Abstract
In the title mononuclear copper(II) complex, [Cu(C14H9N2O)2], the CuII atom, situated on an inversion centre, shows a slightly distorted square-planar geometry and is coordinated by the N and O atoms from two deprotonated symmetry-related Schiff base ligands. The Cu—N and Cu—O bond lengths are 2.009 (2) and 1.888 (2) Å, respectively. The dihedral angle between the cyanophenyl rings and phenolate rings is 42.28 (13)°.
Related literature
For Schiff base complexes with copper(II) and nickel(II), see: Gong et al. (2008 ▶); Kitaura et al. (2004 ▶); Marganian et al. (1995 ▶). For bond-length data, see: Jian et al. (2004 ▶); Ünver (2002 ▶). For a related structure, see: Xia et al. (2008 ▶).
Experimental
Crystal data
[Cu(C14H9N2O)2]
M r = 506.00
Monoclinic,
a = 9.698 (3) Å
b = 11.403 (3) Å
c = 10.889 (3) Å
β = 107.570 (11)°
V = 1148.0 (6) Å3
Z = 2
Mo Kα radiation
μ = 0.99 mm−1
T = 293 (2) K
0.15 × 0.10 × 0.10 mm
Data collection
Rigaku Mercury2 diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 ▶) T min = 0.909, T max = 1.000 (expected range = 0.824–0.906)
11307 measured reflections
2629 independent reflections
1952 reflections with I > 2σ(I)
R int = 0.057
Refinement
R[F 2 > 2σ(F 2)] = 0.050
wR(F 2) = 0.125
S = 1.09
2629 reflections
160 parameters
H-atom parameters constrained
Δρmax = 0.26 e Å−3
Δρmin = −0.43 e Å−3
Data collection: CrystalClear (Rigaku, 2005 ▶); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803417X/gw2050sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680803417X/gw2050Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
HJX acknowledges a start-up grant from Southeast University, People’s Republic of China
supplementary crystallographic information
Comment
Metal derivatives of Schiff bases have been studied extensively, and copper(II) and nickel(II) complexes play an important role in both synthetic and structural research. These complexes have received much attention in recent years (Marganian et al., 1995; Kitaura et al. 2004). We have reported previously the crystal structures of monomeric Schiff base complexes of NiII (Gong et al., 2008). As an a continuation of our research on the synthesis and structure of transition metal complexesof Schiff base compounds, we here report the results of the reaction of copper(II) with the didentate ligand 2-(2-cyanophenyliminomethyl)phenol, forming the title compound (I).
Fig.1 shows the molecular structure of the title compound. The copper(II) is coordinated by the two imine N and two phenolate O atoms of the two Schiff base ligands in a slightly distorted square-planar geometry in a trans arrangement. 2-(2-cyanophenyliminomethyl)phenol loses a proton form the hydroxyl group and acts as a singlely charged bidentate ligand coordinating to Copper(II) through the phenolate O and imine N atoms. The dihedral angle between the C1—C6 and C8—C13 benzene rings is 42.28 (0.13)°. The N1—Cu1—O1 bond angles is 90.78 (9)°. The two equivalent Cu–N and Cu–O distances are 2.009 (2)Å and 1.888 (2) Å, respectively. All these parameters conform to values in other square-planar-coordinated copper(II) compounds(Jian et al., 2004; Ünver 2002).
Experimental
2-(2-Cyanophenyliminomethyl)phenol was prepared according to the literature(Xia et al., 2008).CuCl2.2H2O(17. mg, 0.1 mmol) in methanol (5 ml) was added to the solution of 2-(2-cyanophenyliminomethyl)phenol (22.2 mg, 0.1 mmol)in the methanol (5 ml), pH of themixture was adjusted to 8–9 and stirred for 4 h. The filtrate was kept at room temperature for about two weeks, and green block crystals of (I) for X-ray single-crystal investigation were obtained.
Refinement
All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
Molecular view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. [Symmetry code: (i) 2 - x, 1 - y, -z]
Crystal data
| [Cu(C14H9N2O)2] | F000 = 518 |
| Mr = 506.00 | Dx = 1.464 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 2373 reflections |
| a = 9.698 (3) Å | θ = 3.1–27.4º |
| b = 11.403 (3) Å | µ = 0.99 mm−1 |
| c = 10.889 (3) Å | T = 293 (2) K |
| β = 107.570 (11)º | Block, red |
| V = 1148.0 (6) Å3 | 0.15 × 0.10 × 0.10 mm |
| Z = 2 |
Data collection
| Rigaku Mercury2 diffractometer | 2629 independent reflections |
| Radiation source: fine-focus sealed tube | 1952 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.057 |
| Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5º |
| T = 293(2) K | θmin = 3.1º |
| ω scans | h = −12→12 |
| Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) | k = −14→14 |
| Tmin = 0.909, Tmax = 1.000 | l = −14→14 |
| 11307 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
| wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0516P)2 + 0.2943P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.09 | (Δ/σ)max < 0.001 |
| 2629 reflections | Δρmax = 0.26 e Å−3 |
| 160 parameters | Δρmin = −0.43 e Å−3 |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 1.0000 | 0.5000 | 0.0000 | 0.03878 (18) | |
| N1 | 0.9612 (2) | 0.6674 (2) | 0.0368 (2) | 0.0383 (5) | |
| O1 | 1.0810 (2) | 0.46983 (18) | 0.1778 (2) | 0.0469 (5) | |
| C8 | 0.8569 (3) | 0.7359 (3) | −0.0563 (3) | 0.0400 (6) | |
| C1 | 1.1420 (3) | 0.6686 (3) | 0.2473 (3) | 0.0416 (7) | |
| C7 | 1.0377 (3) | 0.7214 (3) | 0.1397 (3) | 0.0416 (7) | |
| H7A | 1.0234 | 0.8018 | 0.1439 | 0.050* | |
| C9 | 0.7154 (3) | 0.6925 (3) | −0.1043 (3) | 0.0469 (7) | |
| C2 | 1.1568 (3) | 0.5450 (3) | 0.2631 (3) | 0.0403 (7) | |
| C4 | 1.3310 (4) | 0.5785 (3) | 0.4717 (3) | 0.0587 (9) | |
| H4A | 1.3938 | 0.5479 | 0.5471 | 0.070* | |
| C6 | 1.2221 (3) | 0.7432 (3) | 0.3469 (3) | 0.0535 (8) | |
| H6A | 1.2098 | 0.8239 | 0.3373 | 0.064* | |
| C13 | 0.8922 (4) | 0.8413 (3) | −0.1019 (3) | 0.0507 (8) | |
| H13A | 0.9852 | 0.8715 | −0.0698 | 0.061* | |
| C14 | 0.6811 (3) | 0.5801 (3) | −0.0602 (3) | 0.0539 (8) | |
| C10 | 0.6108 (4) | 0.7564 (4) | −0.1967 (3) | 0.0624 (10) | |
| H10A | 0.5162 | 0.7291 | −0.2270 | 0.075* | |
| C12 | 0.7880 (5) | 0.9012 (3) | −0.1957 (4) | 0.0670 (10) | |
| H12A | 0.8126 | 0.9711 | −0.2280 | 0.080* | |
| C5 | 1.3176 (4) | 0.6996 (3) | 0.4574 (3) | 0.0601 (9) | |
| H5A | 1.3720 | 0.7496 | 0.5211 | 0.072* | |
| C3 | 1.2547 (4) | 0.5035 (3) | 0.3782 (3) | 0.0507 (8) | |
| H3A | 1.2678 | 0.4231 | 0.3909 | 0.061* | |
| N2 | 0.6591 (4) | 0.4905 (3) | −0.0242 (4) | 0.0716 (9) | |
| C11 | 0.6491 (5) | 0.8599 (4) | −0.2422 (4) | 0.0729 (12) | |
| H11A | 0.5805 | 0.9021 | −0.3049 | 0.087* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0424 (3) | 0.0348 (3) | 0.0347 (3) | 0.0037 (2) | 0.0050 (2) | −0.0003 (2) |
| N1 | 0.0399 (13) | 0.0373 (13) | 0.0349 (12) | 0.0036 (10) | 0.0069 (10) | 0.0010 (10) |
| O1 | 0.0581 (14) | 0.0381 (12) | 0.0378 (12) | 0.0047 (9) | 0.0046 (10) | −0.0004 (8) |
| C8 | 0.0428 (16) | 0.0400 (16) | 0.0340 (15) | 0.0077 (12) | 0.0066 (12) | −0.0006 (12) |
| C1 | 0.0385 (16) | 0.0445 (17) | 0.0373 (16) | 0.0018 (12) | 0.0044 (12) | −0.0004 (12) |
| C7 | 0.0445 (17) | 0.0332 (15) | 0.0433 (16) | 0.0020 (12) | 0.0074 (13) | −0.0001 (12) |
| C9 | 0.0429 (18) | 0.0526 (19) | 0.0407 (17) | 0.0068 (14) | 0.0059 (13) | −0.0004 (14) |
| C2 | 0.0407 (17) | 0.0443 (16) | 0.0349 (15) | 0.0040 (13) | 0.0098 (13) | 0.0009 (12) |
| C4 | 0.050 (2) | 0.073 (3) | 0.0432 (19) | 0.0075 (17) | −0.0005 (15) | 0.0027 (16) |
| C6 | 0.058 (2) | 0.0493 (19) | 0.0458 (19) | −0.0028 (15) | 0.0038 (15) | −0.0048 (14) |
| C13 | 0.057 (2) | 0.0476 (18) | 0.0479 (19) | 0.0047 (15) | 0.0162 (15) | 0.0054 (14) |
| C14 | 0.0386 (18) | 0.071 (2) | 0.0456 (19) | −0.0032 (16) | 0.0030 (14) | −0.0054 (17) |
| C10 | 0.046 (2) | 0.081 (3) | 0.050 (2) | 0.0174 (18) | −0.0011 (16) | 0.0000 (18) |
| C12 | 0.092 (3) | 0.051 (2) | 0.055 (2) | 0.0172 (19) | 0.018 (2) | 0.0155 (16) |
| C5 | 0.061 (2) | 0.065 (2) | 0.0416 (19) | −0.0074 (17) | −0.0045 (16) | −0.0060 (16) |
| C3 | 0.056 (2) | 0.0516 (19) | 0.0402 (17) | 0.0096 (15) | 0.0080 (14) | 0.0061 (14) |
| N2 | 0.064 (2) | 0.067 (2) | 0.077 (2) | −0.0158 (16) | 0.0115 (17) | 0.0050 (17) |
| C11 | 0.079 (3) | 0.073 (3) | 0.055 (2) | 0.036 (2) | 0.003 (2) | 0.0149 (19) |
Geometric parameters (Å, °)
| Cu1—O1i | 1.888 (2) | C4—C3 | 1.364 (4) |
| Cu1—O1 | 1.888 (2) | C4—C5 | 1.391 (5) |
| Cu1—N1i | 2.009 (2) | C4—H4A | 0.9300 |
| Cu1—N1 | 2.009 (2) | C6—C5 | 1.371 (4) |
| N1—C7 | 1.298 (3) | C6—H6A | 0.9300 |
| N1—C8 | 1.429 (3) | C13—C12 | 1.381 (4) |
| O1—C2 | 1.313 (4) | C13—H13A | 0.9300 |
| C8—C13 | 1.382 (4) | C14—N2 | 1.137 (4) |
| C8—C9 | 1.403 (4) | C10—C11 | 1.374 (5) |
| C1—C2 | 1.421 (4) | C10—H10A | 0.9300 |
| C1—C6 | 1.413 (4) | C12—C11 | 1.372 (5) |
| C1—C7 | 1.429 (4) | C12—H12A | 0.9300 |
| C7—H7A | 0.9300 | C5—H5A | 0.9300 |
| C9—C10 | 1.398 (4) | C3—H3A | 0.9300 |
| C9—C14 | 1.443 (5) | C11—H11A | 0.9300 |
| C2—C3 | 1.407 (4) | ||
| O1i—Cu1—O1 | 180.00 (12) | C3—C4—C5 | 121.9 (3) |
| O1i—Cu1—N1i | 90.78 (9) | C3—C4—H4A | 119.1 |
| O1—Cu1—N1i | 89.22 (9) | C5—C4—H4A | 119.1 |
| O1i—Cu1—N1 | 89.22 (9) | C5—C6—C1 | 121.7 (3) |
| O1—Cu1—N1 | 90.78 (9) | C5—C6—H6A | 119.2 |
| N1i—Cu1—N1 | 180.00 (13) | C1—C6—H6A | 119.2 |
| C7—N1—C8 | 116.8 (2) | C8—C13—C12 | 119.4 (3) |
| C7—N1—Cu1 | 122.03 (19) | C8—C13—H13A | 120.3 |
| C8—N1—Cu1 | 120.84 (18) | C12—C13—H13A | 120.3 |
| C2—O1—Cu1 | 125.24 (19) | N2—C14—C9 | 177.6 (4) |
| C13—C8—C9 | 119.5 (3) | C11—C10—C9 | 119.4 (3) |
| C13—C8—N1 | 122.1 (3) | C11—C10—H10A | 120.3 |
| C9—C8—N1 | 118.4 (3) | C9—C10—H10A | 120.3 |
| C2—C1—C6 | 119.5 (3) | C11—C12—C13 | 121.3 (4) |
| C2—C1—C7 | 122.5 (3) | C11—C12—H12A | 119.3 |
| C6—C1—C7 | 117.7 (3) | C13—C12—H12A | 119.3 |
| N1—C7—C1 | 125.9 (3) | C6—C5—C4 | 118.3 (3) |
| N1—C7—H7A | 117.1 | C6—C5—H5A | 120.9 |
| C1—C7—H7A | 117.1 | C4—C5—H5A | 120.9 |
| C8—C9—C10 | 120.0 (3) | C4—C3—C2 | 121.5 (3) |
| C8—C9—C14 | 119.1 (3) | C4—C3—H3A | 119.3 |
| C10—C9—C14 | 120.8 (3) | C2—C3—H3A | 119.3 |
| O1—C2—C3 | 119.6 (3) | C12—C11—C10 | 120.3 (3) |
| O1—C2—C1 | 123.2 (3) | C12—C11—H11A | 119.9 |
| C3—C2—C1 | 117.2 (3) | C10—C11—H11A | 119.9 |
Symmetry codes: (i) −x+2, −y+1, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2050).
References
- Gong, X.-X., Xia, R. & Xu, H.-J. (2008). Acta Cryst. E64, m494. [DOI] [PMC free article] [PubMed]
- Jian, F.-F., Li, L., Sun, P.-P. & Xiao, H.-L. (2004). Chin. J. Inorg. Chem.20, 1295–1298.
- Kitaura, R., Onoyama, G., Sakamoto, H., Matsuda, R., Noro, S. & Kitagawa, S. (2004). Angew. Chem. Int. Ed.43, 2684–2687. [DOI] [PubMed]
- Marganian, C. A., Vazir, H., Baidya, N., Olmstead, M. M. & Mascharak, P. K. (1995). J. Am. Chem. Soc.117, 1584–1594.
- Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Ünver, H. (2002). J. Mol. Struct.641, 35–40.
- Xia, R., Xu, H.-J. & Gong, X.-X. (2008). Acta Cryst. E64, o1047. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803417X/gw2050sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680803417X/gw2050Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

