Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2365. doi: 10.1107/S1600536808037124

1-{2-[(2-hydroxybenzylidene)-amino]-ethyl}-3-methyl-3H-imidazolium hexafluorophosphate

Bin Li a, Yi-Qun Li a,*, Yue-Peng Cai b, Mei-Yun Zhou a
PMCID: PMC2959942  PMID: 21581337

Abstract

The title Schiff base compound, C13H16N3O+·PF6 , was derived from the condensation of 2-hydroxy­benaldehyde with the ionic liquid 1-(2-amino­ethyl)-3-methyl­imidazolium hexa­fluoro­phosphate in an ethanol solution. The asymmetric unit comprises one cation and two PF6 anions. The dihedral angle between the aromatic and imidazole rings is 15.2 (2)°. An intra­molecular O—H⋯N hydrogen bond is found which generates an S(6) ring motif.

Related literature

For the synthesis of Schiff bases, see: Pradeep (2005); Butcher et al. (2005). For background on ionic liquids and their applications, see: Cai et al. (2006); Peng & Song (2006).graphic file with name e-64-o2365-scheme1.jpg

Experimental

Crystal data

  • C13H16N3O+·PF6

  • M r = 375.26

  • Monoclinic, Inline graphic

  • a = 28.239 (15) Å

  • b = 7.134 (4) Å

  • c = 18.017 (9) Å

  • β = 118.342 (6)°

  • V = 3194 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 (2) K

  • 0.32 × 0.25 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.926, T max = 0.965

  • 8091 measured reflections

  • 2969 independent reflections

  • 1965 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.215

  • S = 1.01

  • 2969 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037124/tk2322sup1.cif

e-64-o2365-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037124/tk2322Isup2.hkl

e-64-o2365-Isup2.hkl (145.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.572 (5) 147

Acknowledgments

We are grateful to the National Natural Science Foundation of China (No. 20672046) and the Guangdong Natural Science Foundation (No. 04010458) for financial support.

supplementary crystallographic information

Comment

The use of functionalized ionic liquids continues to receive attention in chemical synthesis and engineering, including as catalysts in organic synthesis (Cai et al., 2006; Peng & Song, 2006). Schiff base compounds are one of most prevalent mixed-donor ligands in the field of coordination chemistry (Pradeep, 2005; Butcher et al., 2005). Herein, we report the crystal structure of the title salt, (I).

Compound (I) is a Schiff base formed from the reaciton of 2-hydroxybenaldehyde and ionic liquid 1-(2-aminoethyl)-3-methylimidazolium hexafluorophosphate. The molecular structure of the cation is shown in Fig. 1. The aromatic and imidazole rings form a dihedral angle of 15.2 (2)°. In the cation, an intramolecular O1—H1···N1 hydrogen bond leads to a six-membered ring S(6) motif, Table 1.

Experimental

A mixture of the ionic liquid 1-(2-aminoethyl)-3-methylimidazolium hexafluorophosphate (5 mmol) and 2-hydroxybenzaldehyde (5 mmol) in ethanol was stirred for 4 h. After the completion of the reaction, the excess ethanol was removed by distillation. The colorless solid obtained was filtered and washed with ethanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of (I) at room temperature.

Refinement

The H atom bound to O1 was located from a difference Fourier map and refined as riding, with O—H = 0.82 Å, and with Uiso(H) = 1.5 Ueq(O). The remaining H atoms were located in a difference syntheses and refined with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 - 1.5Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the cation in (I) showing the atom numbering Scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C13H16N3O+·PF6 F000 = 1536
Mr = 375.26 Dx = 1.561 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2060 reflections
a = 28.239 (15) Å θ = 2.9–22.9º
b = 7.134 (4) Å µ = 0.24 mm1
c = 18.017 (9) Å T = 298 (2) K
β = 118.342 (6)º Prism, yellow
V = 3194 (3) Å3 0.32 × 0.25 × 0.15 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 2969 independent reflections
Radiation source: fine-focus sealed tube 1965 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.043
T = 298(2) K θmax = 25.5º
φ and ω scans θmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −19→34
Tmin = 0.926, Tmax = 0.965 k = −8→8
8091 measured reflections l = −21→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.215   w = 1/[σ2(Fo2) + (0.095P)2 + 15.5678P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
2969 reflections Δρmax = 0.72 e Å3
221 parameters Δρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.7500 0.7500 0.0000 0.0501 (5)
P2 1.0000 0.6525 (3) 0.2500 0.0583 (5)
F1 0.81350 (11) 0.7434 (5) 0.05733 (18) 0.0696 (9)
F2 0.74441 (13) 0.5737 (5) 0.04985 (19) 0.0742 (9)
F3 0.74598 (13) 0.8887 (5) 0.06617 (18) 0.0737 (9)
F4 1.0089 (2) 0.5007 (9) 0.3170 (3) 0.159 (2)
F5 0.93929 (17) 0.6504 (10) 0.2199 (4) 0.162 (2)
F6 1.0081 (3) 0.8057 (8) 0.3156 (3) 0.156 (2)
O1 0.80570 (15) 0.2094 (7) 0.2303 (3) 0.0801 (12)
H1 0.8137 0.1973 0.1923 0.120*
N1 0.86812 (17) 0.1728 (6) 0.1638 (3) 0.0551 (10)
N2 0.86519 (16) 0.3299 (5) −0.0349 (2) 0.0513 (10)
N3 0.85173 (18) 0.3101 (6) −0.1622 (3) 0.0591 (11)
C1 0.8504 (2) 0.1958 (7) 0.3054 (3) 0.0566 (12)
C2 0.8461 (3) 0.2063 (8) 0.3792 (4) 0.0671 (15)
H2 0.8126 0.2218 0.3762 0.081*
C3 0.8914 (3) 0.1938 (8) 0.4566 (4) 0.0722 (16)
H3 0.8882 0.2028 0.5055 0.087*
C4 0.9408 (3) 0.1686 (8) 0.4625 (4) 0.0719 (16)
H4 0.9710 0.1597 0.5152 0.086*
C5 0.9460 (2) 0.1563 (7) 0.3911 (3) 0.0626 (13)
H5 0.9799 0.1381 0.3956 0.075*
C6 0.90111 (19) 0.1708 (6) 0.3114 (3) 0.0491 (11)
C7 0.9077 (2) 0.1593 (7) 0.2363 (3) 0.0536 (12)
H7 0.9419 0.1416 0.2420 0.064*
C8 0.8777 (2) 0.1599 (7) 0.0908 (3) 0.0600 (13)
H8A 0.8596 0.0508 0.0571 0.072*
H8B 0.9160 0.1475 0.1095 0.072*
C9 0.8567 (2) 0.3333 (8) 0.0397 (3) 0.0634 (14)
H9A 0.8185 0.3450 0.0217 0.076*
H9B 0.8748 0.4416 0.0741 0.076*
C10 0.9137 (2) 0.3503 (8) −0.0329 (3) 0.0612 (13)
H10 0.9466 0.3686 0.0150 0.073*
C11 0.9053 (2) 0.3392 (8) −0.1120 (3) 0.0627 (13)
H11 0.9312 0.3494 −0.1297 0.075*
C12 0.8285 (2) 0.3056 (7) −0.1133 (3) 0.0612 (13)
H12 0.7920 0.2881 −0.1319 0.073*
C13 0.8247 (3) 0.2925 (10) −0.2541 (3) 0.087 (2)
H13A 0.7873 0.2649 −0.2742 0.131*
H13B 0.8410 0.1930 −0.2699 0.131*
H13C 0.8280 0.4080 −0.2786 0.131*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0469 (10) 0.0621 (11) 0.0450 (9) 0.0109 (8) 0.0248 (8) 0.0034 (8)
P2 0.0526 (11) 0.0736 (13) 0.0541 (10) 0.000 0.0296 (9) 0.000
F1 0.0422 (16) 0.088 (2) 0.0708 (19) 0.0081 (15) 0.0202 (14) −0.0014 (16)
F2 0.084 (2) 0.075 (2) 0.0696 (19) 0.0024 (17) 0.0408 (17) 0.0159 (16)
F3 0.084 (2) 0.082 (2) 0.0611 (18) 0.0150 (17) 0.0393 (17) −0.0107 (15)
F4 0.181 (5) 0.157 (5) 0.135 (4) −0.002 (4) 0.073 (4) 0.072 (4)
F5 0.063 (3) 0.243 (7) 0.174 (5) −0.004 (3) 0.051 (3) −0.033 (5)
F6 0.209 (6) 0.150 (5) 0.108 (4) −0.003 (4) 0.076 (4) −0.052 (3)
O1 0.055 (2) 0.116 (3) 0.080 (3) −0.006 (2) 0.040 (2) −0.018 (2)
N1 0.058 (3) 0.061 (2) 0.057 (2) 0.001 (2) 0.035 (2) −0.002 (2)
N2 0.056 (2) 0.051 (2) 0.046 (2) 0.0114 (18) 0.0238 (19) 0.0029 (17)
N3 0.069 (3) 0.056 (2) 0.051 (2) 0.004 (2) 0.027 (2) 0.0005 (19)
C1 0.062 (3) 0.053 (3) 0.070 (3) −0.009 (2) 0.043 (3) −0.004 (2)
C2 0.078 (4) 0.063 (3) 0.089 (4) −0.009 (3) 0.062 (4) −0.006 (3)
C3 0.111 (5) 0.056 (3) 0.077 (4) −0.003 (3) 0.067 (4) 0.005 (3)
C4 0.092 (4) 0.068 (4) 0.060 (3) 0.007 (3) 0.040 (3) 0.009 (3)
C5 0.064 (3) 0.063 (3) 0.063 (3) 0.011 (3) 0.033 (3) 0.010 (3)
C6 0.056 (3) 0.046 (2) 0.053 (3) 0.002 (2) 0.031 (2) 0.003 (2)
C7 0.057 (3) 0.050 (3) 0.069 (3) 0.005 (2) 0.042 (3) 0.005 (2)
C8 0.072 (3) 0.061 (3) 0.062 (3) 0.003 (3) 0.044 (3) −0.006 (2)
C9 0.079 (4) 0.065 (3) 0.057 (3) 0.016 (3) 0.042 (3) 0.003 (2)
C10 0.049 (3) 0.068 (3) 0.063 (3) 0.003 (2) 0.024 (2) 0.003 (3)
C11 0.065 (3) 0.067 (3) 0.067 (3) 0.006 (3) 0.040 (3) 0.008 (3)
C12 0.056 (3) 0.062 (3) 0.066 (3) −0.001 (2) 0.029 (3) −0.005 (3)
C13 0.105 (5) 0.101 (5) 0.047 (3) 0.002 (4) 0.029 (3) −0.005 (3)

Geometric parameters (Å, °)

P1—F1i 1.589 (3) C1—C6 1.396 (7)
P1—F1 1.589 (3) C2—C3 1.377 (8)
P1—F3 1.594 (3) C2—H2 0.9300
P1—F3i 1.594 (3) C3—C4 1.359 (8)
P1—F2i 1.596 (3) C3—H3 0.9300
P1—F2 1.596 (3) C4—C5 1.366 (7)
P2—F5ii 1.533 (4) C4—H4 0.9300
P2—F5 1.533 (4) C5—C6 1.398 (7)
P2—F6 1.544 (5) C5—H5 0.9300
P2—F6ii 1.544 (5) C6—C7 1.454 (6)
P2—F4ii 1.550 (5) C7—H7 0.9300
P2—F4 1.550 (5) C8—C9 1.487 (7)
O1—C1 1.346 (6) C8—H8A 0.9700
O1—H1 0.8200 C8—H8B 0.9700
N1—C7 1.256 (6) C9—H9A 0.9700
N1—C8 1.467 (6) C9—H9B 0.9700
N2—C12 1.308 (6) C10—C11 1.333 (7)
N2—C10 1.360 (6) C10—H10 0.9300
N2—C9 1.474 (6) C11—H11 0.9300
N3—C12 1.324 (6) C12—H12 0.9300
N3—C11 1.360 (7) C13—H13A 0.9600
N3—C13 1.464 (6) C13—H13B 0.9600
C1—C2 1.392 (7) C13—H13C 0.9600
F1i—P1—F1 180.00 (12) C1—C2—H2 119.9
F1i—P1—F3 90.50 (16) C4—C3—C2 120.9 (5)
F1—P1—F3 89.50 (16) C4—C3—H3 119.6
F1i—P1—F3i 89.50 (16) C2—C3—H3 119.6
F1—P1—F3i 90.50 (16) C3—C4—C5 120.1 (6)
F3—P1—F3i 180.0 (2) C3—C4—H4 120.0
F1i—P1—F2i 89.62 (17) C5—C4—H4 120.0
F1—P1—F2i 90.38 (17) C4—C5—C6 120.8 (5)
F3—P1—F2i 89.60 (17) C4—C5—H5 119.6
F3i—P1—F2i 90.40 (17) C6—C5—H5 119.6
F1i—P1—F2 90.38 (17) C1—C6—C5 119.1 (4)
F1—P1—F2 89.62 (17) C1—C6—C7 121.1 (5)
F3—P1—F2 90.40 (17) C5—C6—C7 119.8 (4)
F3i—P1—F2 89.60 (17) N1—C7—C6 121.3 (4)
F2i—P1—F2 180.0 (2) N1—C7—H7 119.4
F5ii—P2—F5 178.9 (5) C6—C7—H7 119.4
F5ii—P2—F6 90.1 (4) N1—C8—C9 108.2 (4)
F5—P2—F6 90.7 (3) N1—C8—H8A 110.1
F5ii—P2—F6ii 90.7 (3) C9—C8—H8A 110.1
F5—P2—F6ii 90.1 (3) N1—C8—H8B 110.1
F6—P2—F6ii 89.9 (5) C9—C8—H8B 110.1
F5ii—P2—F4ii 90.6 (3) H8A—C8—H8B 108.4
F5—P2—F4ii 88.6 (3) N2—C9—C8 111.1 (4)
F6—P2—F4ii 179.0 (4) N2—C9—H9A 109.4
F6ii—P2—F4ii 89.3 (3) C8—C9—H9A 109.4
F5ii—P2—F4 88.6 (3) N2—C9—H9B 109.4
F5—P2—F4 90.6 (3) C8—C9—H9B 109.4
F6—P2—F4 89.3 (3) H9A—C9—H9B 108.0
F6ii—P2—F4 179.0 (4) C11—C10—N2 107.4 (5)
F4ii—P2—F4 91.4 (5) C11—C10—H10 126.3
C1—O1—H1 109.5 N2—C10—H10 126.3
C7—N1—C8 118.3 (4) C10—C11—N3 107.3 (5)
C12—N2—C10 108.3 (4) C10—C11—H11 126.4
C12—N2—C9 126.8 (5) N3—C11—H11 126.4
C10—N2—C9 124.9 (4) N2—C12—N3 109.1 (5)
C12—N3—C11 107.9 (4) N2—C12—H12 125.5
C12—N3—C13 126.4 (5) N3—C12—H12 125.5
C11—N3—C13 125.7 (5) N3—C13—H13A 109.5
O1—C1—C2 119.5 (5) N3—C13—H13B 109.5
O1—C1—C6 121.6 (4) H13A—C13—H13B 109.5
C2—C1—C6 118.9 (5) N3—C13—H13C 109.5
C3—C2—C1 120.3 (5) H13A—C13—H13C 109.5
C3—C2—H2 119.9 H13B—C13—H13C 109.5
O1—C1—C2—C3 −179.6 (5) C7—N1—C8—C9 −123.0 (5)
C6—C1—C2—C3 0.6 (8) C12—N2—C9—C8 107.3 (6)
C1—C2—C3—C4 −0.9 (8) C10—N2—C9—C8 −72.1 (7)
C2—C3—C4—C5 0.4 (9) N1—C8—C9—N2 179.9 (4)
C3—C4—C5—C6 0.5 (9) C12—N2—C10—C11 0.5 (6)
O1—C1—C6—C5 −179.6 (5) C9—N2—C10—C11 180.0 (5)
C2—C1—C6—C5 0.3 (7) N2—C10—C11—N3 −0.6 (6)
O1—C1—C6—C7 0.3 (7) C12—N3—C11—C10 0.5 (6)
C2—C1—C6—C7 −179.9 (5) C13—N3—C11—C10 178.9 (5)
C4—C5—C6—C1 −0.8 (8) C10—N2—C12—N3 −0.1 (6)
C4—C5—C6—C7 179.3 (5) C9—N2—C12—N3 −179.6 (4)
C8—N1—C7—C6 −180.0 (4) C11—N3—C12—N2 −0.2 (6)
C1—C6—C7—N1 0.5 (7) C13—N3—C12—N2 −178.6 (5)
C5—C6—C7—N1 −179.7 (5)

Symmetry codes: (i) −x+3/2, −y+3/2, −z; (ii) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.85 2.572 (5) 147

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2322).

References

  1. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Butcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007–o1009.
  4. Cai, Y.-Q., Peng, Y.-Q. & Song, G.-H. (2006). Catal. Lett.109, 61–64.
  5. Peng, Y.-Q. & Song, G.-H. (2006). Catal. Commun.8, 111–114.
  6. Pradeep, C. P. (2005). Acta Cryst. E61, o3825–o3827.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037124/tk2322sup1.cif

e-64-o2365-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037124/tk2322Isup2.hkl

e-64-o2365-Isup2.hkl (145.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES