Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 22;64(Pt 12):o2427. doi: 10.1107/S1600536808037938

2,4-Bis[bis(diisopropyl­amino)­phos­phanyl]-1,2,3,4-tetra­phospha­bicyclo[1.1.0]butane

Agnieszka Łapczuk-Krygier a, Katarzyna Baranowska a,*, Jerzy Pikies a
PMCID: PMC2959955  PMID: 21581395

Abstract

The title compound, C24H56N4P6 or (iPr2N)2P–P4–P(NiPr2)2, adopts a butterfly structure, with planar environments for the N atoms and pyramidal environments for the P atoms. The structure studied has a 15% twin component that is related by a twofold rotation about [100].

Related literature

For 2,4-bis­{[bis­(trimethyl­silyl)amido](diisopropylo­amido)­phosphido}1,2,3,4-tetra­phosphabicyclo­(1,1,0)butane, see: Bezombes et al. (2004). For 2,4-bis­(bis-di-tert-butyl­ophos­phido)­1,2,3,4-tetra­phosphabicyclo­(1,1,0)butane, see: Matern et al. (1997). For the handling of twinned diffraction data, see: Spek (2003).graphic file with name e-64-o2427-scheme1.jpg

Experimental

Crystal data

  • C24H56N4P6

  • M r = 586.55

  • Monoclinic, Inline graphic

  • a = 13.3307 (5) Å

  • b = 20.9304 (7) Å

  • c = 12.8939 (5) Å

  • β = 109.349 (4)°

  • V = 3394.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 120 (2) K

  • 0.46 × 0.14 × 0.06 mm

Data collection

  • Oxford Diffraction KM-4 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.954, T max = 1.045

  • 6310 measured reflections

  • 6310 independent reflections

  • 4727 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.136

  • S = 1.04

  • 6310 reflections

  • 324 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037938/ng2506sup1.cif

e-64-o2427-sup1.cif (27KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037938/ng2506Isup2.hkl

e-64-o2427-Isup2.hkl (302.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was undertaken with financial support from the Polish Ministry of Science and Higher Education (grant No. N N204 271535).

supplementary crystallographic information

Comment

The molecular structure of 1 is shown in Fig.1. The crystal structure of 1 is build up of discrete molecules. The geometry of the phosphorous skeleton in 1 is similar to that in P4[(NiPr2)(N(SiMe3)]2 (Bezombes et al., 2004). The P1—P2 distance, 2.246 (2) Å, and P3—P4 distance, 2.243 (2) Å are slightly longer than P—P distances in the tetraphosphabicyclobutane core (P2,P5,P6,P4). The geometry around N atoms is strictly planar, the sum of angles around N2 atom is 360.8 °. The environments of P1 and P3 atoms are pyramidal, the sum of angles around P1 atom is 310.4 °. Clearly visible is very sharp pyramidal geometry around P2 and P4 atoms, the sum of angles around P2 atom is only 248.81 °.

Experimental

All operations were carried out under purified nitrogen using Schlenk techniques. (iPr2N)2PP(SiMe3)Li 2.5THF (0.170 g, 0.51 mmol) in toluene (5 ml) was dropped slowly to a suspension of Cp*ZrCl3(0.484 g, 0.94 mmol) in toluene (4 ml) at -30 °C.The reaction mixture turned immediately brown. The solution was allowed to stand one day at ambient temperature, then evaporated under reduced pressure and dried under vacuum (0.001 Torr) for 1 h. The residue was dissolved in 4 ml pentane and filtered. The solution was kept at 4 °C for two weeks and yielded small amount of colourless crystals of 1.

Refinement

All C–H hydrogen atoms were refined as riding on carbon atoms with methyl C–H = 0.98 Å, methylene C–H = 0.99 Å and Uiso(H)=1.2 Ueq(C)for methylene CH and 1.5Ueq(C) for methyl groups.

The structure initially refined to a rather high R index of 7.42%, the difference Fourier map showed relatively large peaks for an all-light atom structure (ca 1 e Å-3 ) and the weighting scheme used by the programme SHELXL97 (Sheldrick, 2008) suggested unexpectedly large values for the second weighting parameters. A preliminary check with the TwinRotMat routine of PLATON (Spek, 2003) showed twofold twinning about [1 0 0]. Refinement against the TwinRotMat generated data gave a lower R index of 5.0%, final difference Fourier map (no peak larger than ca 0.6 e Å-3) and the second weight value decreased to 0.

Figures

Fig. 1.

Fig. 1.

A view of the molecule of 1, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted.

Fig. 2.

Fig. 2.

Packing diagram for 1. View direction is parallel to the crystallographic b axis.

Crystal data

C24H56N4P6 F000 = 1272
Mr = 586.55 Dx = 1.148 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 10425 reflections
a = 13.3307 (5) Å θ = 2.5–32.4º
b = 20.9304 (7) Å µ = 0.34 mm1
c = 12.8939 (5) Å T = 120 (2) K
β = 109.349 (4)º Prism, colourless
V = 3394.4 (2) Å3 0.46 × 0.14 × 0.06 mm
Z = 4

Data collection

Oxford Diffraction KM-4 CCD diffractometer 6310 independent reflections
Monochromator: graphite 4727 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1 Rint = 0
T = 120(2) K θmax = 25.5º
ω scans, 0.75 deg width θmin = 2.5º
Absorption correction: analytical(CrysAlis RED; Oxford Diffraction, 2006) h = −16→16
Tmin = 0.955, Tmax = 1.045 k = −25→25
6310 measured reflections l = −13→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.136   w = 1/[σ2(Fo2) + (0.0841P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
6310 reflections Δρmax = 0.61 e Å3
324 parameters Δρmin = −0.51 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.1377 (2) 0.37879 (15) 0.4006 (3) 0.0268 (7)
H1 −0.0988 0.4188 0.4328 0.032*
C2 −0.2520 (3) 0.39804 (17) 0.3362 (3) 0.0348 (8)
H2A −0.2524 0.426 0.2751 0.052*
H2B −0.2829 0.4207 0.3849 0.052*
H2C −0.2941 0.3597 0.3072 0.052*
C3 −0.1350 (3) 0.33570 (18) 0.4960 (3) 0.0361 (8)
H3A −0.1759 0.2968 0.4679 0.054*
H3B −0.166 0.3582 0.5448 0.054*
H3C −0.0611 0.3243 0.5371 0.054*
C4 −0.1270 (3) 0.28996 (15) 0.2755 (3) 0.0284 (7)
H4 −0.1833 0.2767 0.3065 0.034*
C5 −0.1821 (3) 0.29992 (18) 0.1524 (3) 0.0400 (9)
H5A −0.2318 0.3358 0.1407 0.06*
H5B −0.2212 0.2611 0.1201 0.06*
H5C −0.1288 0.3092 0.1174 0.06*
C6 −0.0471 (3) 0.23567 (17) 0.2981 (4) 0.0459 (10)
H6A 0.0082 0.2459 0.2662 0.069*
H6B −0.0834 0.1962 0.2651 0.069*
H6C −0.0146 0.2298 0.3777 0.069*
C7 −0.0671 (2) 0.49548 (15) 0.2373 (3) 0.0254 (7)
H7 −0.0924 0.4852 0.3002 0.03*
C8 −0.0059 (3) 0.55820 (16) 0.2653 (3) 0.0357 (8)
H8A 0.0566 0.5524 0.3312 0.053*
H8B −0.0519 0.5913 0.2791 0.053*
H8C 0.017 0.5712 0.2037 0.053*
C9 −0.1655 (3) 0.50184 (17) 0.1357 (3) 0.0323 (8)
H9A −0.1446 0.5165 0.0736 0.048*
H9B −0.2144 0.5329 0.15 0.048*
H9C −0.2009 0.4603 0.1181 0.048*
C10 0.0504 (2) 0.44695 (16) 0.1414 (3) 0.0266 (7)
H10 0.0203 0.4859 0.097 0.032*
C11 0.0259 (3) 0.39069 (18) 0.0623 (3) 0.0414 (9)
H11A 0.0546 0.3514 0.1027 0.062*
H11B 0.0586 0.3978 0.0054 0.062*
H11C −0.0512 0.3865 0.0277 0.062*
C12 0.1705 (3) 0.4575 (2) 0.1920 (3) 0.0414 (9)
H12A 0.1842 0.4943 0.2418 0.062*
H12B 0.2006 0.4657 0.1335 0.062*
H12C 0.2037 0.4193 0.2331 0.062*
C13 0.5113 (2) 0.46488 (15) 0.8092 (3) 0.0252 (7)
H13 0.4396 0.4652 0.8182 0.03*
C14 0.5113 (3) 0.51854 (16) 0.7295 (3) 0.0355 (8)
H14A 0.5818 0.5217 0.7217 0.053*
H14B 0.4938 0.559 0.7578 0.053*
H14C 0.4582 0.5095 0.6577 0.053*
C15 0.5919 (3) 0.47724 (17) 0.9223 (3) 0.0334 (8)
H15A 0.5865 0.4436 0.973 0.05*
H15B 0.5775 0.5188 0.9494 0.05*
H15C 0.6637 0.4773 0.9173 0.05*
C16 0.6260 (3) 0.39185 (17) 0.7457 (3) 0.0373 (9)
H16 0.6652 0.4334 0.7631 0.045*
C17 0.6113 (4) 0.3773 (3) 0.6272 (5) 0.090 (2)
H17A 0.681 0.3745 0.6174 0.136*
H17B 0.5696 0.4114 0.5805 0.136*
H17C 0.5739 0.3365 0.6067 0.136*
C18 0.6957 (3) 0.3420 (2) 0.8243 (6) 0.0786 (18)
H18A 0.6628 0.2997 0.8065 0.118*
H18B 0.7025 0.3531 0.9001 0.118*
H18C 0.7663 0.3413 0.8163 0.118*
C19 0.3926 (3) 0.34377 (15) 0.9308 (3) 0.0293 (8)
H19 0.3947 0.3903 0.9141 0.035*
C20 0.2820 (3) 0.32984 (19) 0.9340 (3) 0.0459 (10)
H20A 0.2296 0.3379 0.8613 0.069*
H20B 0.2672 0.3576 0.9884 0.069*
H20C 0.2778 0.285 0.9542 0.069*
C21 0.4770 (4) 0.33255 (18) 1.0423 (3) 0.0450 (10)
H21A 0.4781 0.2872 1.0615 0.068*
H21B 0.4605 0.3582 1.0981 0.068*
H21C 0.5468 0.345 1.039 0.068*
C22 0.4165 (3) 0.23797 (14) 0.8507 (3) 0.0277 (7)
H22 0.4042 0.2273 0.9211 0.033*
C23 0.5224 (3) 0.20904 (17) 0.8573 (3) 0.0386 (9)
H23A 0.5361 0.2168 0.7882 0.058*
H23B 0.5208 0.1629 0.8698 0.058*
H23C 0.5789 0.2287 0.9182 0.058*
C24 0.3262 (3) 0.20786 (17) 0.7590 (3) 0.0414 (9)
H24A 0.2583 0.2255 0.7596 0.062*
H24B 0.3266 0.1615 0.7699 0.062*
H24C 0.3353 0.2171 0.6881 0.062*
N1 −0.08069 (19) 0.35006 (11) 0.3314 (2) 0.0204 (6)
N2 −0.00033 (19) 0.44163 (12) 0.2262 (2) 0.0206 (5)
N3 0.52404 (19) 0.40146 (11) 0.7648 (2) 0.0212 (6)
N4 0.4172 (2) 0.30869 (11) 0.8429 (2) 0.0216 (6)
P1 0.03033 (6) 0.37788 (4) 0.31167 (6) 0.01830 (19)
P2 0.10621 (6) 0.42397 (4) 0.47668 (6) 0.0214 (2)
P3 0.43260 (6) 0.34204 (4) 0.72996 (6) 0.01890 (19)
P4 0.28812 (6) 0.40449 (4) 0.66843 (6) 0.0212 (2)
P5 0.27184 (6) 0.39792 (4) 0.49234 (7) 0.0271 (2)
P6 0.18012 (7) 0.33459 (4) 0.55847 (7) 0.0273 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0242 (17) 0.0277 (17) 0.0323 (18) −0.0045 (14) 0.0146 (14) −0.0053 (14)
C2 0.0264 (18) 0.0326 (19) 0.048 (2) −0.0002 (14) 0.0157 (16) −0.0008 (17)
C3 0.040 (2) 0.042 (2) 0.034 (2) −0.0085 (16) 0.0225 (17) −0.0024 (16)
C4 0.0321 (18) 0.0203 (16) 0.0359 (19) −0.0082 (14) 0.0152 (15) −0.0044 (14)
C5 0.045 (2) 0.035 (2) 0.035 (2) −0.0159 (17) 0.0078 (17) −0.0111 (16)
C6 0.049 (2) 0.0227 (19) 0.068 (3) −0.0010 (16) 0.022 (2) −0.0028 (18)
C7 0.0300 (18) 0.0221 (16) 0.0245 (17) 0.0012 (13) 0.0095 (14) 0.0031 (13)
C8 0.047 (2) 0.0247 (18) 0.036 (2) −0.0013 (15) 0.0143 (17) −0.0010 (15)
C9 0.0302 (19) 0.0337 (19) 0.0316 (19) 0.0067 (15) 0.0084 (15) 0.0076 (15)
C10 0.0279 (18) 0.0296 (18) 0.0240 (17) 0.0015 (14) 0.0110 (14) 0.0068 (14)
C11 0.060 (3) 0.042 (2) 0.031 (2) −0.0044 (18) 0.0265 (18) −0.0018 (17)
C12 0.032 (2) 0.058 (3) 0.037 (2) −0.0070 (18) 0.0149 (17) 0.0092 (18)
C13 0.0190 (16) 0.0261 (17) 0.0309 (18) −0.0033 (13) 0.0088 (13) −0.0045 (14)
C14 0.0286 (19) 0.0298 (19) 0.043 (2) −0.0019 (15) 0.0053 (16) 0.0037 (16)
C15 0.0345 (19) 0.036 (2) 0.0292 (18) −0.0080 (15) 0.0100 (15) −0.0089 (16)
C16 0.0242 (18) 0.037 (2) 0.056 (2) −0.0031 (15) 0.0214 (17) −0.0123 (18)
C17 0.072 (3) 0.140 (5) 0.092 (4) −0.054 (3) 0.072 (3) −0.068 (4)
C18 0.029 (2) 0.052 (3) 0.155 (6) 0.017 (2) 0.030 (3) 0.012 (3)
C19 0.049 (2) 0.0192 (16) 0.0272 (18) 0.0066 (15) 0.0228 (16) 0.0025 (13)
C20 0.060 (3) 0.042 (2) 0.052 (2) 0.0215 (19) 0.041 (2) 0.0212 (19)
C21 0.080 (3) 0.031 (2) 0.0234 (19) −0.003 (2) 0.0167 (19) −0.0030 (15)
C22 0.043 (2) 0.0166 (16) 0.0236 (17) 0.0040 (14) 0.0108 (14) 0.0033 (13)
C23 0.054 (2) 0.0259 (18) 0.037 (2) 0.0158 (16) 0.0170 (18) 0.0051 (16)
C24 0.061 (2) 0.0256 (19) 0.037 (2) −0.0106 (17) 0.0155 (19) −0.0005 (16)
N1 0.0239 (14) 0.0173 (13) 0.0229 (13) −0.0054 (10) 0.0116 (11) −0.0028 (10)
N2 0.0233 (13) 0.0207 (13) 0.0188 (13) −0.0001 (10) 0.0082 (10) 0.0049 (10)
N3 0.0172 (13) 0.0207 (13) 0.0258 (14) −0.0002 (10) 0.0074 (11) −0.0030 (11)
N4 0.0292 (14) 0.0180 (13) 0.0193 (13) 0.0038 (11) 0.0105 (11) −0.0003 (10)
P1 0.0177 (4) 0.0201 (4) 0.0168 (4) 0.0002 (3) 0.0052 (3) 0.0026 (3)
P2 0.0183 (4) 0.0241 (4) 0.0195 (4) 0.0007 (3) 0.0032 (3) 0.0009 (3)
P3 0.0197 (4) 0.0193 (4) 0.0169 (4) 0.0014 (3) 0.0050 (3) −0.0009 (3)
P4 0.0187 (4) 0.0240 (4) 0.0191 (4) 0.0022 (3) 0.0037 (3) 0.0001 (3)
P5 0.0201 (4) 0.0415 (5) 0.0195 (4) 0.0020 (4) 0.0063 (3) 0.0047 (4)
P6 0.0255 (5) 0.0248 (4) 0.0251 (4) −0.0041 (3) −0.0003 (4) 0.0043 (4)

Geometric parameters (Å, °)

C1—N1 1.479 (4) C14—H14C 0.98
C1—C3 1.516 (5) C15—H15A 0.98
C1—C2 1.529 (5) C15—H15B 0.98
C1—H1 1 C15—H15C 0.98
C2—H2A 0.98 C16—N3 1.474 (4)
C2—H2B 0.98 C16—C17 1.505 (6)
C2—H2C 0.98 C16—C18 1.534 (6)
C3—H3A 0.98 C16—H16 1
C3—H3B 0.98 C17—H17A 0.98
C3—H3C 0.98 C17—H17B 0.98
C4—N1 1.479 (4) C17—H17C 0.98
C4—C6 1.519 (5) C18—H18A 0.98
C4—C5 1.526 (5) C18—H18B 0.98
C4—H4 1 C18—H18C 0.98
C5—H5A 0.98 C19—N4 1.476 (4)
C5—H5B 0.98 C19—C20 1.516 (5)
C5—H5C 0.98 C19—C21 1.521 (5)
C6—H6A 0.98 C19—H19 1
C6—H6B 0.98 C20—H20A 0.98
C6—H6C 0.98 C20—H20B 0.98
C7—N2 1.472 (4) C20—H20C 0.98
C7—C9 1.522 (4) C21—H21A 0.98
C7—C8 1.525 (4) C21—H21B 0.98
C7—H7 1 C21—H21C 0.98
C8—H8A 0.98 C22—N4 1.484 (4)
C8—H8B 0.98 C22—C23 1.512 (5)
C8—H8C 0.98 C22—C24 1.517 (5)
C9—H9A 0.98 C22—H22 1
C9—H9B 0.98 C23—H23A 0.98
C9—H9C 0.98 C23—H23B 0.98
C10—N2 1.469 (4) C23—H23C 0.98
C10—C11 1.521 (5) C24—H24A 0.98
C10—C12 1.531 (5) C24—H24B 0.98
C10—H10 1 C24—H24C 0.98
C11—H11A 0.98 N1—P1 1.686 (2)
C11—H11B 0.98 N2—P1 1.692 (2)
C11—H11C 0.98 N3—P3 1.695 (2)
C12—H12A 0.98 N4—P3 1.688 (3)
C12—H12B 0.98 P1—P2 2.2482 (11)
C12—H12C 0.98 P2—P6 2.2121 (11)
C13—N3 1.477 (4) P2—P5 2.2176 (11)
C13—C15 1.520 (4) P3—P4 2.2438 (11)
C13—C14 1.522 (5) P4—P6 2.2070 (11)
C13—H13 1 P4—P5 2.2123 (11)
C14—H14A 0.98 P5—P6 2.1610 (12)
C14—H14B 0.98
N1—C1—C3 111.6 (3) C13—C15—H15C 109.5
N1—C1—C2 113.5 (3) H15A—C15—H15C 109.5
C3—C1—C2 110.5 (3) H15B—C15—H15C 109.5
N1—C1—H1 107 N3—C16—C17 112.3 (3)
C3—C1—H1 107 N3—C16—C18 111.9 (3)
C2—C1—H1 107 C17—C16—C18 112.3 (4)
C1—C2—H2A 109.5 N3—C16—H16 106.6
C1—C2—H2B 109.5 C17—C16—H16 106.6
H2A—C2—H2B 109.5 C18—C16—H16 106.6
C1—C2—H2C 109.5 C16—C17—H17A 109.5
H2A—C2—H2C 109.5 C16—C17—H17B 109.5
H2B—C2—H2C 109.5 H17A—C17—H17B 109.5
C1—C3—H3A 109.5 C16—C17—H17C 109.5
C1—C3—H3B 109.5 H17A—C17—H17C 109.5
H3A—C3—H3B 109.5 H17B—C17—H17C 109.5
C1—C3—H3C 109.5 C16—C18—H18A 109.5
H3A—C3—H3C 109.5 C16—C18—H18B 109.5
H3B—C3—H3C 109.5 H18A—C18—H18B 109.5
N1—C4—C6 112.9 (3) C16—C18—H18C 109.5
N1—C4—C5 111.7 (3) H18A—C18—H18C 109.5
C6—C4—C5 111.6 (3) H18B—C18—H18C 109.5
N1—C4—H4 106.7 N4—C19—C20 112.9 (3)
C6—C4—H4 106.7 N4—C19—C21 111.5 (3)
C5—C4—H4 106.7 C20—C19—C21 111.5 (3)
C4—C5—H5A 109.5 N4—C19—H19 106.8
C4—C5—H5B 109.5 C20—C19—H19 106.8
H5A—C5—H5B 109.5 C21—C19—H19 106.8
C4—C5—H5C 109.5 C19—C20—H20A 109.5
H5A—C5—H5C 109.5 C19—C20—H20B 109.5
H5B—C5—H5C 109.5 H20A—C20—H20B 109.5
C4—C6—H6A 109.5 C19—C20—H20C 109.5
C4—C6—H6B 109.5 H20A—C20—H20C 109.5
H6A—C6—H6B 109.5 H20B—C20—H20C 109.5
C4—C6—H6C 109.5 C19—C21—H21A 109.5
H6A—C6—H6C 109.5 C19—C21—H21B 109.5
H6B—C6—H6C 109.5 H21A—C21—H21B 109.5
N2—C7—C9 111.1 (3) C19—C21—H21C 109.5
N2—C7—C8 112.9 (3) H21A—C21—H21C 109.5
C9—C7—C8 111.7 (3) H21B—C21—H21C 109.5
N2—C7—H7 106.9 N4—C22—C23 112.1 (3)
C9—C7—H7 106.9 N4—C22—C24 112.5 (3)
C8—C7—H7 106.9 C23—C22—C24 111.3 (3)
C7—C8—H8A 109.5 N4—C22—H22 106.8
C7—C8—H8B 109.5 C23—C22—H22 106.8
H8A—C8—H8B 109.5 C24—C22—H22 106.8
C7—C8—H8C 109.5 C22—C23—H23A 109.5
H8A—C8—H8C 109.5 C22—C23—H23B 109.5
H8B—C8—H8C 109.5 H23A—C23—H23B 109.5
C7—C9—H9A 109.5 C22—C23—H23C 109.5
C7—C9—H9B 109.5 H23A—C23—H23C 109.5
H9A—C9—H9B 109.5 H23B—C23—H23C 109.5
C7—C9—H9C 109.5 C22—C24—H24A 109.5
H9A—C9—H9C 109.5 C22—C24—H24B 109.5
H9B—C9—H9C 109.5 H24A—C24—H24B 109.5
N2—C10—C11 113.0 (3) C22—C24—H24C 109.5
N2—C10—C12 111.6 (3) H24A—C24—H24C 109.5
C11—C10—C12 111.1 (3) H24B—C24—H24C 109.5
N2—C10—H10 106.9 C1—N1—C4 115.1 (2)
C11—C10—H10 106.9 C1—N1—P1 127.1 (2)
C12—C10—H10 106.9 C4—N1—P1 117.8 (2)
C10—C11—H11A 109.5 C10—N2—C7 117.2 (2)
C10—C11—H11B 109.5 C10—N2—P1 118.3 (2)
H11A—C11—H11B 109.5 C7—N2—P1 124.3 (2)
C10—C11—H11C 109.5 C16—N3—C13 114.7 (2)
H11A—C11—H11C 109.5 C16—N3—P3 118.6 (2)
H11B—C11—H11C 109.5 C13—N3—P3 126.7 (2)
C10—C12—H12A 109.5 C19—N4—C22 115.9 (2)
C10—C12—H12B 109.5 C19—N4—P3 125.3 (2)
H12A—C12—H12B 109.5 C22—N4—P3 118.4 (2)
C10—C12—H12C 109.5 N1—P1—N2 109.62 (12)
H12A—C12—H12C 109.5 N1—P1—P2 98.49 (9)
H12B—C12—H12C 109.5 N2—P1—P2 102.35 (9)
N3—C13—C15 112.9 (3) P6—P2—P5 58.40 (4)
N3—C13—C14 112.1 (3) P6—P2—P1 94.47 (4)
C15—C13—C14 111.3 (3) P5—P2—P1 95.90 (4)
N3—C13—H13 106.7 N4—P3—N3 110.93 (13)
C15—C13—H13 106.7 N4—P3—P4 102.15 (9)
C14—C13—H13 106.7 N3—P3—P4 97.12 (9)
C13—C14—H14A 109.5 P6—P4—P5 58.55 (4)
C13—C14—H14B 109.5 P6—P4—P3 98.15 (4)
H14A—C14—H14B 109.5 P5—P4—P3 96.17 (4)
C13—C14—H14C 109.5 P6—P5—P4 60.60 (4)
H14A—C14—H14C 109.5 P6—P5—P2 60.68 (4)
H14B—C14—H14C 109.5 P4—P5—P2 80.46 (4)
C13—C15—H15A 109.5 P5—P6—P4 60.85 (4)
C13—C15—H15B 109.5 P5—P6—P2 60.93 (4)
H15A—C15—H15B 109.5 P4—P6—P2 80.70 (4)
C3—C1—N1—C4 63.7 (3) C4—N1—P1—P2 −147.9 (2)
C2—C1—N1—C4 −62.0 (3) C10—N2—P1—N1 −138.7 (2)
C3—C1—N1—P1 −115.5 (3) C7—N2—P1—N1 47.2 (3)
C2—C1—N1—P1 118.9 (3) C10—N2—P1—P2 117.5 (2)
C6—C4—N1—C1 −126.1 (3) C7—N2—P1—P2 −56.6 (2)
C5—C4—N1—C1 107.2 (3) N1—P1—P2—P6 84.13 (9)
C6—C4—N1—P1 53.1 (3) N2—P1—P2—P6 −163.53 (9)
C5—C4—N1—P1 −73.6 (3) N1—P1—P2—P5 142.77 (9)
C11—C10—N2—C7 −125.6 (3) N2—P1—P2—P5 −104.88 (10)
C12—C10—N2—C7 108.4 (3) C19—N4—P3—N3 53.6 (3)
C11—C10—N2—P1 59.9 (3) C22—N4—P3—N3 −133.4 (2)
C12—C10—N2—P1 −66.2 (3) C19—N4—P3—P4 −49.0 (3)
C9—C7—N2—C10 66.3 (3) C22—N4—P3—P4 124.0 (2)
C8—C7—N2—C10 −60.1 (4) C16—N3—P3—N4 111.4 (2)
C9—C7—N2—P1 −119.6 (3) C13—N3—P3—N4 −71.5 (3)
C8—C7—N2—P1 114.1 (3) C16—N3—P3—P4 −142.6 (2)
C17—C16—N3—C13 −120.2 (4) C13—N3—P3—P4 34.5 (3)
C18—C16—N3—C13 112.5 (4) N4—P3—P4—P6 −90.61 (10)
C17—C16—N3—P3 57.3 (4) N3—P3—P4—P6 156.11 (10)
C18—C16—N3—P3 −70.1 (4) N4—P3—P4—P5 −149.63 (10)
C15—C13—N3—C16 −63.2 (4) N3—P3—P4—P5 97.09 (10)
C14—C13—N3—C16 63.5 (3) P3—P4—P5—P6 95.80 (4)
C15—C13—N3—P3 119.6 (3) P6—P4—P5—P2 61.62 (4)
C14—C13—N3—P3 −113.7 (3) P3—P4—P5—P2 157.42 (4)
C20—C19—N4—C22 −61.8 (4) P1—P2—P5—P6 −91.63 (4)
C21—C19—N4—C22 64.7 (4) P6—P2—P5—P4 −61.54 (4)
C20—C19—N4—P3 111.4 (3) P1—P2—P5—P4 −153.17 (4)
C21—C19—N4—P3 −122.2 (3) P2—P5—P6—P4 −95.64 (4)
C23—C22—N4—C19 −121.2 (3) P4—P5—P6—P2 95.64 (4)
C24—C22—N4—C19 112.5 (3) P3—P4—P6—P5 −92.27 (4)
C23—C22—N4—P3 65.1 (3) P5—P4—P6—P2 −61.81 (4)
C24—C22—N4—P3 −61.2 (3) P3—P4—P6—P2 −154.08 (4)
C1—N1—P1—N2 −75.2 (3) P1—P2—P6—P5 94.19 (4)
C4—N1—P1—N2 105.7 (2) P5—P2—P6—P4 61.73 (4)
C1—N1—P1—P2 31.2 (3) P1—P2—P6—P4 155.91 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2506).

References

  1. Bezombes, J.-P., Hitchcock, P. B., Lappert, M. F. & Nycz, J. E. (2004). Dalton Trans. pp. 499–501. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Matern, E., Fritz, G. & Pikies, J. (1997). Z. Anorg. Allg. Chem.623, 1769–1773.
  5. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037938/ng2506sup1.cif

e-64-o2427-sup1.cif (27KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037938/ng2506Isup2.hkl

e-64-o2427-Isup2.hkl (302.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES