Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2318. doi: 10.1107/S1600536808036398

tert-Butyl­ammonium 2,3,4,5-tetra­chloro-6-methoxy­carbonyl­benzoate

Jian Li a,*, Zu-Pei Liang a, Cui-Hua Lin a, Xi-Shi Tai a
PMCID: PMC2959952  PMID: 21581294

Abstract

In the title compound, C4H12N+·C9H3Cl4O4 , the benzene ring forms dihedral angles of 62.4 (2) and 64.0 (3)°, respectively, with the essentially planar methoxy­carbonyl and carboxyl­ate groups. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds connect anions and cations, forming one-dimensional chains along [010].

Related literature

For background information, see: Ungwitayatorn et al. (2001). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-o2318-scheme1.jpg

Experimental

Crystal data

  • C4H12N+·C9H3Cl4O4

  • M r = 391.06

  • Monoclinic, Inline graphic

  • a = 9.0193 (14) Å

  • b = 6.5084 (11) Å

  • c = 14.5965 (15) Å

  • β = 91.7570 (10)°

  • V = 856.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 298 (2) K

  • 0.53 × 0.48 × 0.44 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.706, T max = 0.747

  • 4281 measured reflections

  • 2790 independent reflections

  • 2364 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.116

  • S = 1.04

  • 2790 reflections

  • 205 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983), 1147 Friedel pairs

  • Flack parameter: 0.00 (9)

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036398/lh2693sup1.cif

e-64-o2318-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036398/lh2693Isup2.hkl

e-64-o2318-Isup2.hkl (137KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.89 1.97 2.838 (4) 165
N1—H1B⋯O4ii 0.89 1.97 2.850 (4) 168
N1—H1C⋯O3iii 0.89 1.94 2.818 (4) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province (No. Y2007B61).

supplementary crystallographic information

Comment

Phthalimides are compounds which can posses biological activity (see: e.g. Ungwitayatorn et al., 2001). 2-(Methoxycarbonyl)-3,4,5,6-tetrachlorobenzoic acid is an intermediate in the sysnthesis of tetrachlorophthalimides and their derivatives. In this paper, the structure of the title compound (I) is reported. The asymmetric unit contains one tert-butylammonium cation and one 2-(methoxycarbonyl)-3,4,5,6-tetrachlorobenzene-1-carboxylate anion (Fig. 1). The bond lengths in (I) are normal (Allen et al., 1987). In the crystal structure, intermolecular N-H···O hydrogen bonds connect anions and cations to form one-dimensional chains along [O10].

Experimental

A mixture of tetrachlorophthalic anhydride (2.86 g, 0.01 mol) and methanol (20 ml) was refluxed for 0.5 h and then tert-butylamine (0.73 g, 0.01 mol) was added and the mixture stirred for 4 h at room temperature. After filtration, the filtrate was kept at room temperature for 5 d. Natural evaporation gave colourless single crystals of the title compound, suitable for X-ray analysis.

Refinement

H atoms were initially located from difference maps and then refined in a riding-model approximation with C—H = 0.96 Å, N—H = 0.89 Å and Uiso(H) = 1.5Ueq(N, C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), drawn with 30% probability ellipsoids.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) with hydrogen bonds indicated by dashed lines.

Crystal data

C4H12N+·C9H3Cl4O4 F000 = 400
Mr = 391.06 Dx = 1.516 Mg m3
Monoclinic, P21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 2177 reflections
a = 9.0193 (14) Å θ = 2.3–27.0º
b = 6.5084 (11) Å µ = 0.71 mm1
c = 14.5965 (15) Å T = 298 (2) K
β = 91.7570 (10)º Block, colorless
V = 856.4 (2) Å3 0.53 × 0.48 × 0.44 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer 2790 independent reflections
Radiation source: fine-focus sealed tube 2364 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.043
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.706, Tmax = 0.747 k = −7→7
4281 measured reflections l = −15→17

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044   w = 1/[σ2(Fo2) + (0.048P)2 + 0.2322P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.21 e Å3
2790 reflections Δρmin = −0.28 e Å3
205 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.075 (5)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1147 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.00 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.17713 (11) 0.5505 (2) 0.24305 (8) 0.0650 (4)
Cl2 −0.10033 (15) 0.2412 (2) 0.09021 (8) 0.0730 (4)
Cl3 0.20894 (14) 0.2526 (2) 0.00306 (8) 0.0670 (4)
Cl4 0.44428 (12) 0.5681 (2) 0.07197 (8) 0.0645 (4)
N1 0.9054 (3) 0.8116 (5) 0.5564 (2) 0.0332 (7)
H1A 0.9244 0.9328 0.5825 0.050*
H1B 0.9627 0.7954 0.5084 0.050*
H1C 0.9241 0.7119 0.5969 0.050*
O1 0.4059 (3) 0.9677 (5) 0.1703 (2) 0.0561 (8)
O2 0.4110 (3) 0.8206 (5) 0.30813 (19) 0.0555 (8)
O3 0.0729 (3) 1.0097 (4) 0.30549 (18) 0.0462 (7)
O4 0.0532 (3) 0.7277 (4) 0.39073 (15) 0.0375 (6)
C1 0.2425 (4) 0.6942 (6) 0.1932 (2) 0.0347 (9)
C2 0.1041 (4) 0.6869 (6) 0.2345 (2) 0.0323 (8)
C3 −0.0013 (4) 0.5489 (7) 0.1999 (2) 0.0375 (9)
C4 0.0307 (5) 0.4133 (7) 0.1295 (3) 0.0431 (10)
C5 0.1686 (5) 0.4186 (7) 0.0903 (2) 0.0408 (9)
C6 0.2727 (4) 0.5608 (7) 0.1215 (2) 0.0380 (9)
C7 0.3626 (4) 0.8340 (6) 0.2319 (3) 0.0378 (9)
C8 0.0731 (4) 0.8226 (6) 0.3175 (2) 0.0305 (8)
C9 0.5402 (5) 1.0814 (9) 0.1945 (4) 0.0701 (15)
H9A 0.6216 0.9874 0.2027 0.105*
H9B 0.5265 1.1554 0.2505 0.105*
H9C 0.5614 1.1766 0.1464 0.105*
C10 0.7440 (4) 0.8028 (6) 0.5251 (3) 0.0367 (9)
C11 0.7195 (5) 0.9690 (7) 0.4533 (3) 0.0511 (11)
H11A 0.7391 1.1011 0.4804 0.077*
H11B 0.6186 0.9642 0.4305 0.077*
H11C 0.7852 0.9469 0.4038 0.077*
C12 0.7164 (4) 0.5891 (7) 0.4845 (3) 0.0469 (10)
H12A 0.7874 0.5622 0.4383 0.070*
H12B 0.6180 0.5831 0.4576 0.070*
H12C 0.7264 0.4878 0.5321 0.070*
C13 0.6520 (4) 0.8364 (7) 0.6089 (3) 0.0487 (11)
H13A 0.5497 0.8082 0.5938 0.073*
H13B 0.6622 0.9763 0.6290 0.073*
H13C 0.6859 0.7459 0.6571 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0399 (6) 0.0959 (10) 0.0596 (7) −0.0201 (6) 0.0101 (5) −0.0272 (7)
Cl2 0.0733 (8) 0.0769 (10) 0.0685 (8) −0.0297 (7) −0.0010 (6) −0.0322 (7)
Cl3 0.0782 (8) 0.0697 (9) 0.0532 (6) 0.0129 (7) 0.0033 (5) −0.0277 (7)
Cl4 0.0511 (6) 0.0811 (9) 0.0627 (7) 0.0029 (6) 0.0236 (5) −0.0087 (7)
N1 0.0333 (15) 0.0302 (17) 0.0364 (16) 0.0004 (13) 0.0033 (12) 0.0002 (14)
O1 0.0603 (19) 0.059 (2) 0.0495 (17) −0.0197 (15) 0.0029 (14) 0.0158 (15)
O2 0.0606 (18) 0.061 (2) 0.0437 (16) −0.0225 (16) −0.0119 (14) 0.0098 (15)
O3 0.0623 (18) 0.0323 (18) 0.0439 (15) −0.0008 (13) 0.0001 (13) −0.0013 (12)
O4 0.0446 (14) 0.0374 (15) 0.0308 (13) 0.0003 (13) 0.0076 (11) −0.0008 (12)
C1 0.039 (2) 0.035 (2) 0.0301 (18) 0.0012 (16) −0.0010 (15) 0.0053 (16)
C2 0.0373 (19) 0.034 (2) 0.0259 (17) −0.0030 (16) 0.0004 (15) 0.0015 (15)
C3 0.0349 (19) 0.045 (2) 0.0321 (18) −0.0021 (19) 0.0002 (14) −0.0037 (19)
C4 0.050 (2) 0.042 (2) 0.036 (2) −0.0076 (19) −0.0054 (18) −0.0059 (18)
C5 0.050 (2) 0.042 (2) 0.0309 (19) 0.0048 (19) 0.0001 (17) −0.0057 (17)
C6 0.0403 (19) 0.045 (2) 0.0286 (17) 0.007 (2) 0.0061 (15) 0.0042 (19)
C7 0.036 (2) 0.040 (2) 0.038 (2) −0.0019 (17) 0.0050 (17) 0.0023 (18)
C8 0.0290 (18) 0.028 (2) 0.0340 (19) −0.0036 (16) −0.0012 (15) 0.0000 (16)
C9 0.064 (3) 0.070 (4) 0.078 (3) −0.032 (3) 0.022 (2) 0.003 (3)
C10 0.0268 (17) 0.033 (2) 0.050 (2) 0.0016 (16) −0.0027 (15) −0.0039 (18)
C11 0.045 (2) 0.050 (3) 0.057 (3) 0.007 (2) −0.011 (2) 0.010 (2)
C12 0.039 (2) 0.042 (3) 0.059 (3) −0.0065 (19) −0.0001 (18) −0.013 (2)
C13 0.040 (2) 0.045 (3) 0.062 (3) 0.006 (2) 0.0158 (19) −0.007 (2)

Geometric parameters (Å, °)

Cl1—C3 1.724 (4) C3—C4 1.392 (6)
Cl2—C4 1.714 (4) C4—C5 1.385 (6)
Cl3—C5 1.718 (4) C5—C6 1.385 (6)
Cl4—C6 1.729 (4) C9—H9A 0.9600
N1—C10 1.513 (5) C9—H9B 0.9600
N1—H1A 0.8900 C9—H9C 0.9600
N1—H1B 0.8900 C10—C13 1.515 (5)
N1—H1C 0.8900 C10—C11 1.517 (6)
O1—C7 1.319 (5) C10—C12 1.529 (6)
O1—C9 1.455 (5) C11—H11A 0.9600
O2—C7 1.186 (4) C11—H11B 0.9600
O3—C8 1.230 (5) C11—H11C 0.9600
O4—C8 1.252 (4) C12—H12A 0.9600
C1—C6 1.394 (5) C12—H12B 0.9600
C1—C2 1.404 (5) C12—H12C 0.9600
C1—C7 1.511 (5) C13—H13A 0.9600
C2—C3 1.391 (5) C13—H13B 0.9600
C2—C8 1.532 (5) C13—H13C 0.9600
C10—N1—H1A 109.5 O1—C9—H9A 109.5
C10—N1—H1B 109.5 O1—C9—H9B 109.5
H1A—N1—H1B 109.5 H9A—C9—H9B 109.5
C10—N1—H1C 109.5 O1—C9—H9C 109.5
H1A—N1—H1C 109.5 H9A—C9—H9C 109.5
H1B—N1—H1C 109.5 H9B—C9—H9C 109.5
C7—O1—C9 115.6 (3) N1—C10—C13 107.2 (3)
C6—C1—C2 119.9 (3) N1—C10—C11 107.5 (3)
C6—C1—C7 120.1 (3) C13—C10—C11 112.5 (3)
C2—C1—C7 119.7 (3) N1—C10—C12 107.2 (3)
C3—C2—C1 118.2 (3) C13—C10—C12 110.9 (4)
C3—C2—C8 121.3 (3) C11—C10—C12 111.2 (3)
C1—C2—C8 120.5 (3) C10—C11—H11A 109.5
C2—C3—C4 121.5 (3) C10—C11—H11B 109.5
C2—C3—Cl1 119.3 (3) H11A—C11—H11B 109.5
C4—C3—Cl1 119.1 (3) C10—C11—H11C 109.5
C5—C4—C3 119.8 (4) H11A—C11—H11C 109.5
C5—C4—Cl2 119.8 (3) H11B—C11—H11C 109.5
C3—C4—Cl2 120.3 (3) C10—C12—H12A 109.5
C6—C5—C4 119.3 (4) C10—C12—H12B 109.5
C6—C5—Cl3 120.4 (3) H12A—C12—H12B 109.5
C4—C5—Cl3 120.2 (3) C10—C12—H12C 109.5
C5—C6—C1 121.1 (3) H12A—C12—H12C 109.5
C5—C6—Cl4 119.2 (3) H12B—C12—H12C 109.5
C1—C6—Cl4 119.7 (3) C10—C13—H13A 109.5
O2—C7—O1 125.4 (4) C10—C13—H13B 109.5
O2—C7—C1 123.1 (4) H13A—C13—H13B 109.5
O1—C7—C1 111.5 (3) C10—C13—H13C 109.5
O3—C8—O4 127.6 (3) H13A—C13—H13C 109.5
O3—C8—C2 117.2 (3) H13B—C13—H13C 109.5
O4—C8—C2 115.2 (3)
C6—C1—C2—C3 −2.0 (5) Cl3—C5—C6—C1 −179.0 (3)
C7—C1—C2—C3 −176.8 (3) C4—C5—C6—Cl4 −179.6 (3)
C6—C1—C2—C8 175.9 (3) Cl3—C5—C6—Cl4 −0.5 (5)
C7—C1—C2—C8 1.2 (5) C2—C1—C6—C5 −0.5 (5)
C1—C2—C3—C4 3.3 (6) C7—C1—C6—C5 174.2 (4)
C8—C2—C3—C4 −174.6 (4) C2—C1—C6—Cl4 −179.1 (3)
C1—C2—C3—Cl1 −174.8 (3) C7—C1—C6—Cl4 −4.3 (5)
C8—C2—C3—Cl1 7.3 (5) C9—O1—C7—O2 11.0 (6)
C2—C3—C4—C5 −2.0 (6) C9—O1—C7—C1 −168.3 (4)
Cl1—C3—C4—C5 176.1 (3) C6—C1—C7—O2 −115.3 (4)
C2—C3—C4—Cl2 178.5 (3) C2—C1—C7—O2 59.4 (5)
Cl1—C3—C4—Cl2 −3.4 (5) C6—C1—C7—O1 64.0 (5)
C3—C4—C5—C6 −0.6 (6) C2—C1—C7—O1 −121.3 (4)
Cl2—C4—C5—C6 178.8 (3) C3—C2—C8—O3 −117.6 (4)
C3—C4—C5—Cl3 −179.8 (3) C1—C2—C8—O3 64.5 (5)
Cl2—C4—C5—Cl3 −0.3 (5) C3—C2—C8—O4 63.6 (5)
C4—C5—C6—C1 1.9 (6) C1—C2—C8—O4 −114.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O4i 0.89 1.97 2.838 (4) 165
N1—H1B···O4ii 0.89 1.97 2.850 (4) 168
N1—H1C···O3iii 0.89 1.94 2.818 (4) 169

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x+1, y, z; (iii) −x+1, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2693).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Sheldrick, G. M. (1996). SABABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Ungwitayatorn, J., Matayatsuk, C. & Sothipatcharasai, P. (2001). Sci. Asia, 27, 245–250.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036398/lh2693sup1.cif

e-64-o2318-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036398/lh2693Isup2.hkl

e-64-o2318-Isup2.hkl (137KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES