Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 8;64(Pt 12):m1497. doi: 10.1107/S1600536808035289

Bis{2-meth­oxy-6-[(3-methoxy­prop­yl)imino­meth­yl]phenolato-κ2 N,O 1}copper(II)

Amitabha Datta a, Jui-Hsien Huang a, Hon Man Lee a,*
PMCID: PMC2959917  PMID: 21581118

Abstract

The title complex, [Cu(C12H16NO3)2], adopts a distorted square-planar coordination geometry with the CuII ion situated on a crystallographic inversion center. The two Schiff base ligands are coordinated in a trans fashion. In the crystal structure, non-classical inter­molecular C—H⋯O hydrogen bonds involving the ether O atoms link the Schiff base mol­ecules into a two-dimensional network parallel to (101).

Related literature

For similar copper(II) structures with Schiff base ligands: see: Akitsu & Einaga (2004); Bluhm et al. (2003); Castiñeiras et al. (1990); Costamagna et al. (1998); King et al. (1973); Lacroix et al. (2004); Zhang et al. (2001).graphic file with name e-64-m1497-scheme1.jpg

Experimental

Crystal data

  • [Cu(C12H16NO3)2]

  • M r = 508.06

  • Monoclinic, Inline graphic

  • a = 11.2189 (9) Å

  • b = 10.7004 (8) Å

  • c = 9.5002 (7) Å

  • β = 96.912 (1)°

  • V = 1132.18 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 100 (2) K

  • 0.50 × 0.50 × 0.40 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.614, T max = 0.668

  • 6343 measured reflections

  • 2298 independent reflections

  • 2065 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.079

  • S = 1.09

  • 2298 reflections

  • 153 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035289/lh2719sup1.cif

e-64-m1497-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035289/lh2719Isup2.hkl

e-64-m1497-Isup2.hkl (113KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O3i 0.98 2.58 3.476 (2) 151
C9—H9A⋯O1ii 0.99 2.31 2.782 (2) 108
C9—H9B⋯O3 0.99 2.55 2.918 (2) 102

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to the National Science Council of Taiwan for financial support.

supplementary crystallographic information

Comment

The Schiff base (E)-2-methoxy-6-[(3-methoxypropyl)iminomethyl]phenol reacts with copper(II) nitrate in methanol to form the title complex. In situ deprotonation of the phenolic hydrogen occurred leading to formation of the O/N-bidentate ligand. The title complex consists of two bidentate ligands coordinating in a trans fashion. It adopts a square-planar coordination geometry with the Cu atom located on a crystallographic inversion center. Schiff base Cu(II) complexes similar to the title complex have been reported in the literature (Akitsu & Einaga, 2004; Bluhm et al., 2003; Castiñeiras et al., 1990; Costamagna et al., 1998; King et al., 1973; Lacroix et al., 2004; Zhang et al., 2001).

Both intramolecular and intermolecular non-classical H-bonds of the type C-H···O exist (Table 1). The intermolecular H-bonds link the complex into a two-dimensional network.

Experimental

Synthesis of (E)-2-methoxy-6-((3-methoxypropylimino)methyl)phenol: The compound was synthesized by the condensation reaction between O-vaniline and NH2(CH2)3OMe in methanol. After complete removal of the solvent, the resulting yellow liquid was used without purification.

Synthesis of the title complex: A methanolic solution of Cu(NO3)2 (1 mmol, 188 mg) and (E)-2-methoxy-6-((3-methoxypropylimino)methyl)phenol (2 mmol, 446 mg) was stirred for 30 min. The solution was then kept for 7 days to yield crystals suitable for X-ray diffraction study.

Refinement

All the H atoms were positioned geometrically and refined as riding atoms, with Caryl—H = 0.95, Cmethyl—H = 0.98, Cmethylene—H = 0.99, Cmethine—H = 0.95 Å while Uiso(H) = 1.5Ueq(C) for the methyl H atoms and Uiso(H) = 1.2Ueq(C) for all the other H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of the title complex, showing 50% displacement ellipsoids for non-H atoms. The H atoms are dipicted by circles of an arbitrary radius. The unlabelled atoms are related to the labelled ones by -x, 1 - y, 1 - z.

Fig. 2.

Fig. 2.

A packing diagram of the title compound along the c axis. Hyrogen bonds are shown as dashed lines.

Crystal data

[Cu(C12H16N1O3)2] F000 = 534
Mr = 508.06 Dx = 1.490 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3703 reflections
a = 11.2189 (9) Å θ = 2.6–26.4º
b = 10.7004 (8) Å µ = 1.01 mm1
c = 9.5002 (7) Å T = 100 (2) K
β = 96.9120 (10)º Block, black
V = 1132.18 (15) Å3 0.50 × 0.50 × 0.40 mm
Z = 2

Data collection

Bruker SMART APEXII diffractometer 2065 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.032
T = 100(2) K θmax = 26.4º
ω scans θmin = 2.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −13→7
Tmin = 0.614, Tmax = 0.668 k = −13→12
6343 measured reflections l = −11→11
2298 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.079   w = 1/[σ2(Fo2) + (0.0461P)2 + 0.0531P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
2298 reflections Δρmax = 0.31 e Å3
153 parameters Δρmin = −0.37 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.0000 0.5000 0.5000 0.01161 (11)
N1 0.06486 (12) 0.67268 (12) 0.54175 (13) 0.0124 (3)
O1 −0.10464 (10) 0.55690 (11) 0.34077 (12) 0.0157 (3)
O2 −0.26520 (10) 0.57869 (11) 0.11946 (12) 0.0168 (3)
O3 0.38383 (10) 0.83717 (11) 0.73181 (13) 0.0203 (3)
C1 −0.12843 (14) 0.67057 (15) 0.29658 (16) 0.0123 (3)
C2 −0.21677 (14) 0.68788 (15) 0.17655 (16) 0.0133 (3)
C3 −0.24800 (15) 0.80571 (16) 0.12650 (17) 0.0146 (3)
H3 −0.3084 0.8153 0.0481 0.018*
C4 −0.19103 (15) 0.91184 (16) 0.19081 (17) 0.0160 (4)
H4 −0.2131 0.9930 0.1564 0.019*
C5 −0.10354 (15) 0.89779 (15) 0.30333 (17) 0.0146 (3)
H5 −0.0639 0.9695 0.3453 0.018*
C6 −0.07147 (15) 0.77820 (15) 0.35771 (16) 0.0128 (3)
C7 0.02158 (15) 0.77112 (16) 0.47516 (16) 0.0134 (3)
H7 0.0557 0.8486 0.5081 0.016*
C8 −0.35395 (15) 0.59005 (17) −0.00057 (17) 0.0185 (4)
H8A −0.4248 0.6325 0.0275 0.028*
H8B −0.3767 0.5067 −0.0372 0.028*
H8C −0.3214 0.6388 −0.0744 0.028*
C9 0.16306 (14) 0.69566 (15) 0.65644 (16) 0.0136 (3)
H9A 0.1512 0.6429 0.7392 0.016*
H9B 0.1613 0.7842 0.6862 0.016*
C10 0.28466 (15) 0.66641 (16) 0.60836 (17) 0.0166 (4)
H10A 0.2902 0.5756 0.5904 0.020*
H10B 0.2919 0.7107 0.5183 0.020*
C11 0.38687 (15) 0.70517 (15) 0.71811 (18) 0.0161 (4)
H11A 0.3781 0.6652 0.8103 0.019*
H11B 0.4645 0.6787 0.6881 0.019*
C12 0.47976 (15) 0.88352 (17) 0.82805 (18) 0.0214 (4)
H12A 0.4776 0.8444 0.9210 0.032*
H12B 0.4719 0.9743 0.8369 0.032*
H12C 0.5562 0.8639 0.7929 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01075 (17) 0.01035 (17) 0.01270 (16) −0.00026 (10) −0.00282 (11) 0.00036 (10)
N1 0.0102 (7) 0.0140 (7) 0.0128 (6) −0.0004 (6) 0.0000 (6) −0.0016 (6)
O1 0.0166 (6) 0.0117 (6) 0.0170 (6) 0.0001 (5) −0.0057 (5) 0.0011 (5)
O2 0.0164 (6) 0.0158 (6) 0.0163 (6) −0.0019 (5) −0.0061 (5) −0.0006 (5)
O3 0.0167 (6) 0.0128 (6) 0.0286 (7) −0.0022 (5) −0.0085 (5) 0.0003 (5)
C1 0.0108 (8) 0.0133 (8) 0.0133 (7) 0.0012 (7) 0.0033 (6) 0.0004 (6)
C2 0.0116 (8) 0.0149 (8) 0.0138 (7) −0.0009 (7) 0.0027 (7) −0.0009 (6)
C3 0.0114 (8) 0.0191 (9) 0.0130 (7) 0.0020 (7) 0.0002 (6) 0.0032 (7)
C4 0.0171 (9) 0.0135 (8) 0.0176 (8) 0.0024 (7) 0.0029 (7) 0.0030 (7)
C5 0.0165 (9) 0.0108 (8) 0.0169 (8) −0.0004 (7) 0.0032 (7) −0.0011 (7)
C6 0.0115 (8) 0.0141 (8) 0.0132 (8) 0.0013 (7) 0.0029 (7) 0.0003 (6)
C7 0.0136 (8) 0.0120 (8) 0.0149 (8) −0.0014 (6) 0.0024 (7) −0.0026 (6)
C8 0.0157 (9) 0.0219 (9) 0.0166 (8) −0.0013 (7) −0.0039 (7) 0.0006 (7)
C9 0.0115 (8) 0.0143 (8) 0.0140 (8) −0.0008 (7) −0.0025 (6) −0.0021 (6)
C10 0.0146 (9) 0.0172 (8) 0.0176 (8) −0.0001 (7) 0.0000 (7) −0.0027 (7)
C11 0.0136 (8) 0.0145 (8) 0.0198 (8) 0.0005 (7) 0.0002 (7) −0.0012 (7)
C12 0.0175 (9) 0.0200 (9) 0.0256 (9) −0.0055 (7) −0.0022 (8) −0.0030 (8)

Geometric parameters (Å, °)

Cu1—O1i 1.9000 (11) C5—C6 1.410 (2)
Cu1—O1 1.9000 (11) C5—H5 0.9500
Cu1—N1i 2.0079 (13) C6—C7 1.435 (2)
Cu1—N1 2.0079 (13) C7—H7 0.9500
N1—C7 1.293 (2) C8—H8A 0.9800
N1—C9 1.474 (2) C8—H8B 0.9800
O1—C1 1.3038 (19) C8—H8C 0.9800
O2—C2 1.3724 (19) C9—C10 1.522 (2)
O2—C8 1.4258 (19) C9—H9A 0.9900
O3—C12 1.415 (2) C9—H9B 0.9900
O3—C11 1.419 (2) C10—C11 1.512 (2)
C1—C6 1.408 (2) C10—H10A 0.9900
C1—C2 1.430 (2) C10—H10B 0.9900
C2—C3 1.378 (2) C11—H11A 0.9900
C3—C4 1.406 (2) C11—H11B 0.9900
C3—H3 0.9500 C12—H12A 0.9800
C4—C5 1.370 (2) C12—H12B 0.9800
C4—H4 0.9500 C12—H12C 0.9800
O1i—Cu1—O1 180.0 C6—C7—H7 115.9
O1i—Cu1—N1i 92.11 (5) O2—C8—H8A 109.5
O1—Cu1—N1i 87.89 (5) O2—C8—H8B 109.5
O1i—Cu1—N1 87.89 (5) H8A—C8—H8B 109.5
O1—Cu1—N1 92.11 (5) O2—C8—H8C 109.5
N1i—Cu1—N1 180.00 (7) H8A—C8—H8C 109.5
C7—N1—C9 115.41 (14) H8B—C8—H8C 109.5
C7—N1—Cu1 123.18 (11) N1—C9—C10 111.16 (12)
C9—N1—Cu1 121.36 (10) N1—C9—H9A 109.4
C1—O1—Cu1 129.66 (11) C10—C9—H9A 109.4
C2—O2—C8 116.66 (13) N1—C9—H9B 109.4
C12—O3—C11 112.53 (13) C10—C9—H9B 109.4
O1—C1—C6 124.41 (15) H9A—C9—H9B 108.0
O1—C1—C2 118.23 (14) C11—C10—C9 111.67 (13)
C6—C1—C2 117.35 (14) C11—C10—H10A 109.3
O2—C2—C3 124.78 (15) C9—C10—H10A 109.3
O2—C2—C1 114.10 (14) C11—C10—H10B 109.3
C3—C2—C1 121.12 (15) C9—C10—H10B 109.3
C2—C3—C4 120.37 (15) H10A—C10—H10B 107.9
C2—C3—H3 119.8 O3—C11—C10 108.16 (14)
C4—C3—H3 119.8 O3—C11—H11A 110.1
C5—C4—C3 119.73 (16) C10—C11—H11A 110.1
C5—C4—H4 120.1 O3—C11—H11B 110.1
C3—C4—H4 120.1 C10—C11—H11B 110.1
C4—C5—C6 120.85 (16) H11A—C11—H11B 108.4
C4—C5—H5 119.6 O3—C12—H12A 109.5
C6—C5—H5 119.6 O3—C12—H12B 109.5
C1—C6—C5 120.53 (15) H12A—C12—H12B 109.5
C1—C6—C7 121.93 (15) O3—C12—H12C 109.5
C5—C6—C7 117.53 (15) H12A—C12—H12C 109.5
N1—C7—C6 128.21 (16) H12B—C12—H12C 109.5
N1—C7—H7 115.9
O1i—Cu1—N1—C7 −173.21 (13) C3—C4—C5—C6 −1.4 (2)
O1—Cu1—N1—C7 6.79 (13) O1—C1—C6—C5 −179.61 (15)
O1i—Cu1—N1—C9 4.07 (11) C2—C1—C6—C5 1.5 (2)
O1—Cu1—N1—C9 −175.93 (11) O1—C1—C6—C7 1.2 (3)
N1i—Cu1—O1—C1 172.75 (14) C2—C1—C6—C7 −177.67 (14)
N1—Cu1—O1—C1 −7.25 (14) C4—C5—C6—C1 0.4 (2)
Cu1—O1—C1—C6 4.5 (2) C4—C5—C6—C7 179.60 (14)
Cu1—O1—C1—C2 −176.60 (10) C9—N1—C7—C6 178.39 (15)
C8—O2—C2—C3 0.2 (2) Cu1—N1—C7—C6 −4.2 (2)
C8—O2—C2—C1 179.96 (13) C1—C6—C7—N1 −1.1 (3)
O1—C1—C2—O2 −1.3 (2) C5—C6—C7—N1 179.74 (16)
C6—C1—C2—O2 177.71 (13) C7—N1—C9—C10 −101.17 (16)
O1—C1—C2—C3 178.53 (14) Cu1—N1—C9—C10 81.35 (15)
C6—C1—C2—C3 −2.5 (2) N1—C9—C10—C11 172.66 (13)
O2—C2—C3—C4 −178.62 (14) C12—O3—C11—C10 −177.34 (13)
C1—C2—C3—C4 1.6 (2) C9—C10—C11—O3 −64.55 (18)
C2—C3—C4—C5 0.4 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8B···O3ii 0.98 2.58 3.476 (2) 151
C9—H9A···O1i 0.99 2.31 2.782 (2) 108
C9—H9B···O3 0.99 2.55 2.918 (2) 102

Symmetry codes: (ii) −x, y−1/2, −z+1/2; (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2719).

References

  1. Akitsu, T. & Einaga, Y. (2004). Acta Cryst. E60, m436–m438.
  2. Bluhm, M. E., Ciesielski, M., Görls, H., Walter, O. & Döring, M. (2003). Inorg. Chem.42, 8878–8885. [DOI] [PubMed]
  3. Bruker (2004). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Castiñeiras, A., Hiller, W., Strähle, J., Romero, J., Bastida, R. & Sousa, A. (1990). Acta Cryst. C46, 770–772.
  5. Costamagna, J., Caruso, F., Vargas, J. & Manriquez, V. (1998). Inorg. Chim. Acta, 267, 151–158.
  6. King, A. W., Swann, D. A. & Waters, T. N. (1973). J. Chem. Soc. Dalton Trans. pp. 1819–1822.
  7. Lacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825–3835.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Zhang, L. Z., Bu, P.-Y., Wang, L.-J. & Cheng, P. (2001). Acta Cryst. C57, 1166–1167. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035289/lh2719sup1.cif

e-64-m1497-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035289/lh2719Isup2.hkl

e-64-m1497-Isup2.hkl (113KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES