Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 20;64(Pt 12):o2371. doi: 10.1107/S1600536808036982

(Z)-Ethyl 3-(2,4-difluoro­anilino)-2-(4-methoxy­phen­yl)acrylate

Zhu-Ping Xiao a,*, He-Ying Xiao a
PMCID: PMC2959944  PMID: 21581343

Abstract

The title compound, C18H17F2NO3, consists of three individually planar subunits, namely two benzene rings and one amino­acrylate group. The amino­acrylate group forms dihedral angles of 5.92 (7) and 50.21 (6)° with the difluoro and methoxy benzene rings, respectively. The dihedral angle between the two benzene rings is 55.25 (7)°. The mol­ecules exhibit intra­molecular N—H⋯O and N—H⋯F inter­actions and form a three-dimensional network via inter­molecular C—H⋯O and C—H⋯π hydrogen bonds.

Related literature

For general background, see: Xiao, Fang et al. (2008); Xiao, Li et al. (2008); Xiao, Xue et al. (2007). For related structures, see: Xiao, Li, Shi et al. (2008); Xiao, Lv et al. (2008); Xiao, Fang et al. (2007).graphic file with name e-64-o2371-scheme1.jpg

Experimental

Crystal data

  • C18H17F2NO3

  • M r = 333.33

  • Monoclinic, Inline graphic

  • a = 17.295 (4) Å

  • b = 7.2940 (15) Å

  • c = 14.233 (3) Å

  • β = 113.73 (3)°

  • V = 1643.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.969, T max = 0.989

  • 3108 measured reflections

  • 2974 independent reflections

  • 1889 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.156

  • S = 1.02

  • 2974 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036982/bq2102sup1.cif

e-64-o2371-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036982/bq2102Isup2.hkl

e-64-o2371-Isup2.hkl (146KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.51 3.280 (3) 140
C18—H18CCg1ii 0.96 2.92 3.631 132
N1—H1⋯F1 0.88 (2) 2.31 (2) 2.678 (2) 105.0 (18)
N1—H1⋯O1 0.88 (2) 2.02 (2) 2.678 (3) 131 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of C7–C12 ring.

Acknowledgments

The work was financed by a grant (No. JSDXKYZZ0801) from Jishou University for talent introduction, China.

supplementary crystallographic information

Comment

An enamine, a tautomer of a Schiff base, shows a high similarity to the corresponding Schiff base in chemical structure which shows diverse biological activities. Our recent work affirmed that enamine, like Schiff base, exhibited high antibacterial activity (Xiao, Xue et al., 2007; Xiao, Fang et al., 2008; Xiao, Li et al., 2008). Meanwhile, an enamine is the key mediate for anticancer agents, 3-arylquinolone and 3-arylquinoline (Xiao, Li et al. 2008; Xiao, Lv et al., 2008; Xiao, Fang et al.,2008). We herein report the crystal structure of the title compound, (I), an enamine.

As shown in Fig. 1, (I) is structurally divided into three subunits, and each moiety forms a plane, namely, C1 to C6 forms a plane with the mean deviation of 0.0015 Å, defined as plane I; C7 to C12 forms a plane with the mean deviation of 0.0035 Å, defined as plane II; N1, C13, C14, C15, O1 and O2 is nearly coplanar with the mean deviation of 0.0371 Å, defined as plane III. Plane III make a dihedral angle with plane I and plane II of 5.921 (74) and 50.207 (56) °, while the dihedral angle between plane I and plane II is 55.247 (72) °. The bond distance C13—C14 (1.360 (3) Å) falls in the range of a typical double bond, and C13—N1 bond (1.343 (3) Å) is shorter than the standard C—N single bond (1.48 Å), but longer than a C—N double bond (1.28 Å). This clearly indicates that the p orbital of N1 is conjugated with the π molecular orbital of C13—C14 double bond. All other double bonds and single bonds in the molecule fall in normal range of bond lengths.

The molecule is stabilized by intramolecular interactions N1—H1···O1 and N1—H1···F1 (Table 1), and form one-dimensional infinite chains via intermolecular hydrogen bonds C6—H6···O1 (Table 1). These chains are interconnected via weak C18—H18C···π (centroid of C7-C12 ring) interactions (Table 1 and Fig. 2).

Experimental

Equimolar quantities (6 mmol) of ethyl 2-(4-methoxyphenyl)-3- oxopropanoate (1.33 g) and 2,4-difluorobenzenamine (0.77 g) in absolute alcohol (18 ml) were heated at 344–354 K for 1.5 h. The excess solvent was removed under reduced pressure. The residue was purified by a flash chromatography with EtOAc-petrolum ether to afford two fractions. The second fraction gave a E-isomer, and the first fraction, after partial solvent evaporated, furnished colorless blocks of (I) suitable for single-crystal structure determination.

Refinement

The H atom bonded to N1 was located in a difference Fourier map and refined freely. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93, 0.96 and 0.97 Å for the aromatic, CH3 and CH2 type H atoms, respectively. Uiso = 1.2Ueq(parent atoms) were assigned for amino, aromatic and CH2 type H-atoms and 1.5Ueq(parent atoms) for CH3 type H-atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate H-bonds.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. Dashed lines indicate C—H···O and C—H···pi hydrogen bonds.

Crystal data

C18H17F2NO3 F000 = 696
Mr = 333.33 Dx = 1.347 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1729 reflections
a = 17.295 (4) Å θ = 1.4–24.7º
b = 7.2940 (15) Å µ = 0.11 mm1
c = 14.233 (3) Å T = 298 (2) K
β = 113.73 (3)º Block, colorless
V = 1643.7 (7) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 2974 independent reflections
Radiation source: fine-focus sealed tube 1889 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.016
T = 298(2) K θmax = 25.3º
ω/2θ scans θmin = 1.3º
Absorption correction: ψ scan(North et al., 1968) h = −20→19
Tmin = 0.969, Tmax = 0.989 k = −8→0
3108 measured reflections l = 0→17

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053   w = 1/[σ2(Fo2) + (0.084P)2 + 0.0301P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.156 (Δ/σ)max = 0.003
S = 1.02 Δρmax = 0.20 e Å3
2974 reflections Δρmin = −0.18 e Å3
224 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.023 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.01149 (13) 0.2255 (3) 0.45020 (18) 0.0442 (6)
C2 −0.09169 (14) 0.2175 (4) 0.44819 (18) 0.0482 (6)
C3 −0.16098 (15) 0.1544 (4) 0.3666 (2) 0.0577 (7)
H3 −0.2143 0.1519 0.3680 0.069*
C4 −0.14800 (15) 0.0951 (4) 0.28276 (19) 0.0569 (7)
C5 −0.07067 (16) 0.0977 (4) 0.27953 (19) 0.0601 (7)
H5 −0.0638 0.0562 0.2216 0.072*
C6 −0.00210 (15) 0.1628 (4) 0.36312 (18) 0.0536 (7)
H6 0.0510 0.1647 0.3611 0.064*
C7 0.28914 (13) 0.3614 (3) 0.64133 (17) 0.0420 (6)
C8 0.35651 (13) 0.2735 (3) 0.71676 (17) 0.0461 (6)
H8 0.3477 0.2142 0.7695 0.055*
C9 0.43614 (14) 0.2706 (4) 0.71668 (18) 0.0492 (6)
H9 0.4801 0.2104 0.7686 0.059*
C10 0.45026 (14) 0.3584 (3) 0.63826 (18) 0.0450 (6)
C11 0.38407 (14) 0.4464 (4) 0.56174 (19) 0.0501 (7)
H11 0.3928 0.5042 0.5086 0.060*
C12 0.30493 (14) 0.4487 (3) 0.56390 (17) 0.0472 (6)
H12 0.2612 0.5101 0.5124 0.057*
C13 0.13613 (13) 0.3038 (3) 0.55292 (18) 0.0454 (6)
H13 0.1487 0.2745 0.4970 0.055*
C14 0.20243 (14) 0.3552 (3) 0.64003 (17) 0.0438 (6)
C15 0.18698 (15) 0.4010 (3) 0.73038 (19) 0.0486 (6)
C16 0.24764 (19) 0.4999 (5) 0.9037 (2) 0.0767 (9)
H16A 0.2256 0.3925 0.9249 0.092*
H16B 0.2088 0.6007 0.8948 0.092*
C17 0.3318 (2) 0.5471 (5) 0.9828 (2) 0.0838 (10)
H17A 0.3708 0.4499 0.9881 0.126*
H17B 0.3280 0.5633 1.0477 0.126*
H17C 0.3513 0.6587 0.9639 0.126*
C18 0.59583 (14) 0.2750 (4) 0.7079 (2) 0.0709 (9)
H18A 0.6026 0.3184 0.7745 0.106*
H18B 0.6464 0.2995 0.6975 0.106*
H18C 0.5854 0.1453 0.7036 0.106*
F1 −0.10159 (8) 0.2760 (2) 0.53363 (11) 0.0670 (5)
F2 −0.21570 (10) 0.0299 (3) 0.20048 (12) 0.0843 (6)
H1 0.0432 (15) 0.311 (4) 0.5919 (19) 0.059 (8)*
N1 0.05458 (11) 0.2904 (3) 0.53817 (16) 0.0500 (6)
O1 0.11846 (11) 0.3870 (3) 0.73643 (13) 0.0660 (6)
O2 0.25571 (10) 0.4636 (3) 0.80903 (12) 0.0558 (5)
O3 0.52661 (9) 0.3660 (3) 0.63138 (13) 0.0598 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0416 (12) 0.0463 (15) 0.0459 (14) 0.0017 (11) 0.0188 (11) 0.0039 (12)
C2 0.0461 (14) 0.0581 (16) 0.0457 (14) 0.0045 (12) 0.0240 (12) 0.0035 (12)
C3 0.0407 (13) 0.0704 (19) 0.0578 (17) −0.0009 (13) 0.0153 (12) 0.0069 (15)
C4 0.0483 (15) 0.0653 (18) 0.0465 (15) −0.0029 (13) 0.0080 (12) 0.0009 (13)
C5 0.0618 (17) 0.0738 (19) 0.0476 (15) 0.0055 (15) 0.0249 (13) −0.0054 (14)
C6 0.0467 (14) 0.0683 (18) 0.0505 (15) −0.0002 (13) 0.0244 (12) −0.0037 (14)
C7 0.0416 (13) 0.0416 (14) 0.0442 (13) −0.0025 (11) 0.0185 (11) −0.0061 (11)
C8 0.0469 (13) 0.0485 (15) 0.0463 (14) 0.0036 (12) 0.0223 (11) 0.0040 (12)
C9 0.0444 (13) 0.0539 (16) 0.0461 (14) 0.0096 (12) 0.0148 (11) 0.0048 (12)
C10 0.0402 (12) 0.0484 (15) 0.0486 (14) 0.0006 (11) 0.0203 (11) −0.0049 (12)
C11 0.0473 (14) 0.0597 (17) 0.0478 (14) 0.0012 (12) 0.0236 (12) 0.0077 (13)
C12 0.0416 (13) 0.0531 (16) 0.0449 (14) 0.0037 (12) 0.0155 (11) 0.0054 (12)
C13 0.0429 (13) 0.0489 (15) 0.0497 (14) 0.0010 (11) 0.0240 (11) −0.0006 (12)
C14 0.0438 (13) 0.0450 (15) 0.0469 (14) −0.0007 (11) 0.0228 (11) 0.0010 (12)
C15 0.0491 (14) 0.0476 (15) 0.0536 (15) −0.0027 (12) 0.0253 (13) 0.0020 (12)
C16 0.087 (2) 0.107 (3) 0.0471 (16) −0.0039 (19) 0.0380 (16) −0.0040 (17)
C17 0.107 (3) 0.089 (3) 0.0507 (17) −0.012 (2) 0.0272 (18) −0.0072 (17)
C18 0.0430 (14) 0.087 (2) 0.078 (2) 0.0110 (15) 0.0204 (14) 0.0032 (18)
F1 0.0506 (8) 0.1011 (13) 0.0573 (9) 0.0033 (8) 0.0300 (7) −0.0085 (9)
F2 0.0611 (10) 0.1115 (15) 0.0617 (10) −0.0110 (10) 0.0054 (8) −0.0135 (10)
N1 0.0404 (11) 0.0651 (15) 0.0487 (13) −0.0016 (10) 0.0222 (10) −0.0053 (11)
O1 0.0548 (11) 0.0921 (15) 0.0633 (12) −0.0091 (10) 0.0366 (9) −0.0091 (11)
O2 0.0578 (11) 0.0708 (13) 0.0449 (10) −0.0087 (9) 0.0271 (8) −0.0088 (9)
O3 0.0412 (9) 0.0763 (13) 0.0671 (12) 0.0043 (9) 0.0274 (9) 0.0062 (10)

Geometric parameters (Å, °)

C1—C2 1.377 (3) C11—C12 1.382 (3)
C1—C6 1.390 (3) C11—H11 0.9300
C1—N1 1.395 (3) C12—H12 0.9300
C2—F1 1.363 (3) C13—N1 1.343 (3)
C2—C3 1.370 (3) C13—C14 1.360 (3)
C3—C4 1.369 (4) C13—H13 0.9300
C3—H3 0.9300 C14—C15 1.454 (3)
C4—C5 1.357 (3) C15—O1 1.226 (3)
C4—F2 1.365 (3) C15—O2 1.343 (3)
C5—C6 1.383 (3) C16—O2 1.435 (3)
C5—H5 0.9300 C16—C17 1.479 (4)
C6—H6 0.9300 C16—H16A 0.9700
C7—C8 1.384 (3) C16—H16B 0.9700
C7—C12 1.392 (3) C17—H17A 0.9600
C7—C14 1.493 (3) C17—H17B 0.9600
C8—C9 1.378 (3) C17—H17C 0.9600
C8—H8 0.9300 C18—O3 1.418 (3)
C9—C10 1.391 (3) C18—H18A 0.9600
C9—H9 0.9300 C18—H18B 0.9600
C10—O3 1.364 (3) C18—H18C 0.9600
C10—C11 1.380 (3) N1—H1 0.88 (2)
C2—C1—C6 116.5 (2) C11—C12—H12 119.2
C2—C1—N1 119.2 (2) C7—C12—H12 119.2
C6—C1—N1 124.4 (2) N1—C13—C14 127.6 (2)
F1—C2—C3 118.7 (2) N1—C13—H13 116.2
F1—C2—C1 117.1 (2) C14—C13—H13 116.2
C3—C2—C1 124.2 (2) C13—C14—C15 118.8 (2)
C4—C3—C2 116.8 (2) C13—C14—C7 119.6 (2)
C4—C3—H3 121.6 C15—C14—C7 121.6 (2)
C2—C3—H3 121.6 O1—C15—O2 121.7 (2)
C5—C4—F2 119.5 (2) O1—C15—C14 124.7 (2)
C5—C4—C3 122.3 (2) O2—C15—C14 113.5 (2)
F2—C4—C3 118.2 (2) O2—C16—C17 108.6 (2)
C4—C5—C6 119.4 (2) O2—C16—H16A 110.0
C4—C5—H5 120.3 C17—C16—H16A 110.0
C6—C5—H5 120.3 O2—C16—H16B 110.0
C5—C6—C1 120.8 (2) C17—C16—H16B 110.0
C5—C6—H6 119.6 H16A—C16—H16B 108.3
C1—C6—H6 119.6 C16—C17—H17A 109.5
C8—C7—C12 117.0 (2) C16—C17—H17B 109.5
C8—C7—C14 121.6 (2) H17A—C17—H17B 109.5
C12—C7—C14 121.3 (2) C16—C17—H17C 109.5
C9—C8—C7 122.4 (2) H17A—C17—H17C 109.5
C9—C8—H8 118.8 H17B—C17—H17C 109.5
C7—C8—H8 118.8 O3—C18—H18A 109.5
C8—C9—C10 119.5 (2) O3—C18—H18B 109.5
C8—C9—H9 120.3 H18A—C18—H18B 109.5
C10—C9—H9 120.3 O3—C18—H18C 109.5
O3—C10—C11 116.4 (2) H18A—C18—H18C 109.5
O3—C10—C9 124.3 (2) H18B—C18—H18C 109.5
C11—C10—C9 119.3 (2) C13—N1—C1 126.5 (2)
C10—C11—C12 120.2 (2) C13—N1—H1 116.2 (16)
C10—C11—H11 119.9 C1—N1—H1 116.8 (16)
C12—C11—H11 119.9 C15—O2—C16 117.2 (2)
C11—C12—C7 121.6 (2) C10—O3—C18 117.9 (2)
C6—C1—C2—F1 179.1 (2) C8—C7—C12—C11 0.6 (3)
N1—C1—C2—F1 0.5 (4) C14—C7—C12—C11 −176.4 (2)
C6—C1—C2—C3 −0.7 (4) N1—C13—C14—C15 0.6 (4)
N1—C1—C2—C3 −179.2 (2) N1—C13—C14—C7 179.9 (2)
F1—C2—C3—C4 −179.3 (2) C8—C7—C14—C13 −128.3 (3)
C1—C2—C3—C4 0.4 (4) C12—C7—C14—C13 48.6 (3)
C2—C3—C4—C5 0.0 (4) C8—C7—C14—C15 51.0 (3)
C2—C3—C4—F2 179.5 (2) C12—C7—C14—C15 −132.1 (2)
F2—C4—C5—C6 −179.7 (2) C13—C14—C15—O1 4.3 (4)
C3—C4—C5—C6 −0.2 (5) C7—C14—C15—O1 −174.9 (2)
C4—C5—C6—C1 0.0 (4) C13—C14—C15—O2 −175.0 (2)
C2—C1—C6—C5 0.4 (4) C7—C14—C15—O2 5.7 (3)
N1—C1—C6—C5 178.9 (2) C14—C13—N1—C1 −175.4 (2)
C12—C7—C8—C9 −0.1 (4) C2—C1—N1—C13 178.8 (2)
C14—C7—C8—C9 177.0 (2) C6—C1—N1—C13 0.4 (4)
C7—C8—C9—C10 −0.1 (4) O1—C15—O2—C16 4.9 (4)
C8—C9—C10—O3 179.2 (2) C14—C15—O2—C16 −175.7 (2)
C8—C9—C10—C11 −0.2 (4) C17—C16—O2—C15 173.7 (2)
O3—C10—C11—C12 −178.7 (2) C11—C10—O3—C18 −179.2 (2)
C9—C10—C11—C12 0.7 (4) C9—C10—O3—C18 1.5 (4)
C10—C11—C12—C7 −1.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O1i 0.93 2.51 3.280 (3) 140
C18—H18C···Cg1ii 0.96 2.92 3.631 132
N1—H1···F1 0.88 (2) 2.31 (2) 2.678 (2) 105.0 (18)
N1—H1···O1 0.88 (2) 2.02 (2) 2.678 (3) 131 (2)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y−1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2102).

References

  1. Enraf–Nonius. (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Xiao, Z.-P., Fang, R.-Q., Li, H.-Q., Shi, L., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem.43, 1828–1836. [DOI] [PubMed]
  6. Xiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Xu, C. & Zhu, H.-L. (2007). Can. J. Chem.85, 951–957.
  7. Xiao, Z.-P., Li, H.-Q., Shi, L., Lv, P.-C., Song, Z.-C. & Zhu, H.-L. (2008). ChemMedChem, 3, 1077–1083. [DOI] [PubMed]
  8. Xiao, Z.-P., Li, H.-Q., Xue, J.-Y., Shi, L. & Zhu, H.-L. (2008). Synth. Commun.38, 525–529.
  9. Xiao, Z.-P., Lv, P.-C., Xu, S.-P., Zhu, T.-T. & Zhu, H.-L. (2008). ChemMedChem, 3, 1516–1519. [DOI] [PubMed]
  10. Xiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Bioorg. Med. Chem.15, 4212–4219. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036982/bq2102sup1.cif

e-64-o2371-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036982/bq2102Isup2.hkl

e-64-o2371-Isup2.hkl (146KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES