Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 22;64(Pt 12):o2421. doi: 10.1107/S1600536808038397

Thio­phene-2-carbaldehyde 2,4-dinitro­phenyl­hydrazone

Zhi-gang Yin a,*, Heng-yu Qian a, He-ping Li b, Jie Hu a, Chun-xia Zhang a
PMCID: PMC2959885  PMID: 21581389

Abstract

In the approximately planar molecule of the title compound, C11H8N4O4S, the dihedral angle between the thio­phene and benzene rings is 5.73 (10)°. In the crystal structure, bifurcated inter/intra­molecular N—H⋯(O,O) hydrogen bonds are present. The intermolecular links lead to inversion dimers containing an R 2 2(12) graph-set motif.

Related literature

For general background, see: Okabe et al. (1993). For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-64-o2421-scheme1.jpg

Experimental

Crystal data

  • C11H8N4O4S

  • M r = 292.27

  • Monoclinic, Inline graphic

  • a = 4.8994 (17) Å

  • b = 9.520 (3) Å

  • c = 25.708 (8) Å

  • β = 92.71 (2)°

  • V = 1197.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 291 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.915, T max = 0.929

  • 11010 measured reflections

  • 2285 independent reflections

  • 1718 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.087

  • S = 1.02

  • 2285 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038397/dn2406sup1.cif

e-64-o2421-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038397/dn2406Isup2.hkl

e-64-o2421-Isup2.hkl (112.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O1i 0.87 (2) 2.57 (2) 3.338 (2) 148.2 (19)
N3—H1⋯O1 0.87 (2) 2.01 (2) 2.630 (2) 127.4 (19)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors express their deep appreciation to the Startup Fund for PhDs of Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 2005001) and the Startup Fund for Masters of Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 000455).

supplementary crystallographic information

Comment

2,4-Dinitrophenylhydrazine is a reagent which is widely used for condensation with aldehydes and ketones. Several phenylhydrazone derivatives have been shown to be potentially DNA-damaging and are mutagenic agents(Okabe et al. 1993). As part of our work, we have synthesized the title compound (I) and reported its cyrstal structure.

The title molecule is roughly planar. Indeed, the benzene and the thiophene rings are only slight twisted, making a dihedral angle of 5.73 (10)° (Fig. 1). The two nitro groups, O1/N1/O2 and O3/N2/O4 are coplanar with the benzene ring to which they are attached.

Intermolecular N-H···O hydrogen bonds link the molecule two by two around inversion center, building then a R22(12) graph set motif (Etter et al., 1990; Bernstein et al., 1995) if the intramolecular N-H···O hydrogen bonds are ignored (Table 1, Fig.2).

Experimental

2,4-dinitrophenylhydrazine(1 mmol, 0.198 g) was dissolved in anhydrous methanol, H2SO4 (98% 0.5 ml) was added to this, the mixture was stirred for several minitutes at 351 K, thiophene-2-carbaldehyde (1 mmol 0.112 g) in methanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized in methanol, purple single crystals of (I) was obtained after 5 d.

Refinement

All H atoms were placed in calculated positions and treated as riding with C—H=0.93Å (aromatic) and N—H=0.86Å with Uiso(H)=1.2Ueq(C or N).

Figures

Fig. 1.

Fig. 1.

Molecular view of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

View showing the N-H···O hydrogen bonds buiding a R22(12) graph set motif. Hydrogen bonds are shown as dashed lines.

Crystal data

C11H8N4O4S F000 = 600
Mr = 292.27 Dx = 1.621 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5391 reflections
a = 4.8994 (17) Å θ = 2.3–27.4º
b = 9.520 (3) Å µ = 0.29 mm1
c = 25.708 (8) Å T = 291 (2) K
β = 92.71 (2)º Block, purple
V = 1197.7 (7) Å3 0.30 × 0.26 × 0.24 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 2285 independent reflections
Radiation source: sealed tube 1718 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.047
T = 291(2) K θmax = 26.0º
φ and ω scans θmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 2000) h = −6→5
Tmin = 0.915, Tmax = 0.929 k = −11→11
11010 measured reflections l = −31→29

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087   w = 1/[σ2(Fo2) + (0.04P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2285 reflections Δρmax = 0.16 e Å3
184 parameters Δρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1154 (4) 0.2360 (2) 0.04553 (7) 0.0342 (4)
C2 −0.0759 (4) 0.1287 (2) 0.04720 (7) 0.0350 (4)
H2 −0.2010 0.1150 0.0193 0.042*
C3 −0.0801 (4) 0.04351 (18) 0.08984 (7) 0.0315 (4)
C4 0.1065 (4) 0.0673 (2) 0.13207 (7) 0.0383 (5)
H4 0.1048 0.0087 0.1610 0.046*
C5 0.2882 (4) 0.1738 (2) 0.13141 (7) 0.0350 (4)
H5 0.4096 0.1870 0.1599 0.042*
C6 0.2980 (4) 0.26512 (18) 0.08856 (7) 0.0291 (4)
C7 0.8165 (4) 0.49823 (19) 0.13079 (7) 0.0389 (5)
H7 0.7974 0.5614 0.1033 0.047*
C8 1.0163 (4) 0.52284 (19) 0.17283 (7) 0.0341 (4)
C9 1.1994 (5) 0.6353 (2) 0.17481 (8) 0.0418 (5)
H9 1.2066 0.7050 0.1496 0.050*
C10 1.3738 (5) 0.6289 (2) 0.22076 (9) 0.0465 (5)
H10 1.5107 0.6939 0.2290 0.056*
C11 1.3173 (5) 0.5174 (2) 0.25090 (8) 0.0522 (6)
H11 1.4113 0.4975 0.2823 0.063*
N1 0.0973 (4) 0.31477 (18) 0.00000 (6) 0.0394 (4)
N2 −0.2778 (4) −0.06932 (17) 0.09065 (7) 0.0414 (4)
N3 0.4846 (4) 0.37052 (17) 0.08923 (6) 0.0378 (4)
H1 0.483 (5) 0.426 (2) 0.0624 (9) 0.045*
N4 0.6631 (3) 0.38663 (15) 0.13180 (6) 0.0321 (4)
O1 0.2484 (4) 0.41150 (16) −0.00353 (6) 0.0545 (4)
O2 −0.0594 (3) 0.29004 (14) −0.03604 (5) 0.0461 (4)
O3 −0.4272 (3) −0.08987 (16) 0.05310 (6) 0.0526 (4)
O4 −0.2847 (3) −0.13710 (15) 0.12986 (6) 0.0513 (4)
S1 1.05706 (12) 0.41736 (6) 0.22559 (2) 0.04762 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0302 (10) 0.0438 (10) 0.0277 (10) −0.0016 (8) −0.0096 (8) −0.0034 (7)
C2 0.0330 (10) 0.0410 (10) 0.0303 (10) −0.0007 (8) −0.0046 (8) −0.0039 (7)
C3 0.0326 (10) 0.0290 (8) 0.0325 (9) −0.0001 (7) −0.0024 (8) −0.0025 (7)
C4 0.0414 (12) 0.0417 (10) 0.0314 (10) 0.0038 (8) −0.0038 (9) 0.0075 (8)
C5 0.0259 (10) 0.0463 (10) 0.0323 (10) 0.0090 (8) −0.0035 (8) −0.0005 (8)
C6 0.0270 (9) 0.0339 (8) 0.0262 (9) 0.0002 (7) −0.0004 (7) −0.0062 (7)
C7 0.0510 (12) 0.0394 (10) 0.0257 (9) −0.0026 (9) −0.0057 (8) −0.0013 (8)
C8 0.0316 (10) 0.0353 (9) 0.0349 (9) −0.0023 (8) −0.0025 (8) −0.0079 (7)
C9 0.0473 (13) 0.0361 (9) 0.0412 (11) −0.0042 (9) −0.0073 (9) −0.0059 (8)
C10 0.0387 (12) 0.0416 (10) 0.0581 (14) −0.0045 (9) −0.0105 (10) −0.0220 (10)
C11 0.0629 (15) 0.0558 (13) 0.0357 (11) 0.0052 (11) −0.0222 (11) −0.0131 (9)
N1 0.0383 (10) 0.0452 (9) 0.0335 (9) −0.0104 (8) −0.0120 (8) −0.0013 (7)
N2 0.0360 (10) 0.0421 (9) 0.0453 (10) −0.0026 (7) −0.0074 (8) 0.0047 (8)
N3 0.0387 (10) 0.0443 (9) 0.0290 (9) −0.0077 (7) −0.0126 (7) −0.0001 (7)
N4 0.0345 (8) 0.0344 (8) 0.0266 (8) −0.0003 (6) −0.0087 (7) −0.0040 (6)
O1 0.0659 (11) 0.0525 (9) 0.0435 (9) −0.0225 (8) −0.0163 (8) 0.0158 (7)
O2 0.0471 (9) 0.0505 (8) 0.0383 (8) −0.0317 (7) −0.0222 (7) 0.0182 (6)
O3 0.0488 (10) 0.0534 (9) 0.0537 (9) −0.0260 (7) −0.0185 (8) −0.0002 (7)
O4 0.0566 (10) 0.0451 (8) 0.0519 (9) −0.0169 (7) −0.0008 (8) 0.0131 (7)
S1 0.0480 (3) 0.0553 (3) 0.0385 (3) −0.0071 (2) −0.0093 (2) 0.0040 (2)

Geometric parameters (Å, °)

C1—C2 1.388 (3) C8—C9 1.396 (3)
C1—N1 1.389 (2) C8—S1 1.692 (2)
C1—C6 1.417 (2) C9—C10 1.426 (3)
C2—C3 1.365 (3) C9—H9 0.9300
C2—H2 0.9300 C10—C11 1.351 (3)
C3—C4 1.404 (2) C10—H10 0.9300
C3—N2 1.447 (2) C11—S1 1.696 (2)
C4—C5 1.350 (3) C11—H11 0.9300
C4—H4 0.9300 N1—O1 1.188 (2)
C5—C6 1.406 (3) N1—O2 1.1983 (19)
C5—H5 0.9300 N2—O4 1.199 (2)
C6—N3 1.357 (2) N2—O3 1.199 (2)
C7—N4 1.302 (2) N3—N4 1.377 (2)
C7—C8 1.442 (2) N3—H1 0.87 (2)
C7—H7 0.9300
C2—C1—N1 114.01 (15) C9—C8—S1 112.01 (14)
C2—C1—C6 121.47 (17) C7—C8—S1 123.66 (14)
N1—C1—C6 124.40 (17) C8—C9—C10 110.86 (19)
C3—C2—C1 119.87 (17) C8—C9—H9 124.6
C3—C2—H2 120.1 C10—C9—H9 124.6
C1—C2—H2 120.1 C11—C10—C9 112.19 (18)
C2—C3—C4 119.41 (17) C11—C10—H10 123.9
C2—C3—N2 119.22 (15) C9—C10—H10 123.9
C4—C3—N2 121.36 (16) C10—C11—S1 113.08 (15)
C5—C4—C3 121.14 (18) C10—C11—H11 123.5
C5—C4—H4 119.4 S1—C11—H11 123.5
C3—C4—H4 119.4 O1—N1—O2 118.16 (16)
C4—C5—C6 121.43 (17) O1—N1—C1 117.89 (14)
C4—C5—H5 119.3 O2—N1—C1 123.94 (16)
C6—C5—H5 119.3 O4—N2—O3 123.26 (17)
N3—C6—C5 119.70 (15) O4—N2—C3 117.21 (15)
N3—C6—C1 123.69 (17) O3—N2—C3 119.53 (16)
C5—C6—C1 116.55 (17) C6—N3—N4 119.65 (16)
N4—C7—C8 119.31 (16) C6—N3—H1 117.6 (14)
N4—C7—H7 120.3 N4—N3—H1 122.8 (14)
C8—C7—H7 120.3 C7—N4—N3 114.87 (15)
C9—C8—C7 124.33 (18) C8—S1—C11 91.85 (11)
N1—C1—C2—C3 180.00 (18) C8—C9—C10—C11 −0.6 (3)
C6—C1—C2—C3 −3.8 (3) C9—C10—C11—S1 0.1 (3)
C1—C2—C3—C4 1.3 (3) C2—C1—N1—O1 177.51 (19)
C1—C2—C3—N2 −178.99 (18) C6—C1—N1—O1 1.5 (3)
C2—C3—C4—C5 0.6 (3) C2—C1—N1—O2 −3.3 (3)
N2—C3—C4—C5 −179.16 (18) C6—C1—N1—O2 −179.4 (2)
C3—C4—C5—C6 0.1 (3) C2—C3—N2—O4 −176.10 (19)
C4—C5—C6—N3 −179.66 (19) C4—C3—N2—O4 3.6 (3)
C4—C5—C6—C1 −2.5 (3) C2—C3—N2—O3 3.1 (3)
C2—C1—C6—N3 −178.60 (18) C4—C3—N2—O3 −177.21 (19)
N1—C1—C6—N3 −2.8 (3) C5—C6—N3—N4 0.2 (3)
C2—C1—C6—C5 4.3 (3) C1—C6—N3—N4 −176.76 (17)
N1—C1—C6—C5 −179.88 (19) C8—C7—N4—N3 −178.20 (17)
N4—C7—C8—C9 177.13 (19) C6—N3—N4—C7 −173.88 (18)
N4—C7—C8—S1 −2.5 (3) C9—C8—S1—C11 −0.66 (18)
C7—C8—C9—C10 −178.8 (2) C7—C8—S1—C11 179.01 (19)
S1—C8—C9—C10 0.8 (2) C10—C11—S1—C8 0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1···O1i 0.87 (2) 2.57 (2) 3.338 (2) 148.2 (19)
N3—H1···O1 0.87 (2) 2.01 (2) 2.630 (2) 127.4 (19)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2406).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  4. Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038397/dn2406sup1.cif

e-64-o2421-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038397/dn2406Isup2.hkl

e-64-o2421-Isup2.hkl (112.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES