Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 8;64(Pt 12):o2285. doi: 10.1107/S1600536808035745

N,N′-Bis-(2,4-dichloro­benzyl­idene)-2,2-dimethyl­propane-1,3-diamine

Reza Kia a, Hoong-Kun Fun a,*, Hadi Kargar b
PMCID: PMC2959888  PMID: 21581264

Abstract

The mol­ecule of the title Schiff base compound, C19H18Cl4N2, has crystallographic twofold rotation symmetry, with one C atom lying on the rotation axis. The dihedral angle between the two symmetry-related benzene rings is 84.70 (2)°. The plane of the –C=N—C– group is twisted away from the benzene ring by 7.5 (1)°. In the crystal structure, weak inter­molecular Cl⋯Cl [3.4851 (3) Å] contacts link neighbouring mol­ecules into a two-dimensional network parallel to the bc plane.

Related literature

For bond-length data, see: Allen et al. (1987). For related structures, see: Li et al. (2005); Bomfim et al. (2005); Glidewell et al. (2005, 2006); Sun et al. (2004); Fun et al. (2008).graphic file with name e-64-o2285-scheme1.jpg

Experimental

Crystal data

  • C19H18Cl4N2

  • M r = 416.15

  • Orthorhombic, Inline graphic

  • a = 30.7633 (4) Å

  • b = 5.4012 (1) Å

  • c = 11.4532 (1) Å

  • V = 1903.05 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 100.0 (1) K

  • 0.43 × 0.25 × 0.23 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.774, T max = 0.872

  • 86683 measured reflections

  • 6565 independent reflections

  • 5678 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.099

  • S = 1.19

  • 4992 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035745/ci2702sup1.cif

e-64-o2285-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035745/ci2702Isup2.hkl

e-64-o2285-Isup2.hkl (244.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thanks the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

supplementary crystallographic information

Comment

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures. Crystal structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound have been reported earlier (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004; Fun et al., 2008).

The molecule of the title Schiff base compound has crystallographic twofold rotation symmetry (Fig. 1). Bond lengths are within normal ranges (Allen et al., 1987). The plane of the –C═N—C– group is twisted away from the benzene ring by 7.5 (1)°.

In the crystal structure, weak intermolecular Cl···Cl contacts [Cl1···Cl2(x,1 - y,-1/2 + z) = 3.4851 (3) Å] link neighbouring molecules into a two-dimensional network parallel to the bc plane (Fig.2).

Experimental

The synthetic method has been described earlier (Fun et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic and 0.97 Å for methylene and 0.96 Å for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 50% probability ellipsoids for non-H atoms. Atoms labelled with the suffix A are generated by the symmetry operation (1/2 - x, 2 - y, z).

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, viewed down the b-axis. Dashed lines indicate intermolecular Cl···Cl interactions.

Crystal data

C19H18Cl4N2 F000 = 856
Mr = 416.15 Dx = 1.452 Mg m3
Orthorhombic, Pcca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2a 2ac Cell parameters from 9929 reflections
a = 30.7633 (4) Å θ = 3.6–41.1º
b = 5.4012 (1) Å µ = 0.63 mm1
c = 11.4532 (1) Å T = 100.0 (1) K
V = 1903.05 (5) Å3 Block, colourless
Z = 4 0.43 × 0.25 × 0.23 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6565 independent reflections
Radiation source: fine-focus sealed tube 5678 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.028
T = 100.0(1) K θmax = 42.5º
φ and ω scans θmin = 1.3º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −52→57
Tmin = 0.774, Tmax = 0.872 k = −9→10
86683 measured reflections l = −20→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.099   w = 1/[σ2(Fo2) + (0.0454P)2 + 0.5965P] where P = (Fo2 + 2Fc2)/3
S = 1.19 (Δ/σ)max = 0.001
4992 reflections Δρmax = 0.51 e Å3
115 parameters Δρmin = −0.30 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.053693 (7) 1.12278 (4) 0.346996 (17) 0.01671 (5)
Cl2 0.046757 (8) 0.37440 (4) 0.653936 (18) 0.02040 (6)
N1 0.19231 (2) 0.96758 (14) 0.31674 (6) 0.01660 (12)
C1 0.08049 (2) 0.88739 (14) 0.42126 (6) 0.01301 (12)
C2 0.05625 (3) 0.74765 (14) 0.49989 (6) 0.01467 (12)
H2A 0.0270 0.7822 0.5127 0.018*
C3 0.07667 (3) 0.55568 (15) 0.55865 (7) 0.01504 (12)
C4 0.12041 (3) 0.50138 (16) 0.54095 (7) 0.01807 (13)
H4A 0.1336 0.3713 0.5807 0.022*
C5 0.14395 (3) 0.64492 (16) 0.46298 (8) 0.01748 (13)
H5A 0.1732 0.6098 0.4510 0.021*
C6 0.12480 (2) 0.84188 (14) 0.40166 (7) 0.01397 (12)
C7 0.15133 (2) 0.99635 (15) 0.32244 (7) 0.01527 (12)
H7A 0.1379 1.1157 0.2763 0.018*
C8 0.21668 (3) 1.13674 (14) 0.24238 (7) 0.01553 (13)
H8A 0.2317 1.2566 0.2909 0.019*
H8B 0.1966 1.2262 0.1925 0.019*
C9 0.2500 1.0000 0.16598 (9) 0.01351 (16)
C18 0.22667 (3) 0.81059 (16) 0.08866 (7) 0.01774 (13)
H18A 0.2044 0.8922 0.0443 0.027*
H18B 0.2138 0.6850 0.1368 0.027*
H18C 0.2472 0.7358 0.0364 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01438 (9) 0.01789 (9) 0.01786 (9) 0.00404 (6) 0.00073 (5) 0.00121 (5)
Cl2 0.02045 (10) 0.02338 (10) 0.01738 (9) −0.00623 (7) 0.00240 (6) 0.00349 (6)
N1 0.0117 (3) 0.0205 (3) 0.0176 (3) −0.0015 (2) 0.0016 (2) 0.0025 (2)
C1 0.0116 (3) 0.0143 (3) 0.0131 (3) 0.0006 (2) 0.0001 (2) −0.0008 (2)
C2 0.0117 (3) 0.0175 (3) 0.0149 (3) −0.0002 (2) 0.0016 (2) −0.0010 (2)
C3 0.0143 (3) 0.0170 (3) 0.0139 (3) −0.0031 (2) 0.0004 (2) 0.0006 (2)
C4 0.0136 (3) 0.0197 (3) 0.0209 (3) −0.0004 (2) −0.0016 (2) 0.0046 (3)
C5 0.0108 (3) 0.0207 (3) 0.0209 (3) 0.0005 (2) −0.0002 (2) 0.0044 (3)
C6 0.0102 (3) 0.0168 (3) 0.0149 (3) −0.0004 (2) 0.0005 (2) 0.0009 (2)
C7 0.0120 (3) 0.0178 (3) 0.0160 (3) −0.0004 (2) 0.0010 (2) 0.0015 (2)
C8 0.0120 (3) 0.0163 (3) 0.0183 (3) −0.0012 (2) 0.0021 (2) 0.0009 (2)
C9 0.0113 (4) 0.0144 (4) 0.0148 (4) −0.0023 (3) 0.000 0.000
C18 0.0169 (3) 0.0176 (3) 0.0187 (3) −0.0033 (3) −0.0036 (2) −0.0008 (2)

Geometric parameters (Å, °)

Cl1—C1 1.7376 (8) C5—H5A 0.93
Cl2—C3 1.7311 (8) C6—C7 1.4783 (11)
N1—C7 1.2720 (10) C7—H7A 0.93
N1—C8 1.4566 (10) C8—C9 1.5369 (10)
C1—C2 1.3917 (11) C8—H8A 0.97
C1—C6 1.4033 (11) C8—H8B 0.97
C2—C3 1.3866 (11) C9—C18 1.5316 (10)
C2—H2A 0.93 C9—C18i 1.5316 (10)
C3—C4 1.3917 (11) C9—C8i 1.5369 (10)
C4—C5 1.3869 (12) C18—H18A 0.96
C4—H4A 0.93 C18—H18B 0.96
C5—C6 1.4043 (11) C18—H18C 0.96
C7—N1—C8 117.61 (7) N1—C7—H7A 119.7
C2—C1—C6 121.94 (7) C6—C7—H7A 119.7
C2—C1—Cl1 117.35 (6) N1—C8—C9 112.00 (6)
C6—C1—Cl1 120.71 (6) N1—C8—H8A 109.2
C3—C2—C1 118.49 (7) C9—C8—H8A 109.2
C3—C2—H2A 120.8 N1—C8—H8B 109.2
C1—C2—H2A 120.8 C9—C8—H8B 109.2
C2—C3—C4 121.66 (7) H8A—C8—H8B 107.9
C2—C3—Cl2 119.21 (6) C18—C9—C18i 109.36 (9)
C4—C3—Cl2 119.12 (6) C18—C9—C8i 108.71 (4)
C5—C4—C3 118.74 (8) C18i—C9—C8i 109.73 (4)
C5—C4—H4A 120.6 C18—C9—C8 109.73 (4)
C3—C4—H4A 120.6 C18i—C9—C8 108.71 (4)
C4—C5—C6 121.76 (7) C8i—C9—C8 110.59 (9)
C4—C5—H5A 119.1 C9—C18—H18A 109.5
C6—C5—H5A 119.1 C9—C18—H18B 109.5
C1—C6—C5 117.40 (7) H18A—C18—H18B 109.5
C1—C6—C7 122.39 (7) C9—C18—H18C 109.5
C5—C6—C7 120.19 (7) H18A—C18—H18C 109.5
N1—C7—C6 120.65 (7) H18B—C18—H18C 109.5
C6—C1—C2—C3 −1.08 (11) Cl1—C1—C6—C7 2.99 (11)
Cl1—C1—C2—C3 178.81 (6) C4—C5—C6—C1 −0.64 (13)
C1—C2—C3—C4 0.20 (12) C4—C5—C6—C7 177.81 (8)
C1—C2—C3—Cl2 −178.30 (6) C8—N1—C7—C6 −176.18 (7)
C2—C3—C4—C5 0.42 (13) C1—C6—C7—N1 172.02 (8)
Cl2—C3—C4—C5 178.92 (7) C5—C6—C7—N1 −6.36 (12)
C3—C4—C5—C6 −0.19 (13) C7—N1—C8—C9 −134.46 (8)
C2—C1—C6—C5 1.29 (11) N1—C8—C9—C18 59.07 (9)
Cl1—C1—C6—C5 −178.59 (6) N1—C8—C9—C18i 178.63 (7)
C2—C1—C6—C7 −177.13 (7) N1—C8—C9—C8i −60.85 (5)

Symmetry codes: (i) −x+1/2, −y+2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2702).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56. [DOI] [PubMed]
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308. [DOI] [PMC free article] [PubMed]
  5. Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551–o3553. [DOI] [PubMed]
  6. Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4. [DOI] [PubMed]
  7. Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035745/ci2702sup1.cif

e-64-o2285-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035745/ci2702Isup2.hkl

e-64-o2285-Isup2.hkl (244.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES