Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2361. doi: 10.1107/S1600536808036416

(4R)-4-(2-Allyl-2H-1,2,3-triazol-4-yl)-1,2-O-isopropyl­idene-l-threose

Sarah F Jenkinson a,*, Daniel Best a, Francis X Wilson b, George W J Fleet a, David J Watkin c
PMCID: PMC2959937  PMID: 21581334

Abstract

X-ray crystallography unequivocally confirmed the structure of the title compound, C12H17N3O4, as (4R)-4-(2-allyl-2H-1,2,3-triazol-4-yl)-1,2-O-isopropyl­idene-l-threose. The absolute configuration was determined by the use of d-glucorono-3,6-lactone as the starting material. The crystal structure consists of hydrogen-bonded chains of mol­ecules running parallel to the a axis. There are no unusual packing features.

Related literature

For related background information on the biotechnological inter­conversion of monosaccharides and other sugars, see: Izumori (2002, 2006); Granstrom et al. (2004); Yoshihara et al. (2008); Booth et al. (2008); Jenkinson, Booth, Gullapalli et al. (2008); Jenkinson, Booth, Yoshihara et al. (2008); Gullapalli et al. (2007); Jenkinson, Booth, Best et al. (2008). For related literature, see: Görbitz (1999).graphic file with name e-64-o2361-scheme1.jpg

Experimental

Crystal data

  • C12H17N3O4

  • M r = 267.28

  • Orthorhombic, Inline graphic

  • a = 5.3959 (2) Å

  • b = 9.6233 (3) Å

  • c = 25.4532 (9) Å

  • V = 1321.69 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.30 × 0.20 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.82, T max = 1.00 (expected range = 0.817–0.997)

  • 9466 measured reflections

  • 1528 independent reflections

  • 1194 reflections with I > 2σ(I)

  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.098

  • S = 0.93

  • 1528 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036416/lh2725sup1.cif

e-64-o2361-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036416/lh2725Isup2.hkl

e-64-o2361-Isup2.hkl (76.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H111⋯O8i 0.88 1.95 2.822 (4) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Oxford University Crystallography Service for access to equipment.

supplementary crystallographic information

Comment

The process for the biotechnological interconversion of monosaccharides developed by Izumori (Izumori, 2002; Izumori, 2006; Granstrom et al., 2004), has been seen to be generally applicable to other sugar derivatives such as 1-deoxy sugars (Yoshihara et al., 2008; Booth et al. 2008; Jenkinson, Booth, Gullapalli et al., 2008; Jenkinson, Booth, Yoshihara et al., 2008; Gullapalli et al., 2007). To evaluate the applicability of this process to 2-deoxy sugars and their derivatives a variety of carbon chain extension reactions were investigated, for example, addition of lithium tert-butyl acetate to sugar lactones (Jenkinson, Booth, Best et al., 2008) or addition of allyl magnesium bromide to an aldose.

Reaction of lactol 1 (Fig. 1) with 2.5 equivalents of allyl magnesium bromide generated a single isolable product along with recovered starting material. X-ray crystallography identified the compound as 4R-4-(2-allyl-2H-1,2,3-triazole-4-yl)-1,2-O-isopropylidene-L-threose 2 (Fig. 2) rather than the anticipated addition product 3. The crystal structure was seen to consist of alternating chains of hydrogen-bonded molecules running parallel to the a-axis (Fig. 3).Only classic intermolecular hydrogen bonding has been considered. The absolute configuration was determined from the starting material.

Experimental

The title compound was recrystallized by vapour diffusion from a mixture of diethyl ether and cyclohexane: m.p. 361–364 K; [α]D25 -13.9 (c, 0.69 in CHCl3).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.22) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

Synthetic Scheme

Fig. 2.

Fig. 2.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 3.

Fig. 3.

Packing diagram for the title compound projected along the b-axis. Hydrogen bonds are indicated by dotted lines.

Crystal data

C12H17N3O4 F000 = 568
Mr = 267.28 Dx = 1.343 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1500 reflections
a = 5.3959 (2) Å θ = 5–26º
b = 9.6233 (3) Å µ = 0.10 mm1
c = 25.4532 (9) Å T = 150 K
V = 1321.69 (8) Å3 Plate, colourless
Z = 4 0.30 × 0.20 × 0.03 mm

Data collection

Nonius KappaCCD diffractometer 1194 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.096
T = 150 K θmax = 26.0º
ω scans θmin = 5.3º
Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −6→6
Tmin = 0.82, Tmax = 1.00 k = −11→11
9466 measured reflections l = −30→31
1528 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041   w = 1/[σ2(F2) + (0.04P)2 + 0.59P], where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.098 (Δ/σ)max = 0.0001
S = 0.93 Δρmax = 0.32 e Å3
1528 reflections Δρmin = −0.33 e Å3
172 parameters Extinction correction: None
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.0189 (4) 0.60546 (19) 0.14662 (7) 0.0395
C2 1.0670 (5) 0.7244 (3) 0.17865 (11) 0.0366
C3 0.8174 (6) 0.8008 (3) 0.17938 (10) 0.0374
O4 0.6798 (4) 0.7427 (2) 0.13781 (7) 0.0436
C5 0.8248 (6) 0.6390 (3) 0.11107 (11) 0.0407
C6 0.9294 (7) 0.7022 (4) 0.06094 (12) 0.0579
C7 0.6697 (7) 0.5117 (4) 0.10209 (15) 0.0608
O8 0.7063 (4) 0.7727 (2) 0.22853 (7) 0.0394
C9 0.8362 (6) 0.6572 (3) 0.25347 (11) 0.0371
C10 1.1041 (5) 0.6779 (3) 0.23535 (11) 0.0371
O11 1.2131 (4) 0.7866 (2) 0.26506 (8) 0.0425
C12 0.7862 (6) 0.6641 (3) 0.31060 (11) 0.0359
N13 0.6792 (5) 0.5578 (2) 0.33594 (9) 0.0372
N14 0.6586 (5) 0.6032 (2) 0.38514 (9) 0.0372
N15 0.7386 (5) 0.7336 (2) 0.39351 (9) 0.0406
C16 0.8223 (6) 0.7724 (3) 0.34651 (11) 0.0396
C17 0.5321 (6) 0.5246 (3) 0.42598 (12) 0.0404
C18 0.2777 (6) 0.5809 (3) 0.43621 (12) 0.0439
C19 0.1964 (7) 0.6160 (3) 0.48272 (12) 0.0499
H21 1.2090 0.7805 0.1665 0.0468*
H31 0.8420 0.9045 0.1748 0.0468*
H61 0.7897 0.7321 0.0390 0.0897*
H62 1.0308 0.6330 0.0433 0.0901*
H63 1.0262 0.7815 0.0727 0.0903*
H73 0.5330 0.5360 0.0790 0.0953*
H72 0.7699 0.4402 0.0859 0.0956*
H71 0.6044 0.4809 0.1356 0.0950*
H91 0.7757 0.5674 0.2382 0.0502*
H101 1.1990 0.5896 0.2360 0.0485*
H161 0.8989 0.8595 0.3389 0.0499*
H171 0.5156 0.4288 0.4138 0.0506*
H172 0.6324 0.5300 0.4584 0.0502*
H181 0.1730 0.5914 0.4060 0.0573*
H192 0.0314 0.6524 0.4857 0.0646*
H191 0.3038 0.6046 0.5128 0.0648*
H111 1.3679 0.7927 0.2545 0.0633*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0413 (12) 0.0331 (10) 0.0440 (11) 0.0027 (10) −0.0005 (10) −0.0048 (9)
C2 0.0328 (14) 0.0335 (15) 0.0434 (16) −0.0013 (13) 0.0025 (13) −0.0016 (13)
C3 0.0372 (14) 0.0345 (14) 0.0406 (15) 0.0007 (14) 0.0016 (14) 0.0007 (13)
O4 0.0369 (10) 0.0492 (12) 0.0447 (11) 0.0076 (11) −0.0044 (10) −0.0066 (10)
C5 0.0407 (16) 0.0378 (15) 0.0436 (16) 0.0052 (15) −0.0022 (15) −0.0015 (13)
C6 0.070 (2) 0.058 (2) 0.0457 (18) 0.0116 (19) 0.0039 (18) 0.0051 (17)
C7 0.057 (2) 0.0484 (19) 0.077 (2) −0.007 (2) −0.013 (2) −0.0080 (18)
O8 0.0321 (10) 0.0450 (11) 0.0411 (10) 0.0061 (10) 0.0042 (9) 0.0053 (9)
C9 0.0349 (15) 0.0313 (14) 0.0451 (17) 0.0007 (13) −0.0013 (14) 0.0035 (12)
C10 0.0315 (15) 0.0367 (15) 0.0430 (16) 0.0022 (12) 0.0012 (13) −0.0064 (14)
O11 0.0292 (10) 0.0498 (11) 0.0486 (11) −0.0048 (10) 0.0023 (9) −0.0075 (10)
C12 0.0324 (14) 0.0326 (13) 0.0427 (15) 0.0006 (13) 0.0015 (14) 0.0005 (12)
N13 0.0381 (13) 0.0328 (12) 0.0408 (13) −0.0013 (12) 0.0040 (12) −0.0010 (10)
N14 0.0380 (13) 0.0320 (12) 0.0415 (13) −0.0020 (12) 0.0021 (12) 0.0009 (11)
N15 0.0456 (14) 0.0334 (12) 0.0429 (13) −0.0006 (12) 0.0012 (11) −0.0013 (11)
C16 0.0408 (15) 0.0332 (14) 0.0447 (16) 0.0013 (15) 0.0017 (14) 0.0009 (13)
C17 0.0420 (16) 0.0359 (15) 0.0433 (17) 0.0005 (14) 0.0062 (14) 0.0027 (14)
C18 0.0396 (17) 0.0435 (16) 0.0486 (17) −0.0038 (15) 0.0027 (15) 0.0003 (15)
C19 0.0482 (18) 0.0462 (17) 0.0552 (19) −0.0032 (18) 0.0095 (18) −0.0042 (15)

Geometric parameters (Å, °)

O1—C2 1.429 (3) C9—C12 1.481 (4)
O1—C5 1.421 (4) C9—H91 1.003
C2—C3 1.535 (4) C10—O11 1.419 (3)
C2—C10 1.524 (4) C10—H101 0.992
C2—H21 0.987 O11—H111 0.879
C3—O4 1.409 (3) C12—N13 1.340 (3)
C3—O8 1.414 (3) C12—C16 1.400 (4)
C3—H31 1.013 N13—N14 1.331 (3)
O4—C5 1.439 (3) N14—N15 1.344 (3)
C5—C6 1.522 (4) N14—C17 1.456 (4)
C5—C7 1.501 (4) N15—C16 1.332 (4)
C6—H61 0.982 C16—H161 0.954
C6—H62 0.972 C17—C18 1.498 (4)
C6—H63 0.973 C17—H171 0.977
C7—H73 0.972 C17—H172 0.988
C7—H72 0.968 C18—C19 1.307 (4)
C7—H71 0.969 C18—H181 0.959
O8—C9 1.459 (3) C19—H192 0.960
C9—C10 1.531 (4) C19—H191 0.967
C2—O1—C5 108.4 (2) C10—C9—C12 117.5 (3)
O1—C2—C3 103.4 (2) O8—C9—H91 109.4
O1—C2—C10 109.2 (2) C10—C9—H91 107.6
C3—C2—C10 104.2 (2) C12—C9—H91 111.1
O1—C2—H21 113.6 C9—C10—C2 101.5 (2)
C3—C2—H21 115.0 C9—C10—O11 109.1 (2)
C10—C2—H21 110.8 C2—C10—O11 110.0 (2)
C2—C3—O4 105.3 (2) C9—C10—H101 111.8
C2—C3—O8 106.9 (2) C2—C10—H101 109.6
O4—C3—O8 111.4 (2) O11—C10—H101 114.1
C2—C3—H31 110.9 C10—O11—H111 106.3
O4—C3—H31 112.0 C9—C12—N13 121.1 (2)
O8—C3—H31 110.2 C9—C12—C16 130.5 (3)
C3—O4—C5 110.1 (2) N13—C12—C16 108.3 (2)
O4—C5—O1 104.9 (2) C12—N13—N14 103.8 (2)
O4—C5—C6 108.8 (2) N13—N14—N15 115.4 (2)
O1—C5—C6 110.6 (3) N13—N14—C17 122.7 (2)
O4—C5—C7 109.5 (3) N15—N14—C17 121.5 (2)
O1—C5—C7 108.8 (2) N14—N15—C16 103.2 (2)
C6—C5—C7 113.9 (3) C12—C16—N15 109.3 (3)
C5—C6—H61 108.0 C12—C16—H161 125.6
C5—C6—H62 108.8 N15—C16—H161 125.1
H61—C6—H62 111.7 N14—C17—C18 111.5 (2)
C5—C6—H63 104.7 N14—C17—H171 107.9
H61—C6—H63 110.9 C18—C17—H171 108.2
H62—C6—H63 112.2 N14—C17—H172 108.2
C5—C7—H73 108.6 C18—C17—H172 109.7
C5—C7—H72 109.5 H171—C17—H172 111.4
H73—C7—H72 109.7 C17—C18—C19 123.9 (3)
C5—C7—H71 108.6 C17—C18—H181 116.0
H73—C7—H71 109.2 C19—C18—H181 120.0
H72—C7—H71 111.1 C18—C19—H192 118.6
C3—O8—C9 109.1 (2) C18—C19—H191 119.2
O8—C9—C10 102.9 (2) H192—C19—H191 122.2
O8—C9—C12 107.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C16—H161···O1i 0.95 2.44 3.322 (4) 154
C17—H171···O4ii 0.98 2.46 3.362 (4) 154
O11—H111···O8iii 0.88 1.95 2.822 (4) 170

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2725).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  3. Booth, K. V., Jenkinson, S. F., Fleet, G. W. J., Gullapalli, P., Yoshihara, A., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1385. [DOI] [PMC free article] [PubMed]
  4. Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [DOI] [PubMed]
  5. Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng.97, 89–94. [DOI] [PubMed]
  6. Gullapalli, P., Shiji, T., Rao, D., Yoshihara, A., Morimoto, K., Takata, G., Fleet, G. W. J. & Izumori, K. (2007). Tetrahedron Asymmetry, 18, 1995–2000.
  7. Izumori, K. (2002). Naturwissenschaften, 89, 120–124. [DOI] [PubMed]
  8. Izumori, K. (2006). J. Biotechnol.124, 717–722. [DOI] [PubMed]
  9. Jenkinson, S. F., Booth, K. V., Best, D., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o2011–o2012. [DOI] [PMC free article] [PubMed]
  10. Jenkinson, S. F., Booth, K. V., Gullapalli, P., Morimoto, K., Izumori, K., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o1705–o1706. [DOI] [PMC free article] [PubMed]
  11. Jenkinson, S. F., Booth, K. V., Yoshihara, A., Morimoto, K., Fleet, G. W. J., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1429. [DOI] [PMC free article] [PubMed]
  12. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  14. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, England.
  15. Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036416/lh2725sup1.cif

e-64-o2361-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036416/lh2725Isup2.hkl

e-64-o2361-Isup2.hkl (76.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES