Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 20;64(Pt 12):o2386. doi: 10.1107/S1600536808037495

3-(4-Methoxy­phen­yl)pent-2-ene-1,5-dioic acid

Ushati Das a, Shardul B Chheda b, Suhas R Pednekar b, Narendra P Karambelkar c, T N Guru Row a,*
PMCID: PMC2959923  PMID: 21581357

Abstract

In the title compound, C12H12O5, mol­ecules are linked into anti­parallel hydrogen-bonded sheets through inversion dimers generated via two O—H⋯O hydrogen bonds. Using the R 2 2(8) motif as a building block, hydrogen-bonded chains of a C 2 2(8) superstructure are then generated.

Related literature

For 3-(4-methoxy­phen­yl)-2-pentene-1,5-dioic acid as a synthon in organic chemistry, see: Kon & Nanji (1933); Linstead (1941). A number of heterocycles such as pyridine-2,6-diones can be obtained from it, see: Pednekar et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-64-o2386-scheme1.jpg

Experimental

Crystal data

  • C12H12O5

  • M r = 236.22

  • Monoclinic, Inline graphic

  • a = 5.011 (1) Å

  • b = 10.940 (2) Å

  • c = 20.438 (4) Å

  • β = 90.665 (3)°

  • V = 1120.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 292 (2) K

  • 0.52 × 0.32 × 0.25 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.902, T max = 0.973

  • 8509 measured reflections

  • 2190 independent reflections

  • 2140 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.150

  • S = 1.22

  • 2190 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037495/bq2105sup1.cif

e-64-o2386-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037495/bq2105Isup2.hkl

e-64-o2386-Isup2.hkl (105.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.636 (3) 178
O3—H3⋯O4ii 0.82 1.85 2.672 (3) 175
C4—H4A⋯O2 0.97 2.19 2.834 (3) 123

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility setup under the IRHPA–DST program at IISc.

supplementary crystallographic information

Comment

3-(4-Methoxyphenyl)-2-pentene-1,5-dioic acid (Kon & Nanji, 1933; Linstead, 1941) acts as a synthon in organic chemistry. It is a precursor for many heterocyclic ring structures due to its inherent ability to form cyclic anhydrides. A number of heterocycles like pyridine-2,6-diones can be obtained from this dicarboxylic acid (Pednekar et al., 2004). Introduction of double bond at the α,β-position of the glutaric acid, leads to the formation of a glutaconic acid. As a consequence of this, there is a noticeable change in its reactivity. The reactivity of methylene group at γ-position is primarily responsible for the electrophilic substitutions taking places at the γ-position of 3-(4-Methoxyphenyl) -2-pentene-1,5-dioic acid.

The title compound, (I) crystallizes in the monoclinic crystal system in the centrosymmetric space group P21/c with Z = 4. Fig. 1 shows the asymmetric unit and the atom-numbering scheme. Selected bond lengths and torsion angles are given in Table 1.

In the asymmetric unit, compound (I) adopts the E conformation, with the =CH-COOH group in the plane of the methoxy phenyl ring (C6—C3—C2—C1 dihedral angle is 174.73°) while the –CH2—COOH group lies nearly perpendicular to the phenyl ring (C6—C3—C4—C5 dihedral angle is 89.25 °). Within the aryl rings, the C—C bonds are in the range of 1.374 (3) to 1.395 (3) Å, which is in accordance with those found in similar structures. The C—C single bonds (1.462 (3) to 1.511 (3) Å), C—C double bond (1.339 (3) Å) and C—O double bonds (1.219 (3) Å) are within the usual range.

The molecular assembly is stabilized by extensive intermolecular O—H···O hydrogen bonding, besides intramolecular C—H···O stabilizing weak interactions (Fig. 2). O1 at (x,y,z) acts as a hydrogen-bond donor to O2 at (3 - x,2 - y,-z) to form an inversion dimer centered at (1/2,0,0) and characterized by the usual R22(8) motif (Bernstein et al., 1995). The inversion dimer acts as a building block and leads to propagation of hydrogen bonded chains to generate a C22(8) superstructure. Similarly, O3 (x,y,z) acts as a hydrogen-bond donor to O4 at (2 - x,1 - y,-z) to form an inversion dimer centered at (1,1/2,0), also characterized by the R22(8) motif. Furthermore, the combination of two inversion dimers nearly perpendicular to one another leads to the formation of an intermolecular hydrogen-bonded staircase with neighboring inversion dimers generated via O1—H1···O2 strong hydrogen bonds being connected by O3—H3···O4 interactions. The overall supramolecular packing shows a layered arrangement, with alternate layers mutually parallel.

Experimental

To synthesize compound (I), citric acid [0.13 mol] was warmed in conc. H2SO4 (98%) with constant stirring till foam disappeared to obtain acetone dicarboxylic acid. By immersing the reaction flask in an ice bath; temperature was dropped down to 0°C. Anisole [0.113 mol] was then added slowly with vigorous stirring, over a period of one hour. During the addition, temperature was maintained at 0°C. Stirring was continued for a period of 6 hrs, while maintaining the temperature between 0°C to 5°C. The reaction mixture was then poured over crushed ice with stirring. The solid obtained was then filtered and washed with water and colorless single crystals grown from hot water (yield 12%, m.p. 445–447 K). 1H NMR (DMSO):δ 12.284 (s, 2H), 7.489 (d, 2H), 6.951 (d, 2H), 6.173 (s, 1H), 4.103 (s, 2H), 3.768 (s, 3H).

Refinement

All the H atoms were located and refined isotropically resulting in C—H bond lengths of 0.93 (3)–0.97 (3) Å.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Packing diagram of (I) viewed down the c axis. The dotted lines indicate intermolecular O—H···O interactions.

Crystal data

C12H12O5 F000 = 496
Mr = 236.22 Dx = 1.401 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2190 reflections
a = 5.011 (1) Å θ = 2.0–26.0º
b = 10.940 (2) Å µ = 0.11 mm1
c = 20.438 (4) Å T = 292 (2) K
β = 90.665 (3)º Cylindrical, colourless
V = 1120.3 (4) Å3 0.52 × 0.32 × 0.25 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2190 independent reflections
Radiation source: fine-focus sealed tube 2140 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.021
T = 292(2) K θmax = 26.0º
φ and ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −6→6
Tmin = 0.903, Tmax = 0.973 k = −13→13
8509 measured reflections l = −23→25

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068 H-atom parameters constrained
wR(F2) = 0.151   w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2183P] where P = (Fo2 + 2Fc2)/3
S = 1.22 (Δ/σ)max < 0.001
2190 reflections Δρmax = 0.32 e Å3
157 parameters Δρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.2159 (4) 0.55290 (16) 0.45189 (9) 0.0564 (6)
O2 −0.4196 (4) 0.37432 (18) 0.46474 (10) 0.0687 (7)
O3 −0.2679 (5) 0.0034 (2) 0.44062 (11) 0.0841 (9)
O4 0.0612 (4) 0.13111 (19) 0.46215 (11) 0.0771 (8)
O5 0.6191 (4) 0.16520 (18) 0.15123 (9) 0.0627 (7)
C1 −0.2519 (5) 0.4369 (2) 0.43791 (11) 0.0464 (7)
C2 −0.0718 (5) 0.3943 (2) 0.38696 (11) 0.0440 (7)
C3 −0.0755 (4) 0.2846 (2) 0.35786 (11) 0.0405 (7)
C4 −0.2604 (4) 0.1838 (2) 0.37974 (12) 0.0445 (7)
C5 −0.1392 (5) 0.1029 (2) 0.43137 (11) 0.0434 (7)
C6 0.1041 (4) 0.2562 (2) 0.30272 (11) 0.0402 (7)
C7 0.1417 (5) 0.1368 (2) 0.28065 (12) 0.0490 (8)
C8 0.3102 (5) 0.1101 (2) 0.23008 (13) 0.0533 (8)
C9 0.4516 (5) 0.2015 (2) 0.19929 (12) 0.0479 (8)
C10 0.4146 (5) 0.3214 (2) 0.21898 (13) 0.0517 (8)
C11 0.2436 (5) 0.3467 (2) 0.26956 (12) 0.0488 (8)
C12 0.7575 (7) 0.2569 (3) 0.11593 (16) 0.0731 (11)
H1 −0.33195 0.57564 0.47710 0.0845*
H2 0.05853 0.44896 0.37338 0.0528*
H3 −0.19480 −0.03596 0.46989 0.1262*
H4A −0.42219 0.22012 0.39662 0.0534*
H4B −0.30956 0.13424 0.34214 0.0534*
H7 0.04987 0.07345 0.30076 0.0587*
H8 0.32931 0.02950 0.21641 0.0639*
H10 0.50463 0.38443 0.19819 0.0621*
H11 0.22033 0.42766 0.28206 0.0586*
H12A 0.63099 0.31041 0.09496 0.1099*
H12B 0.86702 0.21914 0.08343 0.1099*
H12C 0.86800 0.30320 0.14555 0.1099*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0599 (11) 0.0484 (10) 0.0612 (11) −0.0047 (8) 0.0206 (9) 0.0003 (8)
O2 0.0753 (13) 0.0570 (11) 0.0744 (13) −0.0160 (10) 0.0334 (11) −0.0041 (9)
O3 0.0967 (16) 0.0679 (13) 0.0869 (16) −0.0389 (12) −0.0369 (13) 0.0386 (11)
O4 0.0760 (14) 0.0718 (13) 0.0828 (14) −0.0282 (11) −0.0339 (12) 0.0371 (11)
O5 0.0659 (12) 0.0635 (12) 0.0590 (11) 0.0089 (9) 0.0095 (9) −0.0162 (9)
C1 0.0473 (13) 0.0478 (13) 0.0440 (12) −0.0040 (10) 0.0020 (10) 0.0071 (10)
C2 0.0465 (13) 0.0430 (12) 0.0427 (12) −0.0048 (10) 0.0041 (10) 0.0076 (10)
C3 0.0376 (11) 0.0424 (12) 0.0412 (12) −0.0005 (9) −0.0060 (9) 0.0119 (9)
C4 0.0398 (12) 0.0434 (12) 0.0503 (13) −0.0038 (10) −0.0024 (10) 0.0054 (10)
C5 0.0468 (13) 0.0424 (12) 0.0410 (12) −0.0089 (10) 0.0003 (10) 0.0056 (9)
C6 0.0401 (11) 0.0387 (11) 0.0417 (12) 0.0023 (9) −0.0058 (9) 0.0043 (9)
C7 0.0551 (14) 0.0399 (12) 0.0517 (14) −0.0056 (10) −0.0068 (11) 0.0004 (10)
C8 0.0620 (15) 0.0406 (13) 0.0569 (15) 0.0041 (11) −0.0096 (12) −0.0104 (11)
C9 0.0455 (13) 0.0532 (14) 0.0448 (13) 0.0077 (11) −0.0041 (10) −0.0082 (11)
C10 0.0545 (14) 0.0431 (13) 0.0578 (15) 0.0008 (11) 0.0128 (12) 0.0006 (11)
C11 0.0542 (14) 0.0350 (11) 0.0575 (14) 0.0025 (10) 0.0104 (11) 0.0005 (10)
C12 0.0732 (19) 0.082 (2) 0.0647 (18) 0.0137 (16) 0.0231 (15) −0.0056 (16)

Geometric parameters (Å, °)

O1—C1 1.313 (3) C7—C8 1.374 (4)
O2—C1 1.219 (3) C8—C9 1.381 (3)
O3—C5 1.280 (3) C9—C10 1.385 (3)
O4—C5 1.219 (3) C10—C11 1.378 (4)
O5—C9 1.359 (3) C2—H2 0.9300
O5—C12 1.421 (4) C4—H4A 0.9700
O1—H1 0.8200 C4—H4B 0.9700
O3—H3 0.8200 C7—H7 0.9300
C1—C2 1.462 (3) C8—H8 0.9300
C2—C3 1.339 (3) C10—H10 0.9300
C3—C6 1.483 (3) C11—H11 0.9300
C3—C4 1.511 (3) C12—H12A 0.9600
C4—C5 1.500 (3) C12—H12B 0.9600
C6—C11 1.393 (3) C12—H12C 0.9600
C6—C7 1.395 (3)
O1···O5i 3.152 (3) C10···H12A 2.7700
O1···C1ii 3.234 (3) C10···H12C 2.7400
O1···O1ii 3.129 (3) C10···H8vi 2.9200
O1···O2iii 2.636 (3) C11···H2 2.5800
O2···O1iii 2.636 (3) C11···H8vi 2.9400
O2···C4 2.834 (3) C12···H10 2.5400
O2···C5 3.358 (3) H1···O2iii 1.8200
O2···C1iii 3.318 (3) H1···C1iii 2.7300
O2···O2iii 3.212 (3) H1···H1iii 2.5500
O3···O4iv 2.672 (3) H2···C11 2.5800
O4···C5iv 3.380 (3) H2···H11 2.0600
O4···O3iv 2.672 (3) H2···O5vi 2.9100
O4···C2 3.328 (3) H3···O4iv 1.8500
O5···O1v 3.152 (3) H3···C5iv 2.7100
O1···H12Bvi 2.6300 H3···H3iv 2.4300
O2···H4A 2.1900 H4A···O2 2.1900
O2···H1iii 1.8200 H4A···C1 2.6500
O3···H12Av 2.8800 H4A···C6ix 3.0600
O4···H3iv 1.8500 H4B···C7ix 3.0100
O5···H2vii 2.9100 H4B···C7 2.6000
C1···O1ii 3.234 (3) H4B···C8ix 2.9700
C1···O2iii 3.318 (3) H4B···H7 2.1100
C2···C8i 3.558 (3) H7···C4 2.5600
C2···O4 3.328 (3) H7···C5 2.8600
C4···O2 2.834 (3) H7···H4B 2.1100
C5···O2 3.358 (3) H8···C2v 2.8700
C5···O4iv 3.380 (3) H8···C10vii 2.9200
C5···C7 3.422 (3) H8···C11vii 2.9400
C7···C5 3.422 (3) H8···H10vii 2.4900
C8···C10vii 3.596 (3) H8···H11vii 2.5200
C8···C2v 3.558 (3) H10···C12 2.5400
C10···C8vi 3.596 (3) H10···H12A 2.3500
C1···H4A 2.6500 H10···H12C 2.3000
C1···H1iii 2.7300 H10···C8vi 3.0100
C2···H8i 2.8700 H10···H8vi 2.4900
C2···H11 2.6400 H11···C2 2.6400
C4···H7 2.5600 H11···H2 2.0600
C5···H3iv 2.7100 H11···C8vi 3.1000
C5···H7 2.8600 H11···H8vi 2.5200
C6···H4Aviii 3.0600 H12A···C10 2.7700
C7···H4B 2.6000 H12A···H10 2.3500
C7···H4Bviii 3.0100 H12A···O3i 2.8800
C8···H10vii 3.0100 H12B···O1vii 2.6300
C8···H11vii 3.1000 H12C···C10 2.7400
C8···H4Bviii 2.9700 H12C···H10 2.3000
C9—O5—C12 118.0 (2) C6—C11—C10 122.8 (2)
C1—O1—H1 109.00 C1—C2—H2 117.00
C5—O3—H3 109.00 C3—C2—H2 117.00
O1—C1—C2 112.3 (2) C3—C4—H4A 109.00
O2—C1—C2 125.2 (2) C3—C4—H4B 109.00
O1—C1—O2 122.6 (2) C5—C4—H4A 109.00
C1—C2—C3 126.6 (2) C5—C4—H4B 109.00
C2—C3—C6 121.3 (2) H4A—C4—H4B 108.00
C2—C3—C4 121.9 (2) C6—C7—H7 119.00
C4—C3—C6 116.84 (19) C8—C7—H7 119.00
C3—C4—C5 113.20 (18) C7—C8—H8 120.00
O3—C5—C4 113.9 (2) C9—C8—H8 120.00
O4—C5—C4 122.6 (2) C9—C10—H10 120.00
O3—C5—O4 123.6 (2) C11—C10—H10 120.00
C7—C6—C11 116.0 (2) C6—C11—H11 119.00
C3—C6—C7 121.8 (2) C10—C11—H11 119.00
C3—C6—C11 122.2 (2) O5—C12—H12A 109.00
C6—C7—C8 121.9 (2) O5—C12—H12B 109.00
C7—C8—C9 120.8 (2) O5—C12—H12C 109.00
O5—C9—C10 124.9 (2) H12A—C12—H12B 109.00
O5—C9—C8 116.2 (2) H12A—C12—H12C 109.00
C8—C9—C10 118.8 (2) H12B—C12—H12C 109.00
C9—C10—C11 119.6 (2)
C12—O5—C9—C8 176.7 (2) C3—C4—C5—O3 −166.2 (2)
C12—O5—C9—C10 −3.4 (4) C3—C4—C5—O4 14.9 (3)
O1—C1—C2—C3 −173.4 (2) C3—C6—C7—C8 −179.3 (2)
O2—C1—C2—C3 5.9 (4) C11—C6—C7—C8 1.2 (3)
C1—C2—C3—C4 −5.7 (4) C3—C6—C11—C10 178.9 (2)
C1—C2—C3—C6 174.8 (2) C7—C6—C11—C10 −1.6 (4)
C2—C3—C4—C5 −90.4 (3) C6—C7—C8—C9 0.5 (4)
C6—C3—C4—C5 89.2 (2) C7—C8—C9—O5 178.0 (2)
C2—C3—C6—C7 166.9 (2) C7—C8—C9—C10 −1.9 (4)
C2—C3—C6—C11 −13.6 (3) O5—C9—C10—C11 −178.4 (2)
C4—C3—C6—C7 −12.7 (3) C8—C9—C10—C11 1.5 (4)
C4—C3—C6—C11 166.8 (2) C9—C10—C11—C6 0.3 (4)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+1, −z+1; (iii) −x−1, −y+1, −z+1; (iv) −x, −y, −z+1; (v) −x, y−1/2, −z+1/2; (vi) −x+1, y+1/2, −z+1/2; (vii) −x+1, y−1/2, −z+1/2; (viii) x+1, y, z; (ix) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2iii 0.82 1.82 2.636 (3) 178
O3—H3···O4iv 0.82 1.85 2.672 (3) 175
C4—H4A···O2 0.97 2.19 2.834 (3) 123

Symmetry codes: (iii) −x−1, −y+1, −z+1; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2105).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Kon, G. A. R. & Nanji, E. R. (1933). J. Chem. Soc. Trans.2, 2434–2439.
  5. Linstead, R. P. (1941). J. Chem. Soc. p. 457.
  6. Pednekar, S., Jain, A. & Menon, K. (2004). Indian J. Heterocycl. Chem.14, 1–6.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037495/bq2105sup1.cif

e-64-o2386-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037495/bq2105Isup2.hkl

e-64-o2386-Isup2.hkl (105.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES