Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 29;64(Pt 12):o2490–o2491. doi: 10.1107/S160053680803938X

5,7-Bis(benz­yloxy)-2-phenyl-4H-chromen-4-one

Angannan Nallasivam a, Munirathinam Nethaji b, Nagarajan Vembu c,*, Buckle Jaswant d, Nagarajan Sulochana a
PMCID: PMC2959925  PMID: 21581453

Abstract

In the title compound, C29H22O4, the chromene ring is almost planar with a small puckering [0.143 (2) Å]. The crystal structure is stabilized by C—H⋯O and C—H⋯π inter­actions. Edge-to-face (centroid–centroid distances of 3.894 and 3.673 Å) and face-to-face (centroid–centroid distance of 3.460 Å) π–π-ring electron inter­actions are also observed.

Related literature

For the biological and pharmacological properties of benzopyrans and their derivatives, see: Brooks (1998); Hatakeyama et al. (1988); Hyana & Saimoto (1987); Tang et al. (2007). For the importance of 4H-chromenes, see Liu et al. (2007); Wang, Fang et al. (2003); Wang, Zhang et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995); Desiraju (1989); Desiraju & Steiner (1999); Etter (1990).graphic file with name e-64-o2490-scheme1.jpg

Experimental

Crystal data

  • C29H22O4

  • M r = 434.47

  • Triclinic, Inline graphic

  • a = 9.496 (3) Å

  • b = 11.572 (3) Å

  • c = 11.767 (3) Å

  • α = 66.564 (4)°

  • β = 79.668 (5)°

  • γ = 73.836 (5)°

  • V = 1136.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.45 × 0.33 × 0.23 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998) T min = 0.963, T max = 0.981

  • 13435 measured reflections

  • 5302 independent reflections

  • 3534 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.155

  • S = 1.05

  • 5302 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803938X/fb2125sup1.cif

e-64-o2490-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803938X/fb2125Isup2.hkl

e-64-o2490-Isup2.hkl (259.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O17i 0.93 2.57 3.212 (3) 127
C30—H30⋯Cg1ii 0.93 3.12 3.838 135
C8—H8⋯Cg2iii 0.93 3.29 4.066 142
C27—H27BCg2iii 0.97 3.18 4.083 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 and Cg2 are the centroids of the C20–C25 and C28–C33 rings, respectively.

Acknowledgments

AN thanks Dr Naresh Kumar and Dr G. Vengatachalam, School of Chemistry, Bharathidasan University, Tiruchirappalli, and Organica Aromatics Pvt Ltd Bangalore, India, for providing laboratory facilities.

supplementary crystallographic information

Comment

Chromenes (benzopyrans) and their derivatives have numerous biological and pharmacological properties (Tang et al., 2007) such as antisterility (Brooks, 1998) and anticancer activity (Hyana & Saimoto, 1987). In addition, polyfunctionalized chromene units are present in numerous natural products (Hatakeyama et al., 1988). 4H-chromenes are important synthons for some natural products (Liu et al., 2007). As a part of our structural investigations on 4H-chromene derivatives and compounds containing the benzopyran fragment, the single-crystal X-ray diffraction study on the title compound was carried out.

The chromene ring is almost planar similarly as those found in the related chromene derivatives (Wang, Zhang et al., 2003; Wang, Fang et al., 2003). The total puckering amplitude of the chromene ring is 0.143 (2) Å in the title structure. The interplanar angle between the chromene ring and the 2-phenyl ring is 6.8 (2)° thereby indicating the almost coplanar arrangement (Fig. 1). The benzyl group at C5 is slightly distorted from coplanarity with the chromene ring whereas the benzyl group at C7 is clearly non-coplanar as discerned from the respective interplanar angles of 7.6 (1)° and 70.01 (7)°.

The crystal structure is stabilized by the interplay of C–H···O and C–H···π interactions (Fig. 2, Table 1; Desiraju, 1989; Desiraju & Steiner, 1999). The C12–H12···O1 interaction is involved in a motif of a graph set S(5) (Bernstein et al., 1995; Etter, 1990). In another S(5) motif, C21–H21···O18 interaction is involved. The C8–H8···Cg2ii and C27–H27···Cg2ii (Cg2 is the centroid of the ring C28\C29···C33) interactions take part in the motif of the graph set R12(7) where the entire Cg2 ring C28\C29···C33 is considered as a single acceptor atom.

There are two edge-to-face π···π interactions between Cg3 (O1\C2\C3\C4\C9\C10) and Cg4 (C5\C6\C7\C8\C9\C10) [2-x, 2-y, -z] at 3.894 Å with α = 4.44, β = 26.68, γ = 31.06° and perpendicular distances being 3.336 and 3.480 Å, Cg4 and Cg1 (C20\C21\C22\C23\C24\C25) [1-x, 2-y, -z] at 3.673 Å with α = 6.87, β = 20.69, γ = 16.31° and perpendicular distances being 3.525 and 3.436 Å. There is a face to face π···π interaction between two symmetery related Cg4 (2-x, 2-y, -z) rings at 3.460 Å with α = 0.00, β = 10.24, γ = 10.24° and perpendicular distances being 3.405 Å (α is the dihedral angle between the planes I and J where I is the plane of centroid 1 and J is the plane of centroid 2, β is the angle between the vector Cg(I)→Cg(J) and the normal to plane I, γ is the angle between the vector Cg(I)→ Cg(J) and the normal to plane J, the two perpendicular distances denote the perpendicular distances of Cg(I) on ring J and Cg(J) on ring I).

Experimental

A suspension of chrysin (3.93 mmol, 1.00 g) and potassium carbonate (11.81 mmol, 1.64 g) in dimethyl formamide (10 ml) were added into a round bottom flask. The reaction mixture was heated to 383 K for 2–3 h. The reaction mixture was then cooled to 353 K and benzyl chloride (15.74 mmol, 1.99 g) was slowly added to the reaction mixture with the help of a dropping funnel. The reaction mixture was maintained for 8–9 h at 353 K and monitored by a high pressure liquid chromatography (HPLC). After completion of the reaction, the content was quenched with water and stirred for 30–45 min at 303 K. The obtained crude solid was filtered and washed with plenty of water followed by methanol and dried under vacuum at 343 K. The crude product was dissolved in 20 ml of 1:1 (volume) mixture of dichloromethane and n-hexane. The clear solution was kept for a week without stirring. Diffraction quality prism shaped crystals of average size 0.3 mm were obtained which were filtered and washed with n-hexane and dried under vacuum at 343 K. Yield: 90%

Refinement

All the H-atoms were observed in the difference electron density map. However, they were situated into idealized positions with C–H = 0.93 and 0.97 Å for aryl and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The title molecule showing the displacement ellipsoids depicted at the 50% probability level for all non-H atoms. The hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The molecular packing viewed down the a-axis. Dashed lines represent weak C–H···O interactions.

Crystal data

C29H22O4 Z = 2
Mr = 434.47 F000 = 456
Triclinic, P1 Dx = 1.270 Mg m3
Hall symbol: -P 1 Melting point = 439–441 K
a = 9.496 (3) Å Mo Kα radiation λ = 0.71073 Å
b = 11.572 (3) Å Cell parameters from 589 reflections
c = 11.767 (3) Å θ = 2.5–27.5º
α = 66.564 (4)º µ = 0.08 mm1
β = 79.668 (5)º T = 293 (2) K
γ = 73.836 (5)º Prism, colourless
V = 1136.1 (5) Å3 0.45 × 0.33 × 0.23 mm

Data collection

Bruker SMART APEX CCD diffractometer 5302 independent reflections
Radiation source: fine-focus sealed tube 3534 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.018
Detector resolution: 0.3 pixels mm-1 θmax = 28.0º
T = 293(2) K θmin = 1.9º
ω scans h = −12→12
Absorption correction: multi-scan(SADABS; Sheldrick, 1998) k = −15→15
Tmin = 0.963, Tmax = 0.981 l = −15→15
13435 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 H-atom parameters constrained
wR(F2) = 0.155   w = 1/[σ2(Fo2) + (0.0655P)2 + 0.1818P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
5302 reflections Δρmax = 0.20 e Å3
298 parameters Δρmin = −0.23 e Å3
88 constraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.10569 (12) 0.71663 (11) 0.18466 (11) 0.0536 (3)
C2 1.13210 (18) 0.63546 (16) 0.12145 (16) 0.0511 (4)
C3 1.0413 (2) 0.65365 (18) 0.03827 (18) 0.0619 (5)
H3 1.0625 0.5959 −0.0026 0.074*
C4 0.91202 (19) 0.75798 (18) 0.00843 (17) 0.0585 (5)
C5 0.78763 (16) 0.96910 (16) 0.04245 (15) 0.0487 (4)
C6 0.77971 (17) 1.05076 (16) 0.10297 (15) 0.0502 (4)
H6 0.7084 1.1279 0.0852 0.060*
C7 0.87887 (17) 1.01797 (16) 0.19122 (15) 0.0483 (4)
C8 0.98609 (17) 0.90462 (16) 0.21876 (15) 0.0503 (4)
H8 1.0521 0.8825 0.2777 0.060*
C9 0.89526 (17) 0.85064 (16) 0.06822 (15) 0.0482 (4)
C10 0.99182 (16) 0.82506 (15) 0.15545 (15) 0.0469 (4)
C11 1.26652 (19) 0.53363 (16) 0.15672 (17) 0.0547 (4)
C12 1.3574 (2) 0.53208 (19) 0.23695 (19) 0.0690 (5)
H12 1.3321 0.5957 0.2711 0.083*
C13 1.4850 (3) 0.4377 (2) 0.2670 (2) 0.0883 (7)
H13 1.5451 0.4385 0.3209 0.106*
C14 1.5238 (3) 0.3431 (2) 0.2185 (3) 0.0958 (8)
H14 1.6105 0.2799 0.2381 0.115*
C15 1.4336 (3) 0.3424 (2) 0.1410 (3) 0.1085 (10)
H15 1.4585 0.2773 0.1087 0.130*
C16 1.3067 (2) 0.4365 (2) 0.1098 (2) 0.0867 (7)
H16 1.2470 0.4346 0.0562 0.104*
O17 0.82679 (16) 0.76574 (15) −0.06285 (15) 0.0858 (5)
O18 0.69794 (12) 0.99537 (12) −0.04619 (11) 0.0609 (3)
C19 0.59954 (19) 1.11810 (18) −0.08836 (17) 0.0587 (5)
H19A 0.6522 1.1861 −0.1123 0.070*
H19B 0.5245 1.1272 −0.0227 0.070*
C20 0.52982 (18) 1.12834 (19) −0.19821 (16) 0.0588 (5)
C21 0.5695 (2) 1.0332 (2) −0.24758 (18) 0.0691 (5)
H21 0.6430 0.9601 −0.2137 0.083*
C22 0.5008 (3) 1.0456 (3) −0.3475 (2) 0.0871 (7)
H22 0.5285 0.9806 −0.3801 0.105*
C23 0.3932 (3) 1.1517 (3) −0.3984 (2) 0.0995 (8)
H23 0.3478 1.1597 −0.4657 0.119*
C24 0.3522 (3) 1.2469 (3) −0.3498 (2) 0.0956 (8)
H24 0.2784 1.3196 −0.3843 0.115*
C25 0.4196 (2) 1.2359 (2) −0.2496 (2) 0.0767 (6)
H25 0.3907 1.3009 −0.2170 0.092*
O26 0.86159 (12) 1.10706 (11) 0.24369 (11) 0.0595 (3)
C27 0.9671 (2) 1.08276 (19) 0.32789 (18) 0.0655 (5)
H27A 1.0648 1.0779 0.2855 0.079*
H27B 0.9663 1.0009 0.3963 0.079*
C28 0.9288 (2) 1.19031 (17) 0.37608 (16) 0.0578 (5)
C29 0.8056 (2) 1.2047 (2) 0.45477 (18) 0.0678 (5)
H29 0.7427 1.1492 0.4750 0.081*
C30 0.7731 (3) 1.2992 (2) 0.5043 (2) 0.0807 (6)
H30 0.6885 1.3082 0.5569 0.097*
C31 0.8657 (4) 1.3795 (2) 0.4758 (2) 0.1003 (9)
H31 0.8448 1.4434 0.5095 0.120*
C32 0.9893 (4) 1.3666 (3) 0.3978 (3) 0.1228 (12)
H32 1.0527 1.4214 0.3787 0.147*
C33 1.0199 (3) 1.2724 (3) 0.3475 (2) 0.0965 (8)
H33 1.1034 1.2647 0.2936 0.116*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0515 (6) 0.0537 (7) 0.0603 (7) 0.0017 (5) −0.0168 (5) −0.0296 (6)
C2 0.0536 (9) 0.0488 (9) 0.0564 (10) −0.0114 (7) −0.0058 (8) −0.0247 (8)
C3 0.0644 (11) 0.0605 (11) 0.0732 (12) −0.0072 (9) −0.0160 (9) −0.0375 (10)
C4 0.0571 (10) 0.0673 (11) 0.0617 (11) −0.0133 (9) −0.0150 (8) −0.0309 (9)
C5 0.0392 (8) 0.0589 (10) 0.0505 (9) −0.0107 (7) −0.0094 (7) −0.0207 (8)
C6 0.0413 (8) 0.0527 (9) 0.0542 (10) −0.0030 (7) −0.0119 (7) −0.0189 (8)
C7 0.0452 (8) 0.0530 (9) 0.0508 (9) −0.0063 (7) −0.0084 (7) −0.0246 (8)
C8 0.0461 (9) 0.0573 (10) 0.0523 (9) −0.0024 (7) −0.0154 (7) −0.0265 (8)
C9 0.0433 (8) 0.0562 (10) 0.0500 (9) −0.0111 (7) −0.0063 (7) −0.0236 (8)
C10 0.0417 (8) 0.0505 (9) 0.0489 (9) −0.0060 (7) −0.0066 (7) −0.0203 (7)
C11 0.0560 (10) 0.0471 (9) 0.0635 (11) −0.0069 (8) −0.0085 (8) −0.0246 (8)
C12 0.0745 (12) 0.0592 (11) 0.0775 (13) 0.0086 (9) −0.0264 (10) −0.0371 (10)
C13 0.0869 (15) 0.0769 (14) 0.1058 (18) 0.0158 (12) −0.0460 (14) −0.0452 (14)
C14 0.0860 (16) 0.0741 (15) 0.129 (2) 0.0242 (12) −0.0414 (15) −0.0530 (15)
C15 0.1037 (18) 0.0862 (17) 0.159 (3) 0.0276 (14) −0.0466 (18) −0.0866 (18)
C16 0.0804 (14) 0.0795 (15) 0.1213 (19) 0.0102 (12) −0.0371 (13) −0.0655 (14)
O17 0.0821 (10) 0.0934 (11) 0.1075 (11) 0.0004 (8) −0.0444 (9) −0.0614 (9)
O18 0.0536 (7) 0.0666 (8) 0.0682 (8) −0.0024 (6) −0.0269 (6) −0.0290 (6)
C19 0.0521 (10) 0.0597 (11) 0.0642 (11) −0.0109 (8) −0.0187 (8) −0.0178 (9)
C20 0.0453 (9) 0.0740 (12) 0.0528 (10) −0.0185 (9) −0.0099 (8) −0.0130 (9)
C21 0.0544 (11) 0.0946 (15) 0.0583 (11) −0.0131 (10) −0.0102 (9) −0.0284 (11)
C22 0.0783 (14) 0.127 (2) 0.0646 (13) −0.0213 (14) −0.0128 (11) −0.0418 (14)
C23 0.0856 (17) 0.147 (3) 0.0628 (14) −0.0260 (17) −0.0273 (12) −0.0263 (16)
C24 0.0728 (15) 0.108 (2) 0.0810 (16) −0.0075 (13) −0.0355 (12) −0.0054 (15)
C25 0.0621 (12) 0.0810 (14) 0.0764 (14) −0.0089 (10) −0.0246 (10) −0.0151 (11)
O26 0.0566 (7) 0.0597 (7) 0.0690 (8) 0.0068 (6) −0.0251 (6) −0.0357 (6)
C27 0.0673 (11) 0.0692 (12) 0.0670 (12) 0.0059 (9) −0.0303 (9) −0.0360 (10)
C28 0.0663 (11) 0.0582 (11) 0.0517 (10) −0.0029 (9) −0.0181 (9) −0.0249 (9)
C29 0.0647 (12) 0.0765 (13) 0.0680 (12) −0.0101 (10) −0.0132 (10) −0.0333 (11)
C30 0.0873 (15) 0.0879 (16) 0.0690 (14) 0.0021 (13) −0.0108 (11) −0.0439 (12)
C31 0.167 (3) 0.0714 (15) 0.0735 (16) −0.0217 (17) −0.0086 (17) −0.0416 (13)
C32 0.192 (3) 0.120 (2) 0.098 (2) −0.093 (2) 0.033 (2) −0.0632 (19)
C33 0.119 (2) 0.116 (2) 0.0828 (16) −0.0573 (17) 0.0248 (14) −0.0581 (15)

Geometric parameters (Å, °)

O1—C2 1.3623 (19) C19—C20 1.505 (2)
O1—C10 1.3772 (19) C19—H19A 0.9700
C2—C3 1.336 (2) C19—H19B 0.9700
C2—C11 1.468 (2) C20—C21 1.375 (3)
C3—C4 1.442 (2) C20—C25 1.384 (3)
C3—H3 0.9300 C21—C22 1.386 (3)
C4—O17 1.2287 (19) C21—H21 0.9300
C4—C9 1.461 (2) C22—C23 1.359 (3)
C5—O18 1.3521 (18) C22—H22 0.9300
C5—C6 1.372 (2) C23—C24 1.369 (4)
C5—C9 1.420 (2) C23—H23 0.9300
C6—C7 1.395 (2) C24—C25 1.386 (3)
C6—H6 0.9300 C24—H24 0.9300
C7—O26 1.3590 (19) C25—H25 0.9300
C7—C8 1.378 (2) O26—C27 1.4291 (19)
C8—C10 1.382 (2) C27—C28 1.496 (2)
C8—H8 0.9300 C27—H27A 0.9700
C9—C10 1.388 (2) C27—H27B 0.9700
C11—C16 1.376 (2) C28—C33 1.365 (3)
C11—C12 1.381 (2) C28—C29 1.371 (3)
C12—C13 1.376 (3) C29—C30 1.373 (3)
C12—H12 0.9300 C29—H29 0.9300
C13—C14 1.364 (3) C30—C31 1.361 (4)
C13—H13 0.9300 C30—H30 0.9300
C14—C15 1.362 (3) C31—C32 1.367 (4)
C14—H14 0.9300 C31—H31 0.9300
C15—C16 1.373 (3) C32—C33 1.378 (3)
C15—H15 0.9300 C32—H32 0.9300
C16—H16 0.9300 C33—H33 0.9300
O18—C19 1.415 (2)
C2—O1—C10 119.99 (12) O18—C19—H19A 110.1
C3—C2—O1 120.68 (15) C20—C19—H19A 110.1
C3—C2—C11 127.46 (16) O18—C19—H19B 110.1
O1—C2—C11 111.85 (14) C20—C19—H19B 110.1
C2—C3—C4 123.57 (16) H19A—C19—H19B 108.4
C2—C3—H3 118.2 C21—C20—C25 118.81 (18)
C4—C3—H3 118.2 C21—C20—C19 122.32 (17)
O17—C4—C3 121.05 (16) C25—C20—C19 118.86 (19)
O17—C4—C9 124.67 (17) C20—C21—C22 120.4 (2)
C3—C4—C9 114.27 (14) C20—C21—H21 119.8
O18—C5—C6 123.46 (15) C22—C21—H21 119.8
O18—C5—C9 115.42 (14) C23—C22—C21 120.6 (2)
C6—C5—C9 121.11 (14) C23—C22—H22 119.7
C5—C6—C7 119.92 (15) C21—C22—H22 119.7
C5—C6—H6 120.0 C22—C23—C24 119.6 (2)
C7—C6—H6 120.0 C22—C23—H23 120.2
O26—C7—C8 124.22 (14) C24—C23—H23 120.2
O26—C7—C6 114.59 (14) C23—C24—C25 120.6 (2)
C8—C7—C6 121.18 (15) C23—C24—H24 119.7
C7—C8—C10 117.46 (14) C25—C24—H24 119.7
C7—C8—H8 121.3 C20—C25—C24 120.0 (2)
C10—C8—H8 121.3 C20—C25—H25 120.0
C10—C9—C5 115.96 (15) C24—C25—H25 120.0
C10—C9—C4 119.12 (15) C7—O26—C27 116.84 (13)
C5—C9—C4 124.91 (14) O26—C27—C28 108.76 (14)
O1—C10—C8 113.76 (13) O26—C27—H27A 109.9
O1—C10—C9 121.86 (14) C28—C27—H27A 109.9
C8—C10—C9 124.36 (15) O26—C27—H27B 109.9
C16—C11—C12 117.70 (17) C28—C27—H27B 109.9
C16—C11—C2 120.75 (16) H27A—C27—H27B 108.3
C12—C11—C2 121.55 (15) C33—C28—C29 118.51 (19)
C13—C12—C11 120.97 (18) C33—C28—C27 120.59 (19)
C13—C12—H12 119.5 C29—C28—C27 120.83 (19)
C11—C12—H12 119.5 C28—C29—C30 121.4 (2)
C14—C13—C12 120.5 (2) C28—C29—H29 119.3
C14—C13—H13 119.8 C30—C29—H29 119.3
C12—C13—H13 119.8 C31—C30—C29 119.4 (2)
C15—C14—C13 119.0 (2) C31—C30—H30 120.3
C15—C14—H14 120.5 C29—C30—H30 120.3
C13—C14—H14 120.5 C30—C31—C32 120.1 (2)
C14—C15—C16 121.0 (2) C30—C31—H31 119.9
C14—C15—H15 119.5 C32—C31—H31 119.9
C16—C15—H15 119.5 C31—C32—C33 119.9 (3)
C15—C16—C11 120.8 (2) C31—C32—H32 120.0
C15—C16—H16 119.6 C33—C32—H32 120.0
C11—C16—H16 119.6 C28—C33—C32 120.7 (2)
C5—O18—C19 119.10 (13) C28—C33—H33 119.7
O18—C19—C20 107.99 (15) C32—C33—H33 119.7
C10—O1—C2—C3 −5.7 (2) C2—C11—C12—C13 −178.5 (2)
C10—O1—C2—C11 174.00 (14) C11—C12—C13—C14 −0.4 (4)
O1—C2—C3—C4 0.4 (3) C12—C13—C14—C15 −0.7 (4)
C11—C2—C3—C4 −179.18 (17) C13—C14—C15—C16 1.1 (5)
C2—C3—C4—O17 −175.26 (19) C14—C15—C16—C11 −0.4 (5)
C2—C3—C4—C9 5.6 (3) C12—C11—C16—C15 −0.7 (4)
O18—C5—C6—C7 −178.38 (15) C2—C11—C16—C15 178.9 (2)
C9—C5—C6—C7 0.2 (3) C6—C5—O18—C19 6.3 (2)
C5—C6—C7—O26 179.15 (14) C9—C5—O18—C19 −172.41 (14)
C5—C6—C7—C8 0.3 (3) C5—O18—C19—C20 171.97 (14)
O26—C7—C8—C10 −178.51 (15) O18—C19—C20—C21 −3.9 (2)
C6—C7—C8—C10 0.2 (3) O18—C19—C20—C25 174.59 (16)
O18—C5—C9—C10 177.49 (14) C25—C20—C21—C22 0.4 (3)
C6—C5—C9—C10 −1.2 (2) C19—C20—C21—C22 178.92 (18)
O18—C5—C9—C4 −1.2 (2) C20—C21—C22—C23 0.0 (3)
C6—C5—C9—C4 −179.92 (16) C21—C22—C23—C24 −0.3 (4)
O17—C4—C9—C10 174.32 (18) C22—C23—C24—C25 0.2 (4)
C3—C4—C9—C10 −6.5 (2) C21—C20—C25—C24 −0.5 (3)
O17—C4—C9—C5 −7.0 (3) C19—C20—C25—C24 −179.12 (19)
C3—C4—C9—C5 172.14 (16) C23—C24—C25—C20 0.3 (4)
C2—O1—C10—C8 −174.37 (14) C8—C7—O26—C27 3.3 (3)
C2—O1—C10—C9 4.4 (2) C6—C7—O26—C27 −175.52 (15)
C7—C8—C10—O1 177.45 (14) C7—O26—C27—C28 −179.56 (15)
C7—C8—C10—C9 −1.3 (3) O26—C27—C28—C33 −114.1 (2)
C5—C9—C10—O1 −176.87 (14) O26—C27—C28—C29 69.2 (2)
C4—C9—C10—O1 1.9 (2) C33—C28—C29—C30 0.1 (3)
C5—C9—C10—C8 1.8 (2) C27—C28—C29—C30 176.85 (18)
C4—C9—C10—C8 −179.40 (16) C28—C29—C30—C31 −0.7 (3)
C3—C2—C11—C16 −5.0 (3) C29—C30—C31—C32 0.5 (4)
O1—C2—C11—C16 175.35 (18) C30—C31—C32—C33 0.3 (5)
C3—C2—C11—C12 174.54 (19) C29—C28—C33—C32 0.7 (4)
O1—C2—C11—C12 −5.1 (2) C27—C28—C33—C32 −176.1 (2)
C16—C11—C12—C13 1.1 (3) C31—C32—C33—C28 −0.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12—H12···O1 0.93 2.37 2.701 (2) 101
C21—H21···O18 0.93 2.33 2.685 (2) 102
C16—H16···O17i 0.93 2.57 3.212 (3) 127
C30—H30···Cg1ii 0.93 3.12 3.838 135
C8—H8···Cg2iii 0.93 3.30 4.066 142
C27—H27B···Cg2iii 0.97 3.18 4.083 156

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x, y, z+1; (iii) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2125).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Brooks, G. T. (1998). Pestic. Sci.22, 41–50.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, pp. 125–167. Amsterdam: Elsevier.
  5. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–40. New York: Oxford University Press.
  6. Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  7. Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202–1204.
  8. Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.
  9. Liu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90–o91.
  10. Sheldrick, G. M. (1998). SADABS University of Gottingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.
  14. Wang, J.-F., Fang, M.-J., Huang, H.-Q., Li, G.-L., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1517–o1518.
  15. Wang, J.-F., Zhang, Y.-J., Fang, M.-J., Huang, Y.-J., Wei, Z.-B., Zheng, Z.-H., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1244–o1245.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803938X/fb2125sup1.cif

e-64-o2490-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803938X/fb2125Isup2.hkl

e-64-o2490-Isup2.hkl (259.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES