Abstract
The title compound, C13H18N2O4, crystallizes as discrete molecules associated as N—H⋯O hydrogen-bonded dimers disposed about a crystallographic inversion centre. The structure is the first solid-state structure for a 3-acetylpyridone without C-4 to C-6 substituents. The amide subsituent at C-3 is coplanar with the pyridone ring, while the tert-butyl ester group is orthogonal to the pyridine ring. The amide and ester carbonyl O atoms are not involved in strong hydrogen bonding with only a number of intramolecular and intermolecular C—H⋯O interactions apparent in the structure.
Related literature
For general background, see: Bernstein et al. (1994 ▶); Dragovich et al. (2002 ▶); Hu et al. (2008 ▶); Karis et al. (2007 ▶); Kim et al. (2008 ▶); Loughlin et al. (2004 ▶); Reiner et al. (1999 ▶); Semple et al. (1998 ▶); Veale et al. (1995 ▶). For the synthesis, see: Sanderson et al. (1997 ▶); Tamura et al. (1996 ▶). For related structures. see: Karis et al. (2006 ▶); Yang & Craven (1998 ▶).
Experimental
Crystal data
C13H18N2O4
M r = 266.29
Monoclinic,
a = 13.9417 (15) Å
b = 5.585 (1) Å
c = 17.861 (2) Å
β = 97.039 (9)°
V = 1380.3 (3) Å3
Z = 4
Mo Kα radiation
μ = 0.10 mm−1
T = 295 (2) K
0.40 × 0.30 × 0.20 mm
Data collection
Rigaku AFC-7R diffractometer
Absorption correction: none
2731 measured reflections
2428 independent reflections
1482 reflections with I > 2σ(I)
R int = 0.046
3 standard reflections every 150 reflections intensity decay: 0.6%
Refinement
R[F 2 > 2σ(F 2)] = 0.052
wR(F 2) = 0.162
S = 1.02
2428 reflections
176 parameters
H-atom parameters constrained
Δρmax = 0.27 e Å−3
Δρmin = −0.27 e Å−3
Data collection: MSC/AFC7 Diffractometer Control Software (Molecular Structure Corporation, 1999 ▶); cell refinement: MSC/AFC7 Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 2001 ▶); program(s) used to solve structure: TEXSAN for Windows; program(s) used to refine structure: TEXSAN for Windows and SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶); software used to prepare material for publication: TEXSAN for Windows and PLATON (Spek, 2003 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039810/bt2816sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039810/bt2816Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N3—H3⋯O2i | 0.86 | 2.34 | 3.164 (3) | 161 |
C4—H4⋯O3 | 0.95 | 2.23 | 2.830 (3) | 120 |
C14—H14A⋯O3ii | 0.96 | 2.56 | 3.465 (4) | 157 |
C15—H15A⋯O11 | 0.96 | 2.44 | 2.980 (4) | 115 |
C16—H16A⋯O11 | 0.96 | 2.44 | 2.978 (5) | 115 |
C32—H32C⋯O2i | 0.96 | 2.33 | 3.222 (3) | 155 |
Symmetry codes: (i) ; (ii)
.
Acknowledgments
We acknowledge financial support of this work by Griffith University, Eskitis Institute for Cell and Molecular Therapies, Griffith University, and Natural Product Discovery, Griffith University. We also thank Alan White for professional support in this work.
supplementary crystallographic information
Comment
Increased binding affinity of pyridone based scaffolds as P4—P2 conformational restraints (Dragovich et al., 2002; Reiner et al., 1999; Semple et al., 1998; Veale et al., 1995; Bernstein et al., 1994) in peptidiomimetics (Loughlin et al., 2004, and references therein) is often associated with the substituent functionality at N1 and C3 of the pyridone ring. This has been reflected by enzyme-ligand crystal structures of a C3-amidoaryl pyridone with human rhinovirus (HRV) 3 C protease (3CP) (Dragovich et al., 2002), and a C3-sulfonylamide pyridone with porcine pancreatic elastase (Bernstein et al., 1994). Similiarly, other enzyme-ligand interactions have been observed in the solid state with kinases; a N1-aryl pyridone with Met kinase (Kim et al., 2008) and a N1-aryl C3-aryl pyridone with KDR kinase (Hu et al., 2008). Thus an understanding of the structure of substituted pyridone compounds is important. Elsewhere, the facile synthesis of N1, C3-substituted pyridones is reported (Karis et al., 2007). Herein we report the first solid state structure (II) for a 3-acetylpyridone without C4 to C6 substituents.
The structure of (II) consists of discrete molecular units (Fig. 1) which form N3—H3···O2 hydrogen bonded dimers disposed about a crystallographic centre of symmetry (Figure 2, Table 1). The amide N3—C31—O3—C32 is co-planar with the pyridone ring with the O3···H4 contact distance 2.23 Å. The tert-butyl ester group attached to N1 lies orthogonal to the pyridone ring with the C2—N1—C11—C12 torsion angle -81.1 (2)°. The geometry of the pyridone ring is in accord with related structures (Yang & Craven, 1998; Karis et al., 2006) with the C2—C3 distance 1.440 (3)Å while the other C—C and C—N distance range from 1.333 (4) - 1.402 (4) Å. The N3—C31 distance of 1.362 (3)Å is shorter than the N3—C3 distance of 1.399 (3) Å; indicating a preference for involvement of N3 in conjugation with the amide rather than the pyridone. The carbonyl groups C31—O3 and C21—O11 are not involved in strong hydrogen bonding interactions with only a number of C—H···O interactions apparent in the crystal lattice (Table 2).
Experimental
Tert-Butyl 2-(3'-amino-2'-oxopyridin-1'(2H)-yl)acetate (compound (I)) was prepared by N-alkylation of nitropyridone with sodium hydride and tert-butyl bromoacetate (Sanderson et al., 1997; Tamura et al., 1996), and subsequent hydrogenation over palladium-on-carbon (Tamura et al., 1996).
For the preparation of compound (II), compound (I) (0.78 g, 3.48 mmol) was dissolved in a mixture of dry dichloromethane (10 ml) and triethylamine (0.97 ml, 6.96 mmol) under nitrogen. Acetyl chloride (0.50 ml, 6.96 mmol) was added dropwise at 295 K. The resulting mixture was stirred for 4 h and then concentrated to give a suspension of the product and triethylamine hydrochloride. The suspension was directly transferred to a silica gel column using dichloromethane with 0.5% triethylamine and eluted with an ethyl acetate /dichloromethane gradient (0 to 20% ethyl acetate, with 0.5% triethyl amine. Red crystals of (II) (m.p. 415–418 K) (0.91 g, 98%) were isolated by slow evaporation from an ethyl acetate /dichloromethane solution. Analysis found: C 58.73, H 6.84, N 10.36%; calculated for C13H18N2O4: C 58.64, H 6.81, N 10.52%. νmax(KBr) cm-1 3318, 2974, 1716, 1646, 1605, 1532, 1512. δH (400 MHz, CDCl3, p.p.m.) 1.49 (9H, s, C(CH3)3), 2.19 (3H, s, CH3), 4.58 (2H, s, H2), 6.27 (1H, dd, J = 7.0, 7.0 Hz, H5'), 6.92 (1H, dd, J = 7.0, 1.6 Hz, H6'), 8.35 (1H, brs, Wh1/2 = 11 Hz, NH), 8.39 (1H, dd, J = 7.2, 1.6 Hz, H4'). δC (100 MHz, CDCl3) 24.7 (CH3), 28.0 (C(CH3)3), 51.6 (C2), 83.1 (C(CH3)3), 106.8 (C5'), 122.4 (C4'), 129.3 (C3'), 130.2 (C6'), 157.4 (C2'), 166.2 (C1), 169.0 (CO). MS (ES+) 289.2 (MNa+, 30%) 273.2 (MLi+, 40%).
Refinement
Carbon bonded H atoms were included in idealized positions and refined as riding atoms, with C—H set to 0.95–0.96 Å. Uiso(H) values were set to 1.2Ueq (aromatic, methylene) and 1.5Ueq (methyl) of the parent atom. The amide proton was located from difference Fourier maps and refined with N—H set to 0.86Å and Uiso(H) values set to 1.2Ueq of the parent atom. Considerable thermal motion was apparent in the peripheral carbons of the tert-butyl group.
Figures
Fig. 1.
View of the molecular structure of (II) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radii.
Fig. 2.
View of the dimeric structure of (II).
Fig. 3.
The formation of the title compound.
Crystal data
C13H18N2O4 | F000 = 568 |
Mr = 266.29 | Dx = 1.281 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 13.9417 (15) Å | θ = 12.6–17.5º |
b = 5.585 (1) Å | µ = 0.10 mm−1 |
c = 17.861 (2) Å | T = 295 (2) K |
β = 97.039 (9)º | Block, red |
V = 1380.3 (3) Å3 | 0.40 × 0.30 × 0.20 mm |
Z = 4 |
Data collection
Rigaku AFC-7R diffractometer | Rint = 0.046 |
Radiation source: Rigaku rotating anode | θmax = 25.0º |
Monochromator: graphite | θmin = 2.6º |
T = 295 K | h = −16→16 |
ω–2θ scans | k = −6→0 |
Absorption correction: none | l = −21→10 |
2731 measured reflections | 3 standard reflections |
2428 independent reflections | every 150 reflections |
1482 reflections with I > 2σ(I) | intensity decay: 0.6% |
Refinement
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.162 | w = 1/[σ2(Fo2) + (0.0906P)2 + 0.0473P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
2428 reflections | Δρmax = 0.27 e Å−3 |
176 parameters | Δρmin = −0.27 e Å−3 |
Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
Experimental. The scan width was (1.79 + 0.30tanθ)° with an ω scan speed of 16° per minute (up to 4 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1. |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
O2 | 0.93631 (11) | 0.2790 (3) | 0.03272 (10) | 0.0595 (6) | |
O3 | 1.26910 (13) | 0.2449 (4) | 0.15628 (14) | 0.0940 (9) | |
O11 | 0.79117 (14) | 0.2673 (4) | 0.16249 (13) | 0.0868 (9) | |
O12 | 0.66171 (11) | 0.0894 (3) | 0.09995 (9) | 0.0520 (6) | |
N1 | 0.91347 (13) | −0.0488 (3) | 0.10449 (11) | 0.0487 (6) | |
N3 | 1.12376 (12) | 0.3204 (4) | 0.08928 (11) | 0.0497 (7) | |
C2 | 0.97001 (15) | 0.1321 (4) | 0.08098 (12) | 0.0450 (7) | |
C3 | 1.06936 (15) | 0.1361 (4) | 0.11623 (12) | 0.0450 (7) | |
C4 | 1.10110 (17) | −0.0279 (5) | 0.16998 (14) | 0.0546 (8) | |
C5 | 1.0390 (2) | −0.2076 (5) | 0.19027 (15) | 0.0634 (10) | |
C6 | 0.94768 (18) | −0.2158 (5) | 0.15792 (15) | 0.0580 (9) | |
C11 | 0.81146 (16) | −0.0501 (4) | 0.07545 (14) | 0.0508 (8) | |
C12 | 0.75508 (16) | 0.1222 (4) | 0.11859 (14) | 0.0505 (8) | |
C13 | 0.58947 (17) | 0.2243 (5) | 0.13832 (15) | 0.0569 (9) | |
C14 | 0.4945 (2) | 0.1252 (7) | 0.1020 (2) | 0.0982 (15) | |
C15 | 0.6042 (2) | 0.1659 (8) | 0.22108 (18) | 0.0934 (14) | |
C16 | 0.5968 (3) | 0.4858 (6) | 0.1224 (3) | 0.1150 (18) | |
C31 | 1.21909 (17) | 0.3673 (5) | 0.11050 (15) | 0.0577 (9) | |
C32 | 1.25913 (17) | 0.5768 (6) | 0.07310 (16) | 0.0683 (10) | |
H3 | 1.09400 | 0.41360 | 0.05580 | 0.0590* | |
H4 | 1.16570 | −0.02040 | 0.19410 | 0.0650* | |
H5 | 1.06240 | −0.32280 | 0.22700 | 0.0750* | |
H6 | 0.90590 | −0.33820 | 0.17180 | 0.0690* | |
H14A | 0.44270 | 0.19330 | 0.12570 | 0.1480* | |
H14B | 0.49430 | −0.04570 | 0.10780 | 0.1480* | |
H14C | 0.48610 | 0.16470 | 0.04930 | 0.1480* | |
H15A | 0.66300 | 0.23860 | 0.24400 | 0.1400* | |
H15B | 0.60820 | −0.00460 | 0.22760 | 0.1400* | |
H15C | 0.55080 | 0.22640 | 0.24460 | 0.1400* | |
H16A | 0.65600 | 0.54750 | 0.14840 | 0.1730* | |
H16B | 0.54300 | 0.56810 | 0.13940 | 0.1730* | |
H16C | 0.59610 | 0.50990 | 0.06910 | 0.1730* | |
H32A | 1.31990 | 0.53370 | 0.05670 | 0.1030* | |
H32B | 1.26860 | 0.70740 | 0.10820 | 0.1030* | |
H32C | 1.21470 | 0.62420 | 0.03030 | 0.1030* | |
H111 | 0.78650 | −0.20760 | 0.07980 | 0.0610* | |
H112 | 0.80430 | −0.00530 | 0.02370 | 0.0610* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0418 (9) | 0.0716 (12) | 0.0638 (10) | −0.0042 (9) | 0.0008 (8) | 0.0138 (10) |
O3 | 0.0447 (10) | 0.1068 (17) | 0.1239 (19) | −0.0035 (11) | −0.0167 (11) | 0.0397 (15) |
O11 | 0.0571 (12) | 0.0988 (16) | 0.1066 (16) | −0.0158 (11) | 0.0190 (11) | −0.0554 (14) |
O12 | 0.0417 (9) | 0.0507 (10) | 0.0646 (10) | 0.0020 (7) | 0.0110 (7) | −0.0070 (9) |
N1 | 0.0405 (10) | 0.0493 (11) | 0.0577 (12) | −0.0012 (9) | 0.0119 (9) | −0.0033 (10) |
N3 | 0.0332 (10) | 0.0621 (13) | 0.0531 (11) | 0.0032 (9) | 0.0028 (8) | 0.0019 (10) |
C2 | 0.0375 (11) | 0.0517 (14) | 0.0468 (12) | 0.0008 (11) | 0.0096 (10) | −0.0036 (12) |
C3 | 0.0375 (11) | 0.0528 (14) | 0.0461 (12) | 0.0056 (10) | 0.0111 (10) | −0.0059 (11) |
C4 | 0.0445 (13) | 0.0635 (16) | 0.0555 (14) | 0.0082 (12) | 0.0052 (11) | −0.0015 (13) |
C5 | 0.0629 (16) | 0.0598 (17) | 0.0673 (17) | 0.0109 (14) | 0.0076 (13) | 0.0107 (14) |
C6 | 0.0583 (15) | 0.0487 (15) | 0.0680 (16) | 0.0000 (12) | 0.0118 (13) | 0.0020 (13) |
C11 | 0.0404 (12) | 0.0517 (14) | 0.0614 (14) | −0.0088 (11) | 0.0112 (11) | −0.0087 (12) |
C12 | 0.0421 (13) | 0.0530 (14) | 0.0575 (14) | −0.0060 (11) | 0.0100 (11) | −0.0062 (12) |
C13 | 0.0495 (14) | 0.0502 (15) | 0.0751 (17) | 0.0081 (11) | 0.0243 (12) | 0.0020 (13) |
C14 | 0.0472 (16) | 0.105 (3) | 0.142 (3) | 0.0181 (17) | 0.0101 (18) | −0.018 (2) |
C15 | 0.083 (2) | 0.122 (3) | 0.083 (2) | 0.014 (2) | 0.0411 (18) | 0.010 (2) |
C16 | 0.127 (3) | 0.0546 (19) | 0.180 (4) | 0.024 (2) | 0.085 (3) | 0.024 (2) |
C31 | 0.0377 (13) | 0.0680 (17) | 0.0671 (16) | 0.0021 (12) | 0.0049 (12) | −0.0023 (14) |
C32 | 0.0407 (13) | 0.081 (2) | 0.0817 (19) | −0.0074 (13) | 0.0020 (13) | 0.0100 (16) |
Geometric parameters (Å, °)
O2—C2 | 1.240 (3) | C31—C32 | 1.489 (4) |
O3—C31 | 1.218 (3) | C4—H4 | 0.9500 |
O11—C12 | 1.195 (3) | C5—H5 | 0.9500 |
O12—C12 | 1.316 (3) | C6—H6 | 0.9500 |
O12—C13 | 1.490 (3) | C11—H111 | 0.9500 |
N1—C2 | 1.378 (3) | C11—H112 | 0.9500 |
N1—C6 | 1.377 (3) | C14—H14A | 0.9600 |
N1—C11 | 1.453 (3) | C14—H14B | 0.9600 |
N3—C3 | 1.399 (3) | C14—H14C | 0.9600 |
N3—C31 | 1.362 (3) | C15—H15A | 0.9600 |
N3—H3 | 0.8600 | C15—H15B | 0.9600 |
C2—C3 | 1.450 (3) | C15—H15C | 0.9600 |
C3—C4 | 1.361 (3) | C16—H16A | 0.9600 |
C4—C5 | 1.402 (4) | C16—H16B | 0.9600 |
C5—C6 | 1.333 (4) | C16—H16C | 0.9600 |
C11—C12 | 1.512 (3) | C32—H32A | 0.9600 |
C13—C14 | 1.507 (4) | C32—H32B | 0.9600 |
C13—C16 | 1.494 (4) | C32—H32C | 0.9600 |
C13—C15 | 1.503 (4) | ||
O2···N3 | 2.694 (2) | C31···H4 | 2.7800 |
O2···C12 | 3.233 (3) | C32···H112i | 3.0200 |
O2···C32i | 3.222 (3) | H3···O2 | 2.3100 |
O2···N3i | 3.164 (3) | H3···H32C | 2.1500 |
O3···C4 | 2.830 (3) | H3···O2i | 2.3400 |
O11···C2 | 3.130 (3) | H4···O3 | 2.2300 |
O11···N1 | 2.744 (3) | H4···C31 | 2.7800 |
O11···C15 | 2.980 (4) | H4···O11vi | 2.8200 |
O11···C16 | 2.978 (5) | H5···O11vi | 2.7100 |
O11···C5ii | 3.319 (4) | H5···C5vi | 3.0500 |
O11···C4ii | 3.379 (3) | H5···C6vi | 3.0200 |
O2···H3 | 2.3100 | H6···O11vii | 2.7200 |
O2···H32Ci | 2.3300 | H6···H111 | 2.3100 |
O2···H112 | 2.4200 | H6···C4vi | 3.0300 |
O2···H3i | 2.3400 | H14A···O3viii | 2.5600 |
O3···H4 | 2.2300 | H14A···H15C | 2.4600 |
O3···H14Aiii | 2.5600 | H14A···H16B | 2.5100 |
O3···H15Bii | 2.8800 | H14B···C16vii | 2.9800 |
O11···H16A | 2.4400 | H14B···H15B | 2.5100 |
O11···H6iv | 2.7200 | H14B···H16Bvii | 2.3100 |
O11···H15A | 2.4400 | H14C···H16C | 2.4600 |
O11···H4ii | 2.8200 | H15A···O11 | 2.4400 |
O11···H5ii | 2.7100 | H15A···C12 | 2.7900 |
N1···O11 | 2.744 (3) | H15A···H16A | 2.4200 |
N3···O2 | 2.694 (2) | H15B···C12 | 3.0800 |
N3···O2i | 3.164 (3) | H15B···H14B | 2.5100 |
N3···H112v | 2.9400 | H15B···O3vi | 2.8800 |
C2···O11 | 3.130 (3) | H15C···H14A | 2.4600 |
C2···C2v | 3.441 (3) | H16A···O11 | 2.4400 |
C4···O3 | 2.830 (3) | H16A···C12 | 2.8300 |
C4···O11vi | 3.379 (3) | H16A···H15A | 2.4200 |
C5···O11vi | 3.319 (4) | H16B···H14A | 2.5100 |
C12···O2 | 3.233 (3) | H16B···H14Biv | 2.3100 |
C15···O11 | 2.980 (4) | H16C···H14C | 2.4600 |
C16···O11 | 2.978 (5) | H32B···C4iv | 3.0800 |
C32···O2i | 3.222 (3) | H32C···H3 | 2.1500 |
C4···H32Bvii | 3.0800 | H32C···O2i | 2.3300 |
C4···H6ii | 3.0300 | H32C···C11i | 3.0300 |
C5···H5ii | 3.0500 | H32C···C12i | 3.0900 |
C6···H5ii | 3.0200 | H32C···H112i | 2.3400 |
C11···H32Ci | 3.0300 | H111···H6 | 2.3100 |
C12···H15A | 2.7900 | H112···O2 | 2.4200 |
C12···H32Ci | 3.0900 | H112···N3v | 2.9400 |
C12···H16A | 2.8300 | H112···C32i | 3.0200 |
C12···H15B | 3.0800 | H112···H32Ci | 2.3400 |
C16···H14Biv | 2.9800 | ||
C12—O12—C13 | 121.10 (18) | C6—C5—H5 | 120.00 |
C2—N1—C6 | 123.04 (19) | N1—C6—H6 | 120.00 |
C2—N1—C11 | 117.79 (18) | C5—C6—H6 | 120.00 |
C6—N1—C11 | 119.00 (19) | N1—C11—H111 | 109.00 |
C3—N3—C31 | 126.7 (2) | N1—C11—H112 | 109.00 |
C3—N3—H3 | 117.00 | C12—C11—H111 | 109.00 |
C31—N3—H3 | 117.00 | C12—C11—H112 | 109.00 |
N1—C2—C3 | 115.51 (19) | H111—C11—H112 | 109.00 |
O2—C2—N1 | 120.98 (19) | C13—C14—H14A | 109.00 |
O2—C2—C3 | 123.5 (2) | C13—C14—H14B | 109.00 |
N3—C3—C2 | 113.04 (19) | C13—C14—H14C | 109.00 |
N3—C3—C4 | 126.5 (2) | H14A—C14—H14B | 110.00 |
C2—C3—C4 | 120.5 (2) | H14A—C14—H14C | 109.00 |
C3—C4—C5 | 120.4 (2) | H14B—C14—H14C | 109.00 |
C4—C5—C6 | 120.0 (3) | C13—C15—H15A | 110.00 |
N1—C6—C5 | 120.6 (2) | C13—C15—H15B | 109.00 |
N1—C11—C12 | 111.23 (19) | C13—C15—H15C | 110.00 |
O11—C12—C11 | 124.2 (2) | H15A—C15—H15B | 109.00 |
O11—C12—O12 | 125.7 (2) | H15A—C15—H15C | 109.00 |
O12—C12—C11 | 110.02 (19) | H15B—C15—H15C | 109.00 |
O12—C13—C15 | 108.9 (2) | C13—C16—H16A | 109.00 |
O12—C13—C14 | 103.0 (2) | C13—C16—H16B | 109.00 |
C14—C13—C16 | 110.8 (3) | C13—C16—H16C | 109.00 |
C15—C13—C16 | 113.3 (3) | H16A—C16—H16B | 109.00 |
O12—C13—C16 | 109.9 (2) | H16A—C16—H16C | 109.00 |
C14—C13—C15 | 110.5 (2) | H16B—C16—H16C | 109.00 |
N3—C31—C32 | 115.7 (2) | C31—C32—H32A | 109.00 |
O3—C31—N3 | 122.5 (2) | C31—C32—H32B | 109.00 |
O3—C31—C32 | 121.8 (2) | C31—C32—H32C | 109.00 |
C3—C4—H4 | 120.00 | H32A—C32—H32B | 109.00 |
C5—C4—H4 | 120.00 | H32A—C32—H32C | 109.00 |
C4—C5—H5 | 120.00 | H32B—C32—H32C | 110.00 |
C13—O12—C12—O11 | −5.0 (4) | C31—N3—C3—C4 | 1.5 (4) |
C13—O12—C12—C11 | 175.59 (19) | C3—N3—C31—O3 | 1.4 (4) |
C12—O12—C13—C14 | −177.9 (2) | C3—N3—C31—C32 | −179.6 (2) |
C12—O12—C13—C15 | −60.6 (3) | O2—C2—C3—N3 | −1.0 (3) |
C12—O12—C13—C16 | 64.0 (3) | O2—C2—C3—C4 | 178.7 (2) |
C6—N1—C2—O2 | −180.0 (2) | N1—C2—C3—N3 | 178.89 (19) |
C6—N1—C2—C3 | 0.2 (3) | N1—C2—C3—C4 | −1.4 (3) |
C11—N1—C2—O2 | −4.9 (3) | N3—C3—C4—C5 | −178.3 (2) |
C11—N1—C2—C3 | 175.25 (19) | C2—C3—C4—C5 | 2.0 (4) |
C2—N1—C6—C5 | 0.6 (4) | C3—C4—C5—C6 | −1.3 (4) |
C11—N1—C6—C5 | −174.5 (2) | C4—C5—C6—N1 | 0.0 (4) |
C2—N1—C11—C12 | −81.1 (2) | N1—C11—C12—O11 | 11.0 (3) |
C6—N1—C11—C12 | 94.2 (2) | N1—C11—C12—O12 | −169.61 (18) |
C31—N3—C3—C2 | −178.8 (2) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, y+1/2, −z+1/2; (iii) x+1, y, z; (iv) x, y+1, z; (v) −x+2, −y, −z; (vi) −x+2, y−1/2, −z+1/2; (vii) x, y−1, z; (viii) x−1, y, z.
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O2i | 0.8600 | 2.3400 | 3.164 (3) | 161.00 |
C4—H4···O3 | 0.9500 | 2.2300 | 2.830 (3) | 120.00 |
C14—H14A···O3viii | 0.96 | 2.56 | 3.465 (4) | 157 |
C15—H15A···O11 | 0.96 | 2.44 | 2.980 (4) | 115 |
C16—H16A···O11 | 0.96 | 2.44 | 2.978 (5) | 115 |
C32—H32C···O2i | 0.96 | 2.33 | 3.222 (3) | 155 |
Symmetry codes: (i) −x+2, −y+1, −z; (viii) x−1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2816).
References
- Bernstein, P. R., Andisik, D., Bradley, P. K., Bryant, C. B., Ceccarelli, C., Damewood, J. R. Jr, Earley, R., Edwards, P. D., Feeney, S., Gomes, B. C., Kosmider, B. J., Steelman, G. B., Thomas, R. M., Vacek, E. P., Veale, C. A., Williams, J. C., Wolanin, D. J. & Woolson, S. A. (1994). J. Med. Chem.37, 3313–3326. [DOI] [PubMed]
- Dragovich, P. S., Prins, T. J., Zhou, R., Brown, E. L., Maldonado, F. C., Fuhrman, S. A., Zalman, L. S., Tuntland, T., Lee, C. A., Patick, A. K., Matthews, D. A., Hendrickson, T. F., Kosa, M. B., Liu, B., Batugo, M. R., Gleeson, J.-P. R., Sakata, S. K., Chen, L., Guzman, M. C., Meador, J. W., Ferre, R. A. & Worland, S. T. (2002). J. Med. Chem.45, 1607–1623. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Hu, E., Tasker, A., White, R. D., Kunz, R. K., Human, J., Chen, N., Burli, R., Hungate, R., Novak, P., Itano, A., Zhang, X., Yu, V., Nguyen, Y., Tudor, Y., Plant, M., Flynn, S., Xu, Y., Meagher, K. L., Whittington, D. A. & Ng, G. Y. (2008). J. Med. Chem.51, 3065–3068. [DOI] [PubMed]
- Karis, N. D., Loughlin, W. A. & Jenkins, I. D. (2007). Tetrahedron, 63, 12303–12309.
- Karis, N. D., Loughlin, W. A., Jenkins, I. D. & Healy, P. C. (2006). Acta Cryst. E62, o2714–o2716.
- Kim, K. S., Zhang, L., Schmidt, R., Cai, Z.-W., Wei, D., Williams, D. K., Lombardo, L. J., Trainor, G. L., Xie, D., Zhang, Y., An, Y., Sack, J. S., Tokarski, J. S., Darienzo, C., Kamath, A., Marathe, P., Zhang, Y., Lippy, J., Jeyaseelan, R., Wautlet, B., Henley, B., Gullo-Brown, J., Manne, V., Hunt, J. T., Fargnoli, J. & Borzilleri, R. M. (2008). J. Med. Chem.51, 5330–5341. [DOI] [PubMed]
- Loughlin, W. A., Tyndall, J. D. A., Glenn, M. P. & Fairlie, D. P. (2004). Chem. Rev.104, 6085–6117. [DOI] [PubMed]
- Molecular Structure Corporation (1999). MSC/AFC7 Diffractometer Control for Windows MSC, The Woodlands, Texas, USA.
- Molecular Structure Corporation. (2001). TEXSAN for Windows MSC, The Woodlands, Texas, USA.
- Reiner, J. E., Lim-Wilby, M. S., Brunck, T. K., Ha-Uong, T., Goldman, E. A., Abelman, M. A., Nutt, R. F., Semple, J. E. & Tamura, S. Y. (1999). Bioorg. Med. Chem. Lett.9, 895–900. [DOI] [PubMed]
- Sanderson, P. E., Naylor-Olsen, A. M., Dyer, D. L., Vacca, J. P., Isaacs, R. C. A., Dorsey, B. D. & Frayler, M. E. (1997). PCT Int. Appl. WO 9 701 338.
- Semple, G., Ashwoth, D. M., Batt, A. R., Baxter, A. J., Benzies, D. W. M., Elliot, L. H., Evans, D. M., Franklin, R. J., Hudson, P., Jenkins, P. D., Pitt, G. R., Rooker, D. P., Yamamoto, S. & Isomura, Y. (1998). Bioorg. Med. Chem. Lett.8, 959–964. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
- Tamura, S. Y., Semple, J. E., Ripka, W. C., Ardecky, R. J., Ge, Y., Carpenter, S. H., Brunck, T. K., Lim-Wilby, M. S., Nutt, R. F. & Abelman, M. M. (1996). PCT Int. Appl. WO 9 618 644.
- Veale, C. A., Bernstein, P. R., Bryant, C., Ceccarelli, C., Damewood, J. R. Jr, Earley, R., Feeney, S. W., Gomes, B., Kosmider, B. J., Steelman, G. B., Thomas, R. M., Vacek, E. P., Williams, J. C., Wolanin, D. J. & Woolson, S. A. (1995). J. Med. Chem.38, 98–108. [DOI] [PubMed]
- Yang, H. W. & Craven, B. M. (1998). Acta Cryst. B54, 912–920. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039810/bt2816sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039810/bt2816Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report