphenyl). The asymmetric unit of the crystal structure contains two molecules with different conformations (Fig. 1), an observation that highlights the flexibility of PCB derivatives that lack multiple ortho chlorine substituents. The dihedral angles between the two benzene rings in the biphenyl moiety are 18.52 (10)° and 41.84 (16)° for molecules A and B, respectively. Similar to molecule B, other PCB derivatives with no ortho chlorine substituent adopt dihedral angles of 39.42° (4,4'-dichhlorobiphenyl), 41.31 (07)° (3,3',5'-trichloro-4-methoxy-biphenyl) and 43.94 (06)° (3,3',4,4'-tetrachlorobiphenyl) in the solid state (Shaikh et al., 2008). The calculated dihedral angle of the title compound is 41.2° (Shaikh et al., 2008), which is comparable to that of molecule B, but significantly larger than that of molecule A. The dihedral angle formed by the least-squares plane of the sulfated benzene ring and O1—S1 (Ar—C4—O1—S1) was 66.2 (3)° and 89.3 (3)° for molecules A and B, respectively. These dihedral angles are larger than the calculated Ar—C4—O1—S1 dihedral angle of approximately 54° (calculated with AM1 as implemented by ArgusLab, Version 4.0.1). Overall, these deviations from the energetically most favorable conformation of the title compound are due to crystal packing effects, which allow the molecule to adopt an energetically unfavorable conformation to maximize intermolecular interactions, and thus the lattice energy in the crystal.

Experimental

The title compound was synthesized from 4-chlorobiphenyl-4-ol by sulfation with 2,2,2-trichloroethyl sulfonyl chloride using 4-dimethylaminopyridine as catalyst (Liu et al. 2004). Crystals of the title compound suitable for crystal structure analysis were obtained from a methanolic solution by slowly evaporating the solvent.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.99 Å (CH2) and 0.95 Å (CArH) with Uiso(H) values set to 1.2Ueq of the attached C atom.

The crystal was an inversion twin with a refined component fraction of 0.44 (7), i.e. essentially equal amounts of each component.

Figures

Fig. 1.

Fig. 1.

View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C14H10Cl4O4S F000 = 1680
Mr = 416.08 Dx = 1.673 Mg m3
Orthorhombic, Pca21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 4257 reflections
a = 9.6305 (19) Å θ = 1.0–27.5º
b = 30.273 (6) Å µ = 0.86 mm1
c = 11.330 (2) Å T = 90.0 (2) K
V = 3303.3 (11) Å3 Block, colourless
Z = 8 0.40 × 0.34 × 0.18 mm

Data collection

Nonius KappaCCD diffractometer 6476 independent reflections
Radiation source: fine-focus sealed tube 4862 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.063
Detector resolution: 18 pixels mm-1 θmax = 27.5º
T = 90.0(2) K θmin = 2.2º
ω scans at fixed χ = 55° h = −12→12
Absorption correction: multi-scan(SCALEPACK; Otwinowski & Minor, 1997) k = −39→38
Tmin = 0.679, Tmax = 0.861 l = −11→14
25566 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044   w = 1/[σ2(Fo2) + (0.0569P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.51 e Å3
6476 reflections Δρmin = −0.56 e Å3
415 parameters Extinction correction: none
1 restraint Absolute structure: Flack (1983), 2481 Friedel Pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.44 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.37972 (11) 0.52517 (4) 0.22349 (11) 0.0182 (3)
O1A 0.4951 (3) 0.55663 (9) 0.2732 (3) 0.0189 (7)
O2A 0.3525 (3) 0.49236 (9) 0.3284 (3) 0.0162 (7)
O3A 0.2535 (3) 0.54799 (8) 0.2091 (3) 0.0228 (7)
O4A 0.4438 (3) 0.50234 (10) 0.1291 (3) 0.0219 (7)
Cl1A 0.32327 (13) 0.81401 (4) 0.83893 (12) 0.0332 (3)
Cl2A 0.34106 (12) 0.39176 (4) 0.28495 (11) 0.0249 (3)
Cl3A 0.55811 (11) 0.39177 (4) 0.46162 (11) 0.0250 (3)
Cl4A 0.28608 (11) 0.42787 (4) 0.51617 (10) 0.0251 (3)
C1A 0.4100 (4) 0.66199 (14) 0.5036 (4) 0.0185 (10)
C2A 0.4593 (5) 0.66887 (14) 0.3888 (4) 0.0253 (10)
H2A 0.4777 0.6981 0.3627 0.030*
C3A 0.4817 (4) 0.63383 (14) 0.3129 (4) 0.0255 (11)
H3A 0.5129 0.6390 0.2346 0.031*
C4A 0.4583 (4) 0.59162 (14) 0.3517 (4) 0.0169 (10)
C5A 0.4137 (4) 0.58287 (15) 0.4644 (4) 0.0192 (10)
H5A 0.4002 0.5534 0.4905 0.023*
C6A 0.3889 (4) 0.61848 (14) 0.5396 (4) 0.0203 (11)
H6A 0.3567 0.6129 0.6174 0.024*
C7A 0.4706 (4) 0.46577 (13) 0.3666 (4) 0.0171 (10)
H7A1 0.5192 0.4804 0.4329 0.021*
H7A2 0.5371 0.4619 0.3008 0.021*
C8A 0.4136 (4) 0.42113 (14) 0.4058 (4) 0.0174 (10)
C1'A 0.3849 (4) 0.69949 (14) 0.5865 (4) 0.0202 (10)
C2'A 0.3782 (4) 0.69245 (14) 0.7090 (4) 0.0229 (10)
H2'A 0.3882 0.6634 0.7393 0.028*
C3'A 0.3573 (5) 0.72738 (14) 0.7862 (4) 0.0278 (11)
H3'A 0.3519 0.7224 0.8689 0.033*
C4'A 0.3444 (5) 0.76930 (14) 0.7414 (4) 0.0215 (11)
C5'A 0.3477 (4) 0.77735 (13) 0.6205 (4) 0.0265 (11)
H5'A 0.3351 0.8064 0.5905 0.032*
C6'A 0.3696 (5) 0.74235 (14) 0.5456 (4) 0.0259 (11)
H6'A 0.3744 0.7477 0.4631 0.031*
S1B 0.36151 (11) 0.02678 (3) 0.20279 (10) 0.0170 (2)
O1B 0.4725 (3) 0.06109 (9) 0.1597 (3) 0.0197 (7)
O2B 0.3431 (3) −0.00442 (9) 0.0931 (3) 0.0180 (7)
O3B 0.2310 (3) 0.04755 (8) 0.2178 (3) 0.0214 (7)
O4B 0.4277 (3) 0.00352 (10) 0.2956 (3) 0.0210 (7)
Cl1B 0.29897 (13) 0.31088 (4) −0.42521 (12) 0.0308 (3)
Cl2B 0.30154 (11) −0.06864 (4) −0.10670 (11) 0.0226 (3)
Cl3B 0.55924 (11) −0.10661 (4) −0.02190 (12) 0.0258 (3)
Cl4B 0.31521 (12) −0.10380 (4) 0.12863 (11) 0.0249 (3)
C1B 0.3812 (5) 0.16175 (14) −0.0805 (4) 0.0198 (10)
C2B 0.4206 (4) 0.12024 (14) −0.1204 (4) 0.0201 (10)
H2B 0.4293 0.1149 −0.2027 0.024*
C3B 0.4471 (4) 0.08652 (15) −0.0409 (5) 0.0223 (11)
H3B 0.4745 0.0581 −0.0680 0.027*
C4B 0.4335 (4) 0.09461 (14) 0.0765 (5) 0.0183 (10)
C5B 0.3896 (4) 0.13457 (13) 0.1210 (4) 0.0225 (10)
H5B 0.3788 0.1390 0.2035 0.027*
C6B 0.3617 (5) 0.16827 (13) 0.0406 (4) 0.0218 (10)
H6B 0.3291 0.1960 0.0684 0.026*
C7B 0.4627 (4) −0.03186 (14) 0.0616 (4) 0.0182 (10)
H7B1 0.5231 −0.0362 0.1313 0.022*
H7B2 0.5177 −0.0173 −0.0011 0.022*
C8B 0.4097 (4) −0.07557 (14) 0.0186 (4) 0.0171 (10)
C1'B 0.3608 (4) 0.19884 (14) −0.1657 (4) 0.0189 (10)
C2'B 0.2482 (5) 0.22865 (12) −0.1553 (4) 0.0239 (10)
H2'B 0.1834 0.2250 −0.0928 0.029*
C3'B 0.2307 (5) 0.26276 (13) −0.2336 (4) 0.0236 (10)
H3'B 0.1553 0.2827 −0.2245 0.028*
C4'B 0.3228 (5) 0.26804 (14) −0.3252 (4) 0.0226 (11)
C5'B 0.4350 (5) 0.23942 (14) −0.3388 (4) 0.0247 (11)
H5'B 0.4992 0.2435 −0.4016 0.030*
C6'B 0.4515 (5) 0.20517 (14) −0.2599 (4) 0.0243 (10)
H6'B 0.5270 0.1853 −0.2700 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0188 (5) 0.0180 (6) 0.0177 (6) −0.0007 (4) 0.0011 (5) 0.0019 (5)
O1A 0.0170 (15) 0.0174 (15) 0.0223 (18) −0.0042 (12) 0.0023 (14) 0.0009 (14)
O2A 0.0143 (14) 0.0185 (15) 0.0160 (18) −0.0006 (12) 0.0034 (14) 0.0059 (14)
O3A 0.0188 (15) 0.0225 (15) 0.0270 (19) 0.0033 (14) −0.0026 (15) 0.0035 (15)
O4A 0.0294 (17) 0.0197 (16) 0.0167 (18) 0.0004 (14) 0.0044 (14) −0.0007 (14)
Cl1A 0.0430 (7) 0.0242 (6) 0.0323 (7) −0.0018 (5) −0.0001 (6) −0.0100 (6)
Cl2A 0.0281 (6) 0.0220 (6) 0.0245 (7) −0.0004 (5) −0.0071 (5) −0.0060 (5)
Cl3A 0.0226 (6) 0.0234 (6) 0.0289 (7) 0.0048 (5) −0.0031 (5) 0.0023 (5)
Cl4A 0.0253 (6) 0.0273 (6) 0.0227 (6) 0.0025 (5) 0.0079 (5) 0.0047 (5)
C1A 0.019 (2) 0.020 (2) 0.016 (2) 0.0015 (18) −0.003 (2) 0.000 (2)
C2A 0.031 (3) 0.018 (2) 0.027 (3) −0.001 (2) 0.002 (2) 0.007 (2)
C3A 0.029 (3) 0.026 (2) 0.022 (3) 0.001 (2) 0.006 (2) 0.005 (2)
C4A 0.015 (2) 0.013 (2) 0.023 (3) 0.0012 (17) −0.001 (2) −0.0001 (19)
C5A 0.022 (2) 0.020 (2) 0.016 (2) 0.0024 (18) 0.002 (2) 0.002 (2)
C6A 0.017 (2) 0.019 (2) 0.024 (3) −0.0005 (19) −0.002 (2) 0.002 (2)
C7A 0.017 (2) 0.020 (2) 0.014 (2) 0.0019 (19) −0.0016 (19) 0.002 (2)
C8A 0.014 (2) 0.018 (2) 0.020 (3) 0.0034 (18) 0.002 (2) 0.003 (2)
C1'A 0.019 (2) 0.020 (2) 0.021 (3) −0.0009 (19) 0.001 (2) 0.005 (2)
C2'A 0.030 (3) 0.016 (2) 0.023 (2) 0.0041 (19) 0.003 (2) 0.001 (2)
C3'A 0.030 (3) 0.028 (3) 0.026 (3) 0.004 (2) 0.001 (2) 0.001 (2)
C4'A 0.022 (2) 0.019 (2) 0.023 (3) −0.0030 (18) −0.004 (2) −0.010 (2)
C5'A 0.030 (3) 0.015 (2) 0.035 (3) −0.0022 (19) 0.000 (2) 0.000 (2)
C6'A 0.028 (3) 0.020 (2) 0.029 (3) 0.001 (2) 0.003 (2) 0.001 (2)
S1B 0.0177 (5) 0.0161 (5) 0.0173 (6) −0.0012 (4) −0.0013 (5) 0.0001 (5)
O1B 0.0210 (15) 0.0143 (15) 0.0237 (19) −0.0025 (13) −0.0017 (14) 0.0024 (14)
O2B 0.0156 (15) 0.0191 (16) 0.0192 (19) 0.0025 (12) −0.0009 (15) −0.0058 (14)
O3B 0.0179 (15) 0.0198 (15) 0.0265 (18) 0.0001 (13) −0.0005 (15) −0.0040 (15)
O4B 0.0246 (16) 0.0219 (17) 0.0166 (18) 0.0001 (14) −0.0045 (14) 0.0031 (15)
Cl1B 0.0450 (8) 0.0191 (6) 0.0285 (7) −0.0008 (5) −0.0068 (6) 0.0054 (5)
Cl2B 0.0221 (5) 0.0255 (6) 0.0203 (6) −0.0011 (5) −0.0054 (5) −0.0012 (5)
Cl3B 0.0193 (6) 0.0255 (6) 0.0326 (7) 0.0056 (5) −0.0011 (5) −0.0071 (6)
Cl4B 0.0291 (6) 0.0221 (6) 0.0235 (6) −0.0017 (5) 0.0031 (5) 0.0044 (5)
C1B 0.021 (2) 0.014 (2) 0.024 (3) −0.0032 (18) 0.002 (2) −0.003 (2)
C2B 0.022 (2) 0.016 (2) 0.022 (3) −0.0002 (19) 0.002 (2) −0.003 (2)
C3B 0.016 (2) 0.020 (2) 0.031 (3) 0.0001 (18) 0.002 (2) −0.003 (2)
C4B 0.015 (2) 0.016 (2) 0.024 (3) 0.0002 (18) −0.003 (2) 0.004 (2)
C5B 0.026 (2) 0.022 (2) 0.020 (2) −0.0012 (19) 0.001 (2) −0.003 (2)
C6B 0.026 (2) 0.011 (2) 0.028 (3) 0.0037 (19) 0.003 (2) −0.0006 (19)
C7B 0.015 (2) 0.018 (2) 0.022 (3) 0.0026 (19) −0.002 (2) −0.004 (2)
C8B 0.015 (2) 0.018 (2) 0.019 (2) 0.0035 (18) 0.001 (2) 0.004 (2)
C1'B 0.024 (2) 0.014 (2) 0.019 (3) −0.0047 (18) −0.002 (2) −0.002 (2)
C2'B 0.021 (2) 0.022 (2) 0.029 (3) −0.0005 (19) 0.005 (2) −0.002 (2)
C3'B 0.029 (3) 0.015 (2) 0.026 (3) 0.0048 (19) −0.003 (2) −0.0025 (19)
C4'B 0.030 (3) 0.014 (2) 0.024 (3) −0.0054 (19) −0.013 (2) 0.000 (2)
C5'B 0.029 (3) 0.026 (2) 0.019 (2) −0.011 (2) 0.001 (2) 0.002 (2)
C6'B 0.026 (2) 0.020 (2) 0.027 (3) −0.001 (2) 0.003 (2) −0.005 (2)

Geometric parameters (Å, °)

S1A—O3A 1.408 (3) S1B—O3B 1.415 (3)
S1A—O4A 1.415 (3) S1B—O4B 1.417 (3)
S1A—O1A 1.568 (3) S1B—O1B 1.568 (3)
S1A—O2A 1.571 (3) S1B—O2B 1.571 (3)
O1A—C4A 1.427 (5) O1B—C4B 1.435 (5)
O2A—C7A 1.459 (5) O2B—C7B 1.464 (5)
Cl1A—C4'A 1.759 (5) Cl1B—C4'B 1.738 (5)
Cl2A—C8A 1.776 (5) Cl2B—C8B 1.773 (5)
Cl3A—C8A 1.768 (4) Cl3B—C8B 1.780 (4)
Cl4A—C8A 1.765 (5) Cl4B—C8B 1.764 (5)
C1A—C6A 1.394 (6) C1B—C2B 1.388 (6)
C1A—C2A 1.400 (7) C1B—C6B 1.399 (6)
C1A—C1'A 1.493 (6) C1B—C1'B 1.494 (6)
C2A—C3A 1.383 (6) C2B—C3B 1.386 (6)
C2A—H2A 0.9500 C2B—H2B 0.9500
C3A—C4A 1.370 (6) C3B—C4B 1.358 (7)
C3A—H3A 0.9500 C3B—H3B 0.9500
C4A—C5A 1.373 (7) C4B—C5B 1.377 (6)
C5A—C6A 1.395 (6) C5B—C6B 1.394 (6)
C5A—H5A 0.9500 C5B—H5B 0.9500
C6A—H6A 0.9500 C6B—H6B 0.9500
C7A—C8A 1.524 (6) C7B—C8B 1.499 (6)
C7A—H7A1 0.9900 C7B—H7B1 0.9900
C7A—H7A2 0.9900 C7B—H7B2 0.9900
C1'A—C6'A 1.386 (6) C1'B—C6'B 1.392 (6)
C1'A—C2'A 1.406 (7) C1'B—C2'B 1.416 (6)
C2'A—C3'A 1.387 (6) C2'B—C3'B 1.371 (6)
C2'A—H2'A 0.9500 C2'B—H2'B 0.9500
C3'A—C4'A 1.372 (6) C3'B—C4'B 1.375 (7)
C3'A—H3'A 0.9500 C3'B—H3'B 0.9500
C4'A—C5'A 1.392 (7) C4'B—C5'B 1.394 (6)
C5'A—C6'A 1.374 (6) C5'B—C6'B 1.379 (6)
C5'A—H5'A 0.9500 C5'B—H5'B 0.9500
C6'A—H6'A 0.9500 C6'B—H6'B 0.9500
O3A—S1A—O4A 121.9 (2) O3B—S1B—O4B 122.1 (2)
O3A—S1A—O1A 110.81 (17) O3B—S1B—O1B 110.36 (16)
O4A—S1A—O1A 105.03 (18) O4B—S1B—O1B 104.70 (17)
O3A—S1A—O2A 104.68 (17) O3B—S1B—O2B 105.19 (17)
O4A—S1A—O2A 109.64 (18) O4B—S1B—O2B 109.83 (18)
O1A—S1A—O2A 103.31 (17) O1B—S1B—O2B 103.20 (17)
C4A—O1A—S1A 119.9 (3) C4B—O1B—S1B 119.7 (3)
C7A—O2A—S1A 116.3 (2) C7B—O2B—S1B 116.5 (3)
C6A—C1A—C2A 117.5 (4) C2B—C1B—C6B 118.9 (4)
C6A—C1A—C1'A 120.7 (4) C2B—C1B—C1'B 120.4 (4)
C2A—C1A—C1'A 121.7 (4) C6B—C1B—C1'B 120.7 (4)
C3A—C2A—C1A 121.1 (4) C3B—C2B—C1B 120.4 (5)
C3A—C2A—H2A 119.4 C3B—C2B—H2B 119.8
C1A—C2A—H2A 119.4 C1B—C2B—H2B 119.8
C4A—C3A—C2A 119.3 (4) C4B—C3B—C2B 119.1 (5)
C4A—C3A—H3A 120.3 C4B—C3B—H3B 120.5
C2A—C3A—H3A 120.3 C2B—C3B—H3B 120.5
C3A—C4A—C5A 122.0 (4) C3B—C4B—C5B 123.1 (5)
C3A—C4A—O1A 116.8 (4) C3B—C4B—O1B 119.4 (4)
C5A—C4A—O1A 120.9 (4) C5B—C4B—O1B 117.4 (4)
C4A—C5A—C6A 118.2 (4) C4B—C5B—C6B 117.6 (4)
C4A—C5A—H5A 120.9 C4B—C5B—H5B 121.2
C6A—C5A—H5A 120.9 C6B—C5B—H5B 121.2
C1A—C6A—C5A 121.8 (4) C5B—C6B—C1B 120.8 (4)
C1A—C6A—H6A 119.1 C5B—C6B—H6B 119.6
C5A—C6A—H6A 119.1 C1B—C6B—H6B 119.6
O2A—C7A—C8A 107.1 (3) O2B—C7B—C8B 108.2 (3)
O2A—C7A—H7A1 110.3 O2B—C7B—H7B1 110.1
C8A—C7A—H7A1 110.3 C8B—C7B—H7B1 110.1
O2A—C7A—H7A2 110.3 O2B—C7B—H7B2 110.1
C8A—C7A—H7A2 110.3 C8B—C7B—H7B2 110.1
H7A1—C7A—H7A2 108.5 H7B1—C7B—H7B2 108.4
C7A—C8A—Cl4A 110.8 (3) C7B—C8B—Cl4B 111.9 (3)
C7A—C8A—Cl3A 105.5 (3) C7B—C8B—Cl2B 110.8 (3)
Cl4A—C8A—Cl3A 110.6 (3) Cl4B—C8B—Cl2B 108.7 (2)
C7A—C8A—Cl2A 111.2 (3) C7B—C8B—Cl3B 105.9 (3)
Cl4A—C8A—Cl2A 109.3 (2) Cl4B—C8B—Cl3B 110.1 (2)
Cl3A—C8A—Cl2A 109.5 (2) Cl2B—C8B—Cl3B 109.4 (3)
C6'A—C1'A—C2'A 117.9 (4) C6'B—C1'B—C2'B 117.2 (4)
C6'A—C1'A—C1A 121.3 (4) C6'B—C1'B—C1B 121.1 (4)
C2'A—C1'A—C1A 120.9 (4) C2'B—C1'B—C1B 121.7 (4)
C3'A—C2'A—C1'A 120.9 (4) C3'B—C2'B—C1'B 121.3 (4)
C3'A—C2'A—H2'A 119.5 C3'B—C2'B—H2'B 119.4
C1'A—C2'A—H2'A 119.5 C1'B—C2'B—H2'B 119.4
C4'A—C3'A—C2'A 119.0 (4) C2'B—C3'B—C4'B 119.8 (4)
C4'A—C3'A—H3'A 120.5 C2'B—C3'B—H3'B 120.1
C2'A—C3'A—H3'A 120.5 C4'B—C3'B—H3'B 120.1
C3'A—C4'A—C5'A 121.6 (4) C3'B—C4'B—C5'B 120.8 (4)
C3'A—C4'A—Cl1A 119.3 (4) C3'B—C4'B—Cl1B 119.6 (4)
C5'A—C4'A—Cl1A 119.1 (4) C5'B—C4'B—Cl1B 119.6 (4)
C6'A—C5'A—C4'A 118.5 (4) C6'B—C5'B—C4'B 119.0 (4)
C6'A—C5'A—H5'A 120.8 C6'B—C5'B—H5'B 120.5
C4'A—C5'A—H5'A 120.8 C4'B—C5'B—H5'B 120.5
C5'A—C6'A—C1'A 122.1 (5) C5'B—C6'B—C1'B 121.9 (4)
C5'A—C6'A—H6'A 118.9 C5'B—C6'B—H6'B 119.0
C1'A—C6'A—H6'A 118.9 C1'B—C6'B—H6'B 119.0
O3A—S1A—O1A—C4A 32.4 (4) O3B—S1B—O1B—C4B −38.3 (4)
O4A—S1A—O1A—C4A 165.9 (3) O4B—S1B—O1B—C4B −171.3 (3)
O2A—S1A—O1A—C4A −79.2 (3) O2B—S1B—O1B—C4B 73.7 (3)
O3A—S1A—O2A—C7A −176.8 (3) O3B—S1B—O2B—C7B −177.1 (3)
O4A—S1A—O2A—C7A 50.8 (3) O4B—S1B—O2B—C7B −44.0 (4)
O1A—S1A—O2A—C7A −60.8 (3) O1B—S1B—O2B—C7B 67.2 (3)
C6A—C1A—C2A—C3A 2.1 (7) C6B—C1B—C2B—C3B −3.4 (7)
C1'A—C1A—C2A—C3A −179.8 (4) C1'B—C1B—C2B—C3B 176.3 (4)
C1A—C2A—C3A—C4A −1.6 (7) C1B—C2B—C3B—C4B 0.3 (6)
C2A—C3A—C4A—C5A −0.3 (7) C2B—C3B—C4B—C5B 2.3 (7)
C2A—C3A—C4A—O1A −174.5 (4) C2B—C3B—C4B—O1B −174.6 (4)
S1A—O1A—C4A—C3A −116.3 (4) S1B—O1B—C4B—C3B −90.7 (4)
S1A—O1A—C4A—C5A 69.5 (5) S1B—O1B—C4B—C5B 92.3 (4)
C3A—C4A—C5A—C6A 1.6 (7) C3B—C4B—C5B—C6B −1.6 (7)
O1A—C4A—C5A—C6A 175.5 (4) O1B—C4B—C5B—C6B 175.3 (4)
C2A—C1A—C6A—C5A −0.8 (6) C4B—C5B—C6B—C1B −1.6 (7)
C1'A—C1A—C6A—C5A −179.0 (4) C2B—C1B—C6B—C5B 4.0 (7)
C4A—C5A—C6A—C1A −1.0 (7) C1'B—C1B—C6B—C5B −175.7 (4)
S1A—O2A—C7A—C8A −146.0 (3) S1B—O2B—C7B—C8B 143.8 (3)
O2A—C7A—C8A—Cl4A −55.9 (4) O2B—C7B—C8B—Cl4B −61.5 (4)
O2A—C7A—C8A—Cl3A −175.6 (3) O2B—C7B—C8B—Cl2B 59.9 (4)
O2A—C7A—C8A—Cl2A 65.8 (4) O2B—C7B—C8B—Cl3B 178.4 (3)
C6A—C1A—C1'A—C6'A −162.8 (4) C2B—C1B—C1'B—C6'B −41.0 (6)
C2A—C1A—C1'A—C6'A 19.1 (7) C6B—C1B—C1'B—C6'B 138.6 (5)
C6A—C1A—C1'A—C2'A 18.2 (6) C2B—C1B—C1'B—C2'B 138.2 (5)
C2A—C1A—C1'A—C2'A −159.9 (4) C6B—C1B—C1'B—C2'B −42.1 (6)
C6'A—C1'A—C2'A—C3'A −0.1 (7) C6'B—C1'B—C2'B—C3'B −1.1 (7)
C1A—C1'A—C2'A—C3'A 178.9 (4) C1B—C1'B—C2'B—C3'B 179.6 (4)
C1'A—C2'A—C3'A—C4'A −0.7 (7) C1'B—C2'B—C3'B—C4'B 0.9 (7)
C2'A—C3'A—C4'A—C5'A 2.0 (7) C2'B—C3'B—C4'B—C5'B −0.8 (7)
C2'A—C3'A—C4'A—Cl1A −178.0 (3) C2'B—C3'B—C4'B—Cl1B 179.2 (3)
C3'A—C4'A—C5'A—C6'A −2.5 (7) C3'B—C4'B—C5'B—C6'B 0.9 (7)
Cl1A—C4'A—C5'A—C6'A 177.6 (3) Cl1B—C4'B—C5'B—C6'B −179.0 (3)
C4'A—C5'A—C6'A—C1'A 1.6 (7) C4'B—C5'B—C6'B—C1'B −1.2 (7)
C2'A—C1'A—C6'A—C5'A −0.4 (7) C2'B—C1'B—C6'B—C5'B 1.3 (7)
C1A—C1'A—C6'A—C5'A −179.4 (4) C1B—C1'B—C6'B—C5'B −179.5 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2403).

References

  1. Brandao, T. A. S., Priebe, J. P., Damasceno, A. S., Bortoluzzia, A. J., Kirby, A. J. & Nome, F. (2005). J. Mol. Struct.734, 205–209.
  2. Desiraju, G. R., Paul, I. C. & Curtin, D. Y. (1979). Mol. Cryst. Liq. Cryst.52, 259–266.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Hansen, L. G. (1999). The Ortho Side of PCBs Boston: Kluwer Academic Publishers.
  5. Lehmler, H.-J., Robertson, L. W. & Parkin, S. (2001). Acta Cryst. E57, o590–o591.
  6. Lehmler, H.-J., Robertson, L. W., Parkin, S. & Brock, C. P. (2002). Acta Cryst. B58, 140–147. [DOI] [PubMed]
  7. Letcher, R. J., Klasson-Wehler, E. & Bergman, A. (2000). The Handbook of Environmental Chemistry, Vol. 3 Part K, New Types of Persistent Halogenated Compounds, edited by J. Paasivirta, pp. 315–359. Berlin, Heidelberg: Springer Verlag.
  8. Liu, Y., Apak, T. I., Lehmler, H.-J., Robertson, L. W. & Duffel, M. W. (2006). Chem. Res. Toxicol.19, 1420–1425. [DOI] [PubMed]
  9. Liu, Y., Lien, I. F. F., Ruttgaizer, S., Dove, P. & Taylor, S. D. (2004). Org. Lett.6, 209–212. [DOI] [PubMed]
  10. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Rissanen, K., Valkonen, J. & Mannila, B. (1988a). Acta Cryst. C44, 682–684.
  13. Rissanen, K., Valkonen, J. & Mannila, B. (1988b). Acta Cryst. C44, 684–686.
  14. Robertson, L. W. & Hansen, L. G. (2001). Recent Advances in the Environmental Toxicology and Health Effects of PCBs Lexington, USA: University Press of Kentucky.
  15. Sacco, J. C. & James, M. O. (2005). Drug Metab. Dispos.33, 1341–1348. [DOI] [PubMed]
  16. Shaikh, N. S., Parkin, S., Luthe, G. & Lehmler, H. J. (2008). Chemosphere, 70, 1694–1698. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Tampal, N., Lehmler, H.-J., Espandiari, P., Malmberg, T. & Robertson, L. W. (2002). Chem. Res. Toxicol.15, 1259–1266. [DOI] [PubMed]
  19. Vyas, S. M., Parkin, S. & Lehmler, H.-J. (2006). Acta Cryst. E62, o2905–o2906.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038865/dn2403sup1.cif

e-64-o2464-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038865/dn2403Isup2.hkl

e-64-o2464-Isup2.hkl (317KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES