Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):m1532. doi: 10.1107/S160053680803626X

Tetra­kis(3,5-dimethyl-1H-pyrazole-κN 2)(nitrato-κ2 O,O′)cadmium(II) nitrate

Su-Qing Wang a, Fang-Fang Jian b,*
PMCID: PMC2959841  PMID: 21581147

Abstract

The title compound, [Cd(NO3)(C5H8N2)4]NO3, was prepared by reaction of cadmium nitrate and 3,5-dimethyl­pyrazole in ethanol solution. The Cd atom adopts a distorted cis-CdO2N4 octa­hedral geometry involving four dimethylpyrazole molecules and one bidentate nitrate anion. The mol­ecular structure and packing are stabilized by N—H⋯O and C—H⋯O inter- and intra­molecular hydrogen-bonding inter­actions.

Related literature

For background on the coordination chemistry of Cd(II) in biological systems, see: Dressing et al. (1982). For related literature, see: Addison et al. (1984).graphic file with name e-64-m1532-scheme1.jpg

Experimental

Crystal data

  • [Cd(NO3)(C5H8N2)4]NO3

  • M r = 620.97

  • Triclinic, Inline graphic

  • a = 9.1790 (18) Å

  • b = 11.353 (2) Å

  • c = 13.669 (3) Å

  • α = 94.79 (3)°

  • β = 105.61 (3)°

  • γ = 90.68 (3)°

  • V = 1366.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 7482 measured reflections

  • 5035 independent reflections

  • 4677 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.137

  • S = 1.06

  • 5035 reflections

  • 319 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.66 e Å−3

  • Δρmin = −0.87 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803626X/at2668sup1.cif

e-64-m1532-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803626X/at2668Isup2.hkl

e-64-m1532-Isup2.hkl (246.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H4A⋯O1i 0.86 2.13 2.943 (8) 157
N3—H4A⋯O3i 0.86 2.50 3.289 (16) 152
N4—H5A⋯O1i 0.86 1.92 2.771 (8) 171
N6—H7A⋯O6ii 0.86 2.33 3.131 (6) 156
N9—H10A⋯O4 0.86 2.50 3.106 (5) 128
C5—H5B⋯O4 0.96 2.59 3.530 (7) 166
C10—H10B⋯O5 0.96 2.29 3.157 (7) 150
C13—H13A⋯O1iii 0.93 2.49 3.375 (8) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

It is also known that most of the Cd(II) in biological systems is not in the form of free Cd(II) ions, but is coordinated by the abundance of biological ligands (Dressing et al., 1982). Therefore the coordination chemistry of Cd(II) with ligands is of great interest. In this paper, we reported the synthesis and the crystal structure of tri(3,5-dimenthyl pyrazolyl)cadmium(II) nitrate (I).

In the molecule of (I) (Fig. 1), each Cd atoms is coordinated by four nitrogen atoms from four 3,5-dimethyl pyrazoles respectively and two oxygen atoms from nitrate anion. All the bond length and angle are in the normal range. Another nitrate anion exists in the crystal lattice.

The molecular structure and packing are stabilized by the N—H···O and C—H···O inter and intraintermolecular hydrogen-bonding intercations.

Experimental

Solid 3,5-dimethyl pyrazole 0.96 g (0.01 mol) and cadmium nitrate 0.77 g (0.0025 mol) were added in 50 ml anhydrous alcohol under stirring. The mixture was refluxed for 3.5 h. The colourless solution was filtered and the filtrate was left to stand undisturbed. Upon slow evaporation at room temperature, a colourless crystalline solid appeared three days later and was separated by filtration.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93 and 0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq of the parent atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.

Crystal data

[Cd(NO3)(C5H8N2)4]N1O3 Z = 2
Mr = 620.97 F000 = 636
Triclinic, P1 Dx = 1.509 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.1790 (18) Å Cell parameters from 6067 reflections
b = 11.353 (2) Å θ = 2.3–28.2º
c = 13.669 (3) Å µ = 0.85 mm1
α = 94.79 (3)º T = 293 (2) K
β = 105.61 (3)º Block, colourless
γ = 90.68 (3)º 0.25 × 0.20 × 0.18 mm
V = 1366.2 (5) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 4677 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.016
Monochromator: graphite θmax = 25.5º
T = 273(2) K θmin = 2.3º
φ and ω scans h = −10→11
Absorption correction: none k = −13→13
7482 measured reflections l = −16→11
5035 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.137   w = 1/[σ2(Fo2) + (0.0885P)2 + 1.8569P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
5035 reflections Δρmax = 1.66 e Å3
319 parameters Δρmin = −0.87 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.13316 (3) 0.80806 (2) 0.33031 (2) 0.03976 (14)
O4 0.3597 (4) 0.8966 (3) 0.4877 (3) 0.0559 (6)
O5 0.1497 (4) 0.9850 (3) 0.4459 (3) 0.0538 (6)
O6 0.3174 (5) 1.0465 (4) 0.5840 (3) 0.0679 (9)
N2 0.2219 (5) 0.6381 (3) 0.2677 (3) 0.0492 (7)
N3 0.1348 (5) 0.5493 (4) 0.2059 (4) 0.0600 (9)
H4A 0.0377 0.5444 0.1918 0.072*
N4 −0.2135 (4) 0.7666 (4) 0.1863 (3) 0.0497 (7)
H5A −0.2040 0.6919 0.1909 0.060*
N5 −0.1073 (4) 0.8506 (3) 0.2393 (3) 0.0451 (6)
N6 −0.0798 (5) 0.7578 (3) 0.4743 (3) 0.0491 (7)
H7A −0.1426 0.8045 0.4397 0.059*
N7 0.0527 (5) 0.7270 (3) 0.4544 (3) 0.0495 (6)
N8 0.2600 (4) 0.9168 (3) 0.2410 (3) 0.0461 (6)
N9 0.3644 (4) 1.0038 (3) 0.2868 (3) 0.0448 (7)
H10A 0.4081 1.0120 0.3512 0.054*
N10 0.2779 (4) 0.9758 (3) 0.5082 (3) 0.0464 (7)
C1 0.1461 (12) 0.3654 (6) 0.0977 (7) 0.112 (3)
H1A 0.2229 0.3187 0.0796 0.167*
H1B 0.0800 0.3925 0.0373 0.167*
H1C 0.0887 0.3183 0.1303 0.167*
C2 0.2191 (8) 0.4702 (5) 0.1697 (5) 0.0705 (13)
C3 0.3657 (8) 0.5085 (5) 0.2081 (5) 0.0731 (14)
H3A 0.4503 0.4715 0.1967 0.088*
C4 0.3647 (6) 0.6135 (4) 0.2678 (4) 0.0526 (9)
C5 0.4955 (6) 0.6919 (6) 0.3272 (5) 0.0731 (16)
H5B 0.4594 0.7572 0.3622 0.110*
H5C 0.5480 0.7210 0.2816 0.110*
H5D 0.5632 0.6478 0.3760 0.110*
C6 −0.4658 (7) 0.7409 (7) 0.0621 (6) 0.0848 (19)
H6A −0.5406 0.7909 0.0249 0.127*
H6B −0.5090 0.6967 0.1050 0.127*
H6C −0.4327 0.6872 0.0151 0.127*
C7 −0.3346 (5) 0.8148 (5) 0.1261 (4) 0.0537 (9)
C8 −0.3053 (6) 0.9339 (5) 0.1395 (4) 0.0543 (9)
H8A −0.3682 0.9912 0.1079 0.065*
C9 −0.1645 (5) 0.9538 (4) 0.2091 (3) 0.0464 (8)
C10 −0.0833 (7) 1.0697 (5) 0.2516 (5) 0.0689 (14)
H10B 0.0128 1.0559 0.2979 0.103*
H10C −0.1429 1.1160 0.2873 0.103*
H10D −0.0676 1.1116 0.1969 0.103*
C11 −0.2363 (8) 0.7287 (5) 0.5941 (5) 0.0694 (13)
H11A −0.3011 0.7812 0.5520 0.104*
H11B −0.2042 0.7641 0.6630 0.104*
H11C −0.2906 0.6553 0.5920 0.104*
C12 −0.1004 (6) 0.7059 (4) 0.5551 (3) 0.0509 (8)
C13 0.0213 (7) 0.6372 (4) 0.5865 (4) 0.0572 (9)
H13A 0.0383 0.5892 0.6401 0.069*
C14 0.1155 (6) 0.6525 (4) 0.5233 (3) 0.0475 (7)
C15 0.2634 (6) 0.5992 (5) 0.5268 (5) 0.0657 (12)
H15A 0.3006 0.6251 0.4726 0.099*
H15B 0.2510 0.5145 0.5189 0.099*
H15C 0.3345 0.6234 0.5912 0.099*
C16 0.1073 (7) 0.8553 (6) 0.0647 (4) 0.0666 (14)
H16A 0.0727 0.7937 0.0979 0.100*
H16B 0.1547 0.8208 0.0150 0.100*
H16C 0.0228 0.8998 0.0314 0.100*
C17 0.2195 (5) 0.9358 (4) 0.1424 (3) 0.0462 (8)
C18 0.2983 (6) 1.0353 (4) 0.1273 (4) 0.0528 (9)
H18A 0.2891 1.0679 0.0658 0.063*
C19 0.3919 (5) 1.0756 (4) 0.2202 (4) 0.0459 (8)
C20 0.5065 (7) 1.1759 (5) 0.2532 (5) 0.0652 (13)
H20A 0.5515 1.1781 0.3254 0.098*
H20B 0.4578 1.2490 0.2373 0.098*
H20C 0.5835 1.1650 0.2180 0.098*
N1 0.7643 (6) 0.4506 (5) 0.1574 (5) 0.0806 (16)
O1 0.8224 (7) 0.5308 (6) 0.2225 (5) 0.1116 (18)*
O2 0.7028 (11) 0.3695 (9) 0.1665 (7) 0.164 (3)*
O3 0.7830 (17) 0.4749 (13) 0.0795 (12) 0.247 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.0405 (2) 0.0371 (2) 0.0402 (2) −0.00263 (12) 0.00835 (13) 0.00418 (12)
O4 0.0536 (12) 0.0644 (18) 0.0442 (11) 0.0005 (9) 0.0059 (9) −0.0028 (10)
O5 0.0618 (15) 0.0429 (11) 0.0496 (14) 0.0006 (11) 0.0051 (9) −0.0030 (9)
O6 0.079 (2) 0.068 (2) 0.0463 (17) −0.0047 (17) 0.0045 (13) −0.0119 (13)
N2 0.0505 (12) 0.0401 (10) 0.0565 (19) −0.0024 (10) 0.0156 (13) −0.0010 (10)
N3 0.0675 (15) 0.0397 (16) 0.070 (3) −0.0119 (14) 0.0175 (19) −0.0051 (14)
N4 0.0429 (13) 0.0510 (12) 0.051 (2) −0.0062 (11) 0.0065 (11) 0.0048 (14)
N5 0.0432 (9) 0.0431 (12) 0.0471 (15) −0.0030 (8) 0.0076 (8) 0.0091 (11)
N6 0.0595 (18) 0.0430 (19) 0.0497 (19) 0.0036 (14) 0.0214 (15) 0.0103 (13)
N7 0.0581 (15) 0.0460 (15) 0.0482 (16) 0.0079 (11) 0.0175 (12) 0.0144 (12)
N8 0.0434 (14) 0.0460 (14) 0.0456 (10) −0.0075 (11) 0.0050 (10) 0.0097 (11)
N9 0.0458 (18) 0.0451 (18) 0.0430 (12) −0.0069 (11) 0.0113 (12) 0.0045 (12)
N10 0.0557 (16) 0.0430 (17) 0.0392 (15) −0.0088 (11) 0.0116 (10) 0.0023 (9)
C1 0.148 (6) 0.059 (4) 0.116 (6) −0.019 (4) 0.031 (5) −0.038 (3)
C2 0.093 (2) 0.044 (2) 0.072 (3) −0.0035 (19) 0.022 (3) −0.0101 (18)
C3 0.0842 (19) 0.053 (3) 0.088 (4) 0.004 (2) 0.040 (3) −0.012 (2)
C4 0.0555 (13) 0.045 (2) 0.059 (3) 0.0029 (12) 0.0205 (19) 0.0004 (15)
C5 0.0479 (17) 0.077 (3) 0.086 (4) 0.002 (2) 0.010 (3) −0.013 (3)
C6 0.054 (3) 0.100 (3) 0.082 (4) −0.009 (2) −0.010 (2) −0.004 (3)
C7 0.0426 (17) 0.0707 (17) 0.045 (2) 0.0005 (13) 0.0080 (12) 0.0024 (18)
C8 0.0503 (19) 0.0663 (15) 0.045 (2) 0.0131 (14) 0.0091 (14) 0.0079 (18)
C9 0.0482 (17) 0.0466 (11) 0.045 (2) 0.0081 (10) 0.0124 (13) 0.0054 (15)
C10 0.071 (3) 0.0418 (14) 0.085 (4) 0.0075 (18) 0.006 (3) 0.005 (2)
C11 0.089 (3) 0.066 (3) 0.064 (3) −0.009 (2) 0.043 (3) 0.000 (2)
C12 0.074 (2) 0.039 (2) 0.043 (2) −0.0074 (16) 0.0224 (17) −0.0003 (14)
C13 0.081 (3) 0.046 (2) 0.044 (2) −0.0043 (18) 0.0141 (18) 0.0110 (15)
C14 0.0612 (19) 0.033 (2) 0.044 (2) −0.0021 (14) 0.0061 (15) 0.0065 (13)
C15 0.061 (2) 0.051 (3) 0.078 (4) 0.0071 (19) 0.003 (2) 0.016 (2)
C16 0.067 (3) 0.080 (3) 0.0456 (19) −0.015 (2) 0.0061 (19) −0.002 (2)
C17 0.047 (2) 0.053 (2) 0.0399 (11) −0.0012 (14) 0.0138 (13) 0.0033 (13)
C18 0.060 (3) 0.057 (2) 0.0459 (14) −0.0009 (16) 0.0198 (16) 0.0114 (15)
C19 0.047 (2) 0.0426 (19) 0.0525 (16) −0.0011 (13) 0.0213 (15) 0.0070 (14)
C20 0.071 (3) 0.055 (3) 0.076 (3) −0.0182 (19) 0.032 (2) 0.003 (2)
N1 0.074 (3) 0.075 (3) 0.085 (4) −0.042 (3) 0.008 (3) 0.012 (3)

Geometric parameters (Å, °)

Cd1—N7 2.278 (4) C6—C7 1.486 (7)
Cd1—N2 2.293 (4) C6—H6A 0.9600
Cd1—N5 2.303 (4) C6—H6B 0.9600
Cd1—N8 2.314 (4) C6—H6C 0.9600
Cd1—O5 2.427 (3) C7—C8 1.362 (7)
Cd1—O4 2.673 (3) C8—C9 1.386 (7)
O4—N10 1.240 (5) C8—H8A 0.9300
O5—N10 1.264 (5) C9—C10 1.497 (7)
O6—N10 1.225 (5) C10—H10B 0.9600
N2—C4 1.343 (6) C10—H10C 0.9600
N2—N3 1.358 (6) C10—H10D 0.9600
N3—C2 1.341 (8) C11—C12 1.500 (7)
N3—H4A 0.8600 C11—H11A 0.9600
N4—C7 1.346 (6) C11—H11B 0.9600
N4—N5 1.365 (5) C11—H11C 0.9600
N4—H5A 0.8600 C12—C13 1.363 (8)
N5—C9 1.341 (6) C13—C14 1.396 (7)
N6—C12 1.350 (6) C13—H13A 0.9300
N6—N7 1.359 (6) C14—C15 1.483 (7)
N6—H7A 0.8600 C15—H15A 0.9600
N7—C14 1.337 (6) C15—H15B 0.9600
N8—C17 1.335 (6) C15—H15C 0.9600
N8—N9 1.356 (5) C16—C17 1.500 (7)
N9—C19 1.342 (6) C16—H16A 0.9600
N9—H10A 0.8600 C16—H16B 0.9600
C1—C2 1.505 (8) C16—H16C 0.9600
C1—H1A 0.9600 C17—C18 1.393 (7)
C1—H1B 0.9600 C18—C19 1.366 (7)
C1—H1C 0.9600 C18—H18A 0.9300
C2—C3 1.357 (9) C19—C20 1.495 (7)
C3—C4 1.389 (7) C20—H20A 0.9600
C3—H3A 0.9300 C20—H20B 0.9600
C4—C5 1.490 (7) C20—H20C 0.9600
C5—H5B 0.9600 N1—O2 1.108 (10)
C5—H5C 0.9600 N1—O3 1.176 (15)
C5—H5D 0.9600 N1—O1 1.226 (8)
N7—Cd1—N2 96.81 (14) C7—C6—H6B 109.5
N7—Cd1—N5 93.80 (14) H6A—C6—H6B 109.5
N2—Cd1—N5 113.69 (15) C7—C6—H6C 109.5
N7—Cd1—N8 164.83 (15) H6A—C6—H6C 109.5
N2—Cd1—N8 89.43 (14) H6B—C6—H6C 109.5
N5—Cd1—N8 96.33 (13) N4—C7—C8 105.9 (4)
N7—Cd1—O5 81.49 (13) N4—C7—C6 121.7 (5)
N2—Cd1—O5 154.81 (14) C8—C7—C6 132.3 (5)
N5—Cd1—O5 91.50 (13) C7—C8—C9 107.4 (4)
N8—Cd1—O5 86.98 (13) C7—C8—H8A 126.3
N7—Cd1—O4 83.20 (13) C9—C8—H8A 126.3
N2—Cd1—O4 105.38 (13) N5—C9—C8 109.8 (4)
N5—Cd1—O4 140.88 (12) N5—C9—C10 122.0 (4)
N8—Cd1—O4 81.82 (12) C8—C9—C10 128.2 (4)
O5—Cd1—O4 49.43 (12) C9—C10—H10B 109.5
N10—O4—Cd1 90.4 (2) C9—C10—H10C 109.5
N10—O5—Cd1 101.7 (3) H10B—C10—H10C 109.5
C4—N2—N3 105.2 (4) C9—C10—H10D 109.5
C4—N2—Cd1 128.6 (3) H10B—C10—H10D 109.5
N3—N2—Cd1 125.3 (3) H10C—C10—H10D 109.5
C2—N3—N2 111.5 (5) C12—C11—H11A 109.5
C2—N3—H4A 124.2 C12—C11—H11B 109.5
N2—N3—H4A 124.2 H11A—C11—H11B 109.5
C7—N4—N5 112.0 (4) C12—C11—H11C 109.5
C7—N4—H5A 124.0 H11A—C11—H11C 109.5
N5—N4—H5A 124.0 H11B—C11—H11C 109.5
C9—N5—N4 104.9 (4) N6—C12—C13 106.1 (4)
C9—N5—Cd1 130.1 (3) N6—C12—C11 121.7 (5)
N4—N5—Cd1 123.7 (3) C13—C12—C11 132.2 (5)
C12—N6—N7 111.5 (4) C12—C13—C14 107.2 (4)
C12—N6—H7A 124.2 C12—C13—H13A 126.4
N7—N6—H7A 124.2 C14—C13—H13A 126.4
C14—N7—N6 105.9 (4) N7—C14—C13 109.2 (4)
C14—N7—Cd1 132.7 (3) N7—C14—C15 122.2 (5)
N6—N7—Cd1 121.3 (3) C13—C14—C15 128.6 (5)
C17—N8—N9 105.2 (4) C14—C15—H15A 109.5
C17—N8—Cd1 129.0 (3) C14—C15—H15B 109.5
N9—N8—Cd1 122.8 (3) H15A—C15—H15B 109.5
C19—N9—N8 112.3 (4) C14—C15—H15C 109.5
C19—N9—H10A 123.9 H15A—C15—H15C 109.5
N8—N9—H10A 123.9 H15B—C15—H15C 109.5
O6—N10—O4 123.0 (4) C17—C16—H16A 109.5
O6—N10—O5 119.2 (4) C17—C16—H16B 109.5
O4—N10—O5 117.8 (4) H16A—C16—H16B 109.5
C2—C1—H1A 109.5 C17—C16—H16C 109.5
C2—C1—H1B 109.5 H16A—C16—H16C 109.5
H1A—C1—H1B 109.5 H16B—C16—H16C 109.5
C2—C1—H1C 109.5 N8—C17—C18 109.8 (4)
H1A—C1—H1C 109.5 N8—C17—C16 121.7 (4)
H1B—C1—H1C 109.5 C18—C17—C16 128.5 (4)
N3—C2—C3 106.9 (5) C19—C18—C17 106.8 (4)
N3—C2—C1 120.8 (6) C19—C18—H18A 126.6
C3—C2—C1 132.3 (6) C17—C18—H18A 126.6
C2—C3—C4 106.6 (5) N9—C19—C18 105.9 (4)
C2—C3—H3A 126.7 N9—C19—C20 121.6 (5)
C4—C3—H3A 126.7 C18—C19—C20 132.5 (5)
N2—C4—C3 109.8 (5) C19—C20—H20A 109.5
N2—C4—C5 121.6 (4) C19—C20—H20B 109.5
C3—C4—C5 128.7 (5) H20A—C20—H20B 109.5
C4—C5—H5B 109.5 C19—C20—H20C 109.5
C4—C5—H5C 109.5 H20A—C20—H20C 109.5
H5B—C5—H5C 109.5 H20B—C20—H20C 109.5
C4—C5—H5D 109.5 O2—N1—O3 124.1 (11)
H5B—C5—H5D 109.5 O2—N1—O1 128.2 (8)
H5C—C5—H5D 109.5 O3—N1—O1 107.6 (9)
C7—C6—H6A 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H4A···O1i 0.86 2.13 2.943 (8) 157
N3—H4A···O3i 0.86 2.50 3.289 (16) 152
N4—H5A···O1i 0.86 1.92 2.771 (8) 171
N6—H7A···O6ii 0.86 2.33 3.131 (6) 156
N9—H10A···O4 0.86 2.50 3.106 (5) 128
C5—H5B···O4 0.96 2.59 3.530 (7) 166
C10—H10B···O5 0.96 2.29 3.157 (7) 150
C13—H13A···O1iii 0.93 2.49 3.375 (8) 159

Symmetry codes: (i) x−1, y, z; (ii) −x, −y+2, −z+1; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2668).

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., Vanrijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dressing, S. A., Mass, R. P. & Weiss, C. M. (1982). Bull. Environ. Contam. Toxicol.28, 172–180. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803626X/at2668sup1.cif

e-64-m1532-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803626X/at2668Isup2.hkl

e-64-m1532-Isup2.hkl (246.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES