Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 26;64(Pt 12):m1620. doi: 10.1107/S1600536808038932

2,2′-(Butane-1,4-di­yl)diisoquinolinium tetra­chloridozincate(II)

Zhi-Fang Fan a, Xin Xiao a, Yun-Qian Zhang a, Sai-Feng Xue a,*, Zhu Tao b
PMCID: PMC2959863  PMID: 21581211

Abstract

The crystal of the title compound, (C22H22N2)[ZnCl4], consists of 2,2′-(butane-1,4-di­yl)diisoquinolinium organic cations and [ZnCl4]2− complex anions. The cation is located across a twofold axis and the ZnII atom of the anion is located on the other twofold axis. The centroid–centroid distance between parallel pyridine rings of neighboring mol­ecules is 3.699 (3) Å, but the face-to-face separation of 3.601 (3) Å suggests there is no significant π–π stacking in the crystal structure.

Related literature

For general background, see: Day & Arnold (2000); Day et al. (2002); Freeman et al. (1981); Kim et al. (2000). For a related structure, see: Pan & Xu (2004).graphic file with name e-64-m1620-scheme1.jpg

Experimental

Crystal data

  • (C22H22N2)[ZnCl4]

  • M r = 521.61

  • Monoclinic, Inline graphic

  • a = 10.729 (3) Å

  • b = 11.040 (3) Å

  • c = 18.955 (4) Å

  • β = 99.179 (9)°

  • V = 2216.4 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 273 (2) K

  • 0.23 × 0.19 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.680, T max = 0.760

  • 12088 measured reflections

  • 2172 independent reflections

  • 1855 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.206

  • S = 1.13

  • 2172 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −1.15 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038932/xu2462sup1.cif

e-64-m1620-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038932/xu2462Isup2.hkl

e-64-m1620-Isup2.hkl (104.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of our ongoing investigation on quinoline compounds, we present here the crystal structure of the compound with multiple functional groups, which can develop strong intermolecular interactions with cucurbit[n]urils (CB[n]) (Freeman et al., 1981; Day & Arnold, 2000; Day et al., 2002; Kim et al., 2000).

The crystal structure of the title compound (Fig. 1) consists of organic cations and anionic (ZnCl4)2- complexes. The (ZnCl4)2- anion assumes a distorted tetrahedron coordination geometry with Zn–Cl bond distances of 2.3043 (14) Å and 2.3158 (12) Å. The centroids distance between parallel pyridine rings of neighboring molecules is 3.699 (3) Å, but the face-to-face separation of 3.601 (3) Å suggests no significant π-π stacking in the crystal structure (Pan & Xu, 2004).

Experimental

A solution of 1,4-dibromine-butane (2.16 g, 0.01 mol) was added to a stirred solution of isoquinoline (2.58 g, 0.02 mol) in 1,4-dioxane (50 ml) at 373 K in a period of 5 h. After cooling to room temperature, the mixture was filtered. The residue was added to an aqueous solution (50 ml) of ZnCl2 (0.01 mol, 1.37 g). After stirring for 2 h, the solution was filtered. Colorless single crystals of the title compound were obtained from the filtrate after 5 weeks.

Refinement

H atoms were placed in calculated positions with C—H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C). The highest peak and deepest hole in the final d-map are 0.35 Å from Cl2 atom and 0.42 Å from Zn1 atom, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (a) -x, y, 3/2-z; (b) -x, y, 1/2-z].

Crystal data

(C22H22N2)[ZnCl4] F000 = 1064
Mr = 521.61 Dx = 1.563 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2184 reflections
a = 10.729 (3) Å θ = 2.2–26.0º
b = 11.040 (3) Å µ = 1.60 mm1
c = 18.955 (4) Å T = 273 (2) K
β = 99.179 (9)º Prism, colorless
V = 2216.4 (10) Å3 0.23 × 0.19 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2172 independent reflections
Radiation source: fine-focus sealed tube 1855 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.032
T = 273(2) K θmax = 26.0º
φ and ω scans θmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −13→13
Tmin = 0.680, Tmax = 0.760 k = −13→13
12088 measured reflections l = −23→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058 H-atom parameters constrained
wR(F2) = 0.206   w = 1/[σ2(Fo2) + (0.1169P)2 + 12.0521P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max < 0.001
2172 reflections Δρmax = 1.28 e Å3
132 parameters Δρmin = −1.15 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.0000 0.15361 (8) 0.2500 0.0412 (3)
Cl2 0.12762 (10) 0.03371 (11) 0.19106 (6) 0.0349 (4)
Cl1 0.12438 (13) 0.27560 (13) 0.33123 (8) 0.0483 (4)
N1 0.4868 (4) 0.1136 (4) 0.3832 (2) 0.0416 (10)
C11 0.4355 (5) 0.1981 (5) 0.2617 (3) 0.0449 (13)
H11A 0.4248 0.2744 0.2854 0.054*
H11B 0.3715 0.1945 0.2193 0.054*
C3 0.6202 (6) 0.1461 (5) 0.5206 (3) 0.0439 (13)
C9 0.5975 (6) 0.0584 (5) 0.4013 (3) 0.0442 (13)
H9 0.6286 0.0098 0.3680 0.053*
C10 0.4120 (6) 0.0967 (6) 0.3108 (3) 0.0463 (13)
H10A 0.3228 0.0938 0.3143 0.056*
H10B 0.4347 0.0203 0.2910 0.056*
C1 0.4382 (6) 0.1876 (6) 0.4311 (3) 0.0528 (15)
H1 0.3614 0.2265 0.4171 0.063*
C8 0.6687 (5) 0.0723 (5) 0.4702 (3) 0.0415 (12)
C6 0.8489 (7) 0.0222 (6) 0.5569 (4) 0.0583 (16)
H6 0.9255 −0.0177 0.5700 0.070*
C7 0.7856 (6) 0.0107 (6) 0.4893 (3) 0.0533 (15)
H7 0.8182 −0.0368 0.4560 0.064*
C5 0.7995 (7) 0.0947 (6) 0.6080 (3) 0.0581 (17)
H5 0.8434 0.1003 0.6543 0.070*
C4 0.6894 (7) 0.1560 (6) 0.5902 (3) 0.0524 (15)
H4 0.6594 0.2046 0.6239 0.063*
C2 0.5011 (7) 0.2039 (6) 0.4980 (3) 0.0542 (15)
H2 0.4668 0.2532 0.5297 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0383 (5) 0.0406 (6) 0.0448 (6) 0.000 0.0074 (4) 0.000
Cl2 0.0276 (6) 0.0410 (7) 0.0363 (6) 0.0026 (4) 0.0056 (4) −0.0100 (5)
Cl1 0.0393 (7) 0.0457 (8) 0.0587 (9) −0.0063 (6) 0.0043 (6) −0.0239 (6)
N1 0.038 (2) 0.046 (3) 0.040 (2) 0.000 (2) 0.0034 (18) 0.0025 (19)
C11 0.048 (3) 0.045 (3) 0.039 (3) 0.005 (2) −0.001 (2) 0.002 (2)
C3 0.047 (3) 0.044 (3) 0.041 (3) −0.005 (2) 0.008 (2) 0.000 (2)
C9 0.050 (3) 0.044 (3) 0.038 (3) 0.001 (2) 0.006 (2) −0.001 (2)
C10 0.041 (3) 0.053 (3) 0.043 (3) −0.006 (3) 0.002 (2) 0.000 (2)
C1 0.045 (3) 0.061 (4) 0.054 (4) 0.006 (3) 0.012 (3) 0.003 (3)
C8 0.043 (3) 0.041 (3) 0.040 (3) −0.003 (2) 0.005 (2) 0.002 (2)
C6 0.052 (4) 0.058 (4) 0.061 (4) 0.005 (3) −0.001 (3) 0.006 (3)
C7 0.056 (4) 0.056 (4) 0.045 (3) 0.009 (3) 0.000 (3) 0.001 (3)
C5 0.066 (4) 0.062 (4) 0.042 (3) −0.014 (3) −0.005 (3) 0.008 (3)
C4 0.066 (4) 0.053 (4) 0.039 (3) −0.006 (3) 0.009 (3) −0.002 (2)
C2 0.060 (4) 0.060 (4) 0.045 (3) 0.009 (3) 0.016 (3) −0.005 (3)

Geometric parameters (Å, °)

Zn1—Cl1i 2.3043 (14) C9—H9 0.9300
Zn1—Cl1 2.3043 (14) C10—H10A 0.9700
Zn1—Cl2i 2.3158 (12) C10—H10B 0.9700
Zn1—Cl2 2.3158 (12) C1—C2 1.350 (9)
N1—C9 1.330 (7) C1—H1 0.9300
N1—C1 1.384 (8) C8—C7 1.423 (9)
N1—C10 1.488 (7) C6—C7 1.357 (9)
C11—C10 1.502 (8) C6—C5 1.423 (10)
C11—C11ii 1.520 (12) C6—H6 0.9300
C11—H11A 0.9700 C7—H7 0.9300
C11—H11B 0.9700 C5—C4 1.356 (10)
C3—C4 1.412 (9) C5—H5 0.9300
C3—C8 1.416 (8) C4—H4 0.9300
C3—C2 1.431 (9) C2—H2 0.9300
C9—C8 1.411 (8)
Cl1i—Zn1—Cl1 108.47 (9) N1—C10—H10B 109.4
Cl1i—Zn1—Cl2i 109.41 (5) C11—C10—H10B 109.4
Cl1—Zn1—Cl2i 109.62 (5) H10A—C10—H10B 108.0
Cl1i—Zn1—Cl2 109.62 (5) C2—C1—N1 120.7 (6)
Cl1—Zn1—Cl2 109.41 (5) C2—C1—H1 119.7
Cl2i—Zn1—Cl2 110.28 (7) N1—C1—H1 119.7
C9—N1—C1 121.0 (5) C9—C8—C3 118.9 (5)
C9—N1—C10 120.6 (5) C9—C8—C7 120.6 (5)
C1—N1—C10 118.4 (5) C3—C8—C7 120.4 (5)
C10—C11—C11ii 115.5 (4) C7—C6—C5 120.7 (6)
C10—C11—H11A 108.4 C7—C6—H6 119.7
C11ii—C11—H11A 108.4 C5—C6—H6 119.7
C10—C11—H11B 108.4 C6—C7—C8 119.0 (6)
C11ii—C11—H11B 108.4 C6—C7—H7 120.5
H11A—C11—H11B 107.5 C8—C7—H7 120.5
C4—C3—C8 118.7 (6) C4—C5—C6 121.1 (6)
C4—C3—C2 123.8 (6) C4—C5—H5 119.5
C8—C3—C2 117.5 (5) C6—C5—H5 119.5
N1—C9—C8 121.2 (5) C5—C4—C3 120.1 (6)
N1—C9—H9 119.4 C5—C4—H4 120.0
C8—C9—H9 119.4 C3—C4—H4 120.0
N1—C10—C11 111.1 (5) C1—C2—C3 120.7 (6)
N1—C10—H10A 109.4 C1—C2—H2 119.7
C11—C10—H10A 109.4 C3—C2—H2 119.7
C1—N1—C9—C8 0.7 (9) C2—C3—C8—C7 −179.1 (6)
C10—N1—C9—C8 −179.1 (5) C5—C6—C7—C8 0.0 (10)
C9—N1—C10—C11 −96.2 (6) C9—C8—C7—C6 −177.3 (6)
C1—N1—C10—C11 83.9 (6) C3—C8—C7—C6 1.0 (9)
C11ii—C11—C10—N1 71.4 (7) C7—C6—C5—C4 −1.3 (10)
C9—N1—C1—C2 −1.2 (9) C6—C5—C4—C3 1.6 (10)
C10—N1—C1—C2 178.6 (6) C8—C3—C4—C5 −0.5 (9)
N1—C9—C8—C3 0.3 (8) C2—C3—C4—C5 177.7 (6)
N1—C9—C8—C7 178.6 (6) N1—C1—C2—C3 0.7 (10)
C4—C3—C8—C9 177.6 (5) C4—C3—C2—C1 −178.0 (6)
C2—C3—C8—C9 −0.7 (8) C8—C3—C2—C1 0.2 (10)
C4—C3—C8—C7 −0.8 (9)

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2462).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Day, A. I. & Arnold, A. P. (2000). Cucurbiturils and Method for Synthesis,. Patent No. WO/2000/068 232.
  4. Day, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed.41, 275–277. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Freeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc.103, 7367–7368.
  8. Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc.122, 540–541.
  9. Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038932/xu2462sup1.cif

e-64-m1620-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038932/xu2462Isup2.hkl

e-64-m1620-Isup2.hkl (104.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES