Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2363–o2364. doi: 10.1107/S1600536808037161

[3-(4-Chloro­phen­yl)-5-hydr­oxy-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl](3-pyrid­yl)methanone

Hoong-Kun Fun a,*, Samuel Robinson Jebas a,, Jyothi N Rao b, B Kalluraya b
PMCID: PMC2959893  PMID: 21581336

Abstract

In the title compound, C21H16ClN3O2, the dihedral angles formed by the pyrazole ring with the pyridyl, phenyl­ene and phenyl rings are 6.80 (5), 9.23 (5) and 74.96 (5)°, respectively. The phenyl and phenyl­ene rings are inclined at 80.14 (2)°. Intra­molecular O—H⋯O and C—H⋯N hydrogen bonds generate S(6) ring motifs. The crystal packing is strengthened by short inter­molecular O—H⋯N, C—H⋯O hydrogen bonds and π–π stacking inter­actions with centroid–centroid distances of 3.6247 (5)–3.7205 (5) Å, together with inter­molecular short O⋯N contacts [2.7682 (11) Å]. Mol­ecules are linked into infinite chains along [100].

Related literature

For the biological applications of pyrazoles, see: Kalluraya & Ramesh (2001); Watanabe et al. (1998); Yuhong & Rajender (2005). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).graphic file with name e-64-o2363-scheme1.jpg

Experimental

Crystal data

  • C21H16ClN3O2

  • M r = 377.82

  • Triclinic, Inline graphic

  • a = 7.5916 (1) Å

  • b = 9.7644 (1) Å

  • c = 12.5474 (2) Å

  • α = 104.424 (1)°

  • β = 94.960 (1)°

  • γ = 96.081 (1)°

  • V = 889.55 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100.0 (1) K

  • 0.47 × 0.29 × 0.19 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.896, T max = 0.957

  • 20326 measured reflections

  • 6385 independent reflections

  • 5630 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.103

  • S = 1.04

  • 6385 reflections

  • 248 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037161/ng2515sup1.cif

e-64-o2363-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037161/ng2515Isup2.hkl

e-64-o2363-Isup2.hkl (306.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1 0.824 (13) 2.340 (14) 2.8463 (9) 120.3 (13)
O2—H1O2⋯N3i 0.824 (13) 2.027 (14) 2.7682 (11) 149.5 (14)
C8—H8A⋯O2ii 0.97 2.55 3.4836 (11) 163
C13—H13A⋯O1iii 0.93 2.46 3.3294 (12) 156
C21—H21A⋯N1 0.93 2.21 2.8600 (12) 127
C14—H14ACg2iv 0.93 2.90 3.6968 (11) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg2 is the centroid of the N3/C17–C21 ring.

Acknowledgments

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

Heterocyclic compounds occur very widely in nature and are essential to life. Nitrogen-containing heterocyclic molecules constitute the largest portion of chemical entities, which are part of many natural products, fine chemicals, and biologically active pharmaceuticals vital for enhancing the quality of life. 4,5-Dihydro-pyrazoles, pyrazolidines and 1,2-dihydro-phthalazines are important classes of heterocycles useful as pesticides, anticonvulsants, and potent vasorelaxing agents (Kalluraya et al., 2001; Watanabe et al., 1998; Yuhong & Rajender, 2005). The pyrazoline function is quite stable and has inspired chemists to utilize this stable fragment in bioactive moieties to synthesize new compounds. Prompted by these review, we have synthesized this new substituted pyrazoline derivative and report its crystal structure.

Bond lengths and angles in (I) (Fig. 1) are found to have normal values (Allen et al., 1987). The dihedral angle formed by the pyrazole (N1/N2/C7—C9) ring with the pyridine ring (N3/C17—C21) and the two benzene rings (C1—C6; C10—C15) are 6.80 (5), 9.23 (5) and 74.96 (5)° respectively. The benzene rings (C1—C6; C10—C15) form dihedral angle of 80.14 (2)°, indicating that they are inclined to each other. Intramolecular C—H···N and O—H···O hydrogen bonds generate S(6) ring motifs. (Bernstein et al., 1995).

The crystal packing is consolidated by intermolecular O—H···N and C—H···O hydrogen bonding (Table 1). Furthermore, the packing is strengthened by π—π stacking interactions involving the pyrazole (N1—N2/C7—C9) (Cg1) ring and the symmetry related benzene (C10—C15) (Cg4) ring [Cg1···Cg4v=3.7787 (6) Å; symmetry code: (v) X,Y,Z]; pyridine (N3/C17—C21) (Cg2) ring and the symmetry related benzene (C1—C6) (Cg3) ring [Cg2···Cg3vi=3.6247 (5) Å; symmetry code: (vi) –X,-Y,2-Z] and between symmetry related benzene (C1—C6) (Cg3) rings [Cg3···Cg3vii = 3.7205 (5) Å; symmetry code: (vii) –X,1-Y,2-Z] together with intermolecular O···N = 2.7682 (11)Å short contacts. In the crystal packing, the molecules are linked into infinite one dimensional chains along the [100] direction (Fig 2).

Experimental

A mixture of 1-phenyl-3-(4-chloro phenyl)-2,3-di-bromo propan-1-one (0.01 mol), nicotinic hydrazide (0.01 mol) and trimethylamine (0.04 mol) in ethanol (30 mL) was refluxed for 8 h. The contents were poured onto crushed ice with stirring. The solid mass separated was collected and recrystallized from ethanol.

Refinement

The hydroxy H atoms were located in a difference map and refined with restraints of O—H=0.82 (1) Å. The remaining H atoms were positioned geometrically [C—H=0.93Å (aromatic) or 0.97Å (methylene)] and refined using a riding model, with Uiso(H)=1.2Uequ(aromatic C, methylene).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound,viewed down the a axis.

Crystal data

C21H16ClN3O2 Z = 2
Mr = 377.82 F000 = 392
Triclinic, P1 Dx = 1.411 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.5916 (1) Å Cell parameters from 9943 reflections
b = 9.7644 (1) Å θ = 3.1–37.5º
c = 12.5474 (2) Å µ = 0.24 mm1
α = 104.424 (1)º T = 100.0 (1) K
β = 94.960 (1)º Block, colourless
γ = 96.081 (1)º 0.47 × 0.29 × 0.19 mm
V = 889.55 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6385 independent reflections
Radiation source: fine-focus sealed tube 5630 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.023
T = 100.0(1) K θmax = 32.5º
φ and ω scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −11→11
Tmin = 0.896, Tmax = 0.957 k = −14→14
20326 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104   w = 1/[σ2(Fo2) + (0.0577P)2 + 0.2362P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
6385 reflections Δρmax = 0.54 e Å3
248 parameters Δρmin = −0.26 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.18759 (3) 0.58111 (2) 1.24148 (2) 0.02272 (7)
O1 0.24543 (9) −0.22304 (7) 0.66899 (5) 0.01553 (13)
O2 0.47798 (8) −0.05281 (7) 0.85593 (5) 0.01450 (12)
N1 0.05961 (10) 0.04156 (8) 0.85564 (6) 0.01321 (13)
N2 0.17594 (9) −0.03622 (8) 0.79391 (6) 0.01266 (13)
N3 −0.36717 (10) −0.27300 (9) 0.73008 (7) 0.01823 (15)
C1 −0.11452 (12) 0.23011 (9) 1.01516 (7) 0.01448 (15)
H1A −0.1821 0.1448 0.9752 0.017*
C2 −0.19255 (12) 0.32951 (10) 1.08935 (7) 0.01548 (16)
H2A −0.3119 0.3113 1.0994 0.019*
C3 −0.08985 (13) 0.45689 (9) 1.14851 (7) 0.01577 (16)
C4 0.08865 (13) 0.48666 (9) 1.13548 (7) 0.01624 (16)
H4A 0.1555 0.5722 1.1756 0.019*
C5 0.16553 (12) 0.38617 (9) 1.06134 (7) 0.01500 (15)
H5A 0.2852 0.4047 1.0523 0.018*
C6 0.06584 (11) 0.25743 (9) 1.00002 (7) 0.01290 (14)
C7 0.15147 (11) 0.15330 (9) 0.92314 (7) 0.01247 (14)
C8 0.34900 (11) 0.16151 (9) 0.91685 (7) 0.01392 (15)
H8A 0.4118 0.1521 0.9848 0.017*
H8B 0.3961 0.2510 0.9030 0.017*
C9 0.36523 (11) 0.03425 (9) 0.81857 (7) 0.01211 (14)
C10 0.42505 (12) 0.08305 (9) 0.71939 (7) 0.01367 (15)
C11 0.60717 (13) 0.11624 (10) 0.71445 (8) 0.01826 (17)
H11A 0.6901 0.1036 0.7690 0.022*
C12 0.66489 (15) 0.16839 (11) 0.62776 (9) 0.0236 (2)
H12A 0.7863 0.1903 0.6248 0.028*
C13 0.54216 (16) 0.18775 (11) 0.54588 (8) 0.0245 (2)
H13A 0.5810 0.2208 0.4874 0.029*
C14 0.36126 (16) 0.15747 (11) 0.55197 (8) 0.0227 (2)
H14A 0.2786 0.1718 0.4979 0.027*
C15 0.30233 (13) 0.10574 (10) 0.63848 (8) 0.01771 (16)
H15A 0.1807 0.0863 0.6422 0.021*
C16 0.12920 (11) −0.16587 (9) 0.71942 (7) 0.01213 (14)
C17 −0.05871 (11) −0.24069 (9) 0.69814 (7) 0.01225 (14)
C18 −0.08787 (12) −0.36918 (10) 0.61570 (8) 0.01686 (16)
H18A 0.0050 −0.4016 0.5768 0.020*
C19 −0.25619 (13) −0.44831 (10) 0.59202 (8) 0.01974 (18)
H19A −0.2776 −0.5344 0.5376 0.024*
C20 −0.39171 (12) −0.39616 (10) 0.65129 (8) 0.01884 (17)
H20A −0.5044 −0.4492 0.6355 0.023*
C21 −0.20374 (11) −0.19778 (10) 0.75323 (8) 0.01554 (16)
H21A −0.1862 −0.1128 0.8088 0.019*
H1O2 0.488 (2) −0.1208 (13) 0.8037 (10) 0.026 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02952 (12) 0.01698 (11) 0.02199 (12) 0.00842 (8) 0.01020 (9) 0.00106 (8)
O1 0.0147 (3) 0.0150 (3) 0.0160 (3) 0.0030 (2) 0.0043 (2) 0.0011 (2)
O2 0.0147 (3) 0.0148 (3) 0.0141 (3) 0.0036 (2) 0.0005 (2) 0.0036 (2)
N1 0.0140 (3) 0.0118 (3) 0.0129 (3) 0.0026 (2) 0.0031 (2) 0.0008 (2)
N2 0.0110 (3) 0.0120 (3) 0.0133 (3) 0.0011 (2) 0.0025 (2) 0.0000 (2)
N3 0.0120 (3) 0.0183 (4) 0.0217 (4) 0.0009 (3) −0.0001 (3) 0.0015 (3)
C1 0.0157 (3) 0.0130 (4) 0.0143 (4) 0.0018 (3) 0.0019 (3) 0.0028 (3)
C2 0.0169 (4) 0.0154 (4) 0.0151 (4) 0.0038 (3) 0.0035 (3) 0.0045 (3)
C3 0.0218 (4) 0.0131 (4) 0.0134 (4) 0.0057 (3) 0.0045 (3) 0.0030 (3)
C4 0.0214 (4) 0.0118 (4) 0.0146 (4) 0.0016 (3) 0.0029 (3) 0.0015 (3)
C5 0.0170 (4) 0.0126 (4) 0.0142 (4) 0.0007 (3) 0.0022 (3) 0.0018 (3)
C6 0.0156 (3) 0.0113 (3) 0.0115 (3) 0.0022 (3) 0.0019 (3) 0.0023 (3)
C7 0.0141 (3) 0.0115 (3) 0.0118 (3) 0.0018 (3) 0.0019 (3) 0.0027 (3)
C8 0.0135 (3) 0.0138 (4) 0.0123 (3) 0.0003 (3) 0.0017 (3) 0.0000 (3)
C9 0.0111 (3) 0.0126 (3) 0.0121 (3) 0.0006 (3) 0.0012 (3) 0.0026 (3)
C10 0.0172 (4) 0.0110 (3) 0.0124 (3) 0.0010 (3) 0.0033 (3) 0.0021 (3)
C11 0.0186 (4) 0.0180 (4) 0.0175 (4) −0.0013 (3) 0.0045 (3) 0.0039 (3)
C12 0.0289 (5) 0.0178 (4) 0.0233 (5) −0.0033 (4) 0.0120 (4) 0.0035 (3)
C13 0.0433 (6) 0.0135 (4) 0.0177 (4) −0.0002 (4) 0.0113 (4) 0.0047 (3)
C14 0.0382 (6) 0.0153 (4) 0.0153 (4) 0.0045 (4) 0.0017 (4) 0.0055 (3)
C15 0.0228 (4) 0.0149 (4) 0.0156 (4) 0.0031 (3) 0.0017 (3) 0.0043 (3)
C16 0.0133 (3) 0.0116 (3) 0.0111 (3) 0.0014 (3) 0.0011 (3) 0.0023 (3)
C17 0.0122 (3) 0.0115 (3) 0.0123 (3) 0.0017 (3) 0.0002 (3) 0.0022 (3)
C18 0.0165 (4) 0.0141 (4) 0.0169 (4) 0.0008 (3) 0.0013 (3) −0.0009 (3)
C19 0.0192 (4) 0.0150 (4) 0.0203 (4) −0.0015 (3) −0.0008 (3) −0.0017 (3)
C20 0.0149 (4) 0.0181 (4) 0.0205 (4) −0.0017 (3) −0.0023 (3) 0.0025 (3)
C21 0.0126 (3) 0.0143 (4) 0.0177 (4) 0.0016 (3) 0.0006 (3) 0.0007 (3)

Geometric parameters (Å, °)

Cl1—C3 1.7373 (9) C8—H8A 0.9700
O1—C16 1.2311 (10) C8—H8B 0.9700
O2—C9 1.3994 (11) C9—C10 1.5262 (12)
O2—H1O2 0.823 (9) C10—C15 1.3928 (13)
N1—C7 1.2924 (11) C10—C11 1.3965 (12)
N1—N2 1.3870 (10) C11—C12 1.3948 (13)
N2—C16 1.3638 (11) C11—H11A 0.9300
N2—C9 1.4972 (11) C12—C13 1.3885 (17)
N3—C20 1.3367 (12) C12—H12A 0.9300
N3—C21 1.3422 (11) C13—C14 1.3866 (16)
C1—C2 1.3880 (12) C13—H13A 0.9300
C1—C6 1.4053 (12) C14—C15 1.3938 (13)
C1—H1A 0.9300 C14—H14A 0.9300
C2—C3 1.3929 (13) C15—H15A 0.9300
C2—H2A 0.9300 C16—C17 1.5021 (11)
C3—C4 1.3879 (13) C17—C18 1.3957 (12)
C4—C5 1.3889 (12) C17—C21 1.3966 (12)
C4—H4A 0.9300 C18—C19 1.3889 (12)
C5—C6 1.4003 (12) C18—H18A 0.9300
C5—H5A 0.9300 C19—C20 1.3876 (14)
C6—C7 1.4652 (12) C19—H19A 0.9300
C7—C8 1.5032 (12) C20—H20A 0.9300
C8—C9 1.5412 (12) C21—H21A 0.9300
C9—O2—H1O2 108.8 (10) C10—C9—C8 111.83 (7)
C7—N1—N2 108.27 (7) C15—C10—C11 119.31 (8)
C16—N2—N1 125.12 (7) C15—C10—C9 121.51 (8)
C16—N2—C9 121.54 (7) C11—C10—C9 118.99 (8)
N1—N2—C9 113.32 (7) C12—C11—C10 120.09 (9)
C20—N3—C21 118.29 (8) C12—C11—H11A 120.0
C2—C1—C6 120.46 (8) C10—C11—H11A 120.0
C2—C1—H1A 119.8 C13—C12—C11 120.40 (10)
C6—C1—H1A 119.8 C13—C12—H12A 119.8
C1—C2—C3 119.15 (8) C11—C12—H12A 119.8
C1—C2—H2A 120.4 C14—C13—C12 119.51 (9)
C3—C2—H2A 120.4 C14—C13—H13A 120.2
C4—C3—C2 121.67 (8) C12—C13—H13A 120.2
C4—C3—Cl1 119.23 (7) C13—C14—C15 120.49 (10)
C2—C3—Cl1 119.10 (7) C13—C14—H14A 119.8
C3—C4—C5 118.69 (8) C15—C14—H14A 119.8
C3—C4—H4A 120.7 C10—C15—C14 120.18 (9)
C5—C4—H4A 120.7 C10—C15—H15A 119.9
C4—C5—C6 121.12 (8) C14—C15—H15A 119.9
C4—C5—H5A 119.4 O1—C16—N2 118.64 (8)
C6—C5—H5A 119.4 O1—C16—C17 119.41 (8)
C5—C6—C1 118.91 (8) N2—C16—C17 121.95 (7)
C5—C6—C7 119.70 (8) C18—C17—C21 117.32 (8)
C1—C6—C7 121.37 (8) C18—C17—C16 115.35 (7)
N1—C7—C6 121.37 (8) C21—C17—C16 127.30 (8)
N1—C7—C8 113.88 (7) C19—C18—C17 119.68 (9)
C6—C7—C8 124.71 (7) C19—C18—H18A 120.2
C7—C8—C9 103.47 (7) C17—C18—H18A 120.2
C7—C8—H8A 111.1 C20—C19—C18 118.56 (9)
C9—C8—H8A 111.1 C20—C19—H19A 120.7
C7—C8—H8B 111.1 C18—C19—H19A 120.7
C9—C8—H8B 111.1 N3—C20—C19 122.80 (8)
H8A—C8—H8B 109.0 N3—C20—H20A 118.6
O2—C9—N2 111.30 (7) C19—C20—H20A 118.6
O2—C9—C10 113.38 (7) N3—C21—C17 123.34 (8)
N2—C9—C10 110.73 (7) N3—C21—H21A 118.3
O2—C9—C8 108.31 (7) C17—C21—H21A 118.3
N2—C9—C8 100.55 (6)
C7—N1—N2—C16 175.28 (8) N2—C9—C10—C15 21.78 (11)
C7—N1—N2—C9 −3.15 (10) C8—C9—C10—C15 −89.47 (10)
C6—C1—C2—C3 0.11 (13) O2—C9—C10—C11 −37.34 (11)
C1—C2—C3—C4 −0.26 (14) N2—C9—C10—C11 −163.27 (8)
C1—C2—C3—Cl1 −179.91 (7) C8—C9—C10—C11 85.48 (10)
C2—C3—C4—C5 0.00 (14) C15—C10—C11—C12 −1.49 (14)
Cl1—C3—C4—C5 179.66 (7) C9—C10—C11—C12 −176.55 (8)
C3—C4—C5—C6 0.41 (14) C10—C11—C12—C13 0.03 (15)
C4—C5—C6—C1 −0.56 (13) C11—C12—C13—C14 1.25 (15)
C4—C5—C6—C7 −179.54 (8) C12—C13—C14—C15 −1.05 (15)
C2—C1—C6—C5 0.29 (13) C11—C10—C15—C14 1.69 (14)
C2—C1—C6—C7 179.26 (8) C9—C10—C15—C14 176.63 (8)
N2—N1—C7—C6 179.99 (7) C13—C14—C15—C10 −0.43 (14)
N2—N1—C7—C8 −1.91 (10) N1—N2—C16—O1 179.18 (8)
C5—C6—C7—N1 −171.57 (8) C9—N2—C16—O1 −2.51 (12)
C1—C6—C7—N1 9.47 (13) N1—N2—C16—C17 −1.32 (13)
C5—C6—C7—C8 10.55 (13) C9—N2—C16—C17 176.99 (7)
C1—C6—C7—C8 −168.42 (8) O1—C16—C17—C18 −3.55 (12)
N1—C7—C8—C9 5.84 (10) N2—C16—C17—C18 176.95 (8)
C6—C7—C8—C9 −176.14 (8) O1—C16—C17—C21 174.65 (9)
C16—N2—C9—O2 −57.55 (10) N2—C16—C17—C21 −4.85 (14)
N1—N2—C9—O2 120.95 (8) C21—C17—C18—C19 −0.15 (14)
C16—N2—C9—C10 69.54 (10) C16—C17—C18—C19 178.25 (8)
N1—N2—C9—C10 −111.97 (8) C17—C18—C19—C20 0.35 (15)
C16—N2—C9—C8 −172.11 (8) C21—N3—C20—C19 −0.70 (15)
N1—N2—C9—C8 6.39 (9) C18—C19—C20—N3 0.08 (16)
C7—C8—C9—O2 −123.48 (7) C20—N3—C21—C17 0.92 (14)
C7—C8—C9—N2 −6.68 (8) C18—C17—C21—N3 −0.51 (14)
C7—C8—C9—C10 110.87 (8) C16—C17—C21—N3 −178.68 (9)
O2—C9—C10—C15 147.71 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H1O2···O1 0.824 (13) 2.340 (14) 2.8463 (9) 120.3 (13)
O2—H1O2···N3i 0.824 (13) 2.027 (14) 2.7682 (11) 149.5 (14)
C8—H8A···O2ii 0.97 2.55 3.4836 (11) 163
C13—H13A···O1iii 0.93 2.46 3.3294 (12) 156
C21—H21A···N1 0.93 2.21 2.8600 (12) 127
C14—H14A···Cg2iv 0.93 2.90 3.6968 (11) 144

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+2; (iii) −x+1, −y, −z+1; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2515).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Kalluraya, B. & Ramesh, M. C. (2001). Indian J. Heterocycl. Chem.11, 171–172.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  7. Watanabe, N., Kabasawa, Y., Takase, Y., Matsukura, M., Miyazaki, K., Ishihara, H., Kodama, K. & Adachi, H. (1998). J. Med. Chem.41, 3367–3372. [DOI] [PubMed]
  8. Yuhong, J. & Rajender, S. V. (2005). Tetrahedron Lett.46, 6011–6014.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037161/ng2515sup1.cif

e-64-o2363-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037161/ng2515Isup2.hkl

e-64-o2363-Isup2.hkl (306.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES