Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2325. doi: 10.1107/S1600536808036623

2-(4-Chloro­anilino)-3-(2-hydroxy­ethyl)quinazolin-4(3H)-one

Hong-Ling Wang a, Xu-Hong Yang a, Ming-Hu Wu a,*
PMCID: PMC2959957  PMID: 21581300

Abstract

In the title mol­ecule, C16H14ClN3O2, the dihedral angle between the chloro­phenyl and pyrimidinone rings is 14.8 (1)°, while the dihedral angle between the fused benzene ring and the pyrimidinone ring is 3.8 (1)°. In the crystal structure, intra­molecular N—H⋯O hydrogen bonds, together with inter­molecular O—H⋯O hydrogen-bonding inter­actions, are present.

Related literature

For the biological activities and applications of 4(3H)-quinazolinone, see: Armarego (1963); Fisnerova et al. (1986); Gravier et al. (1992). For details of our ongoing heterocyclic synthesis and drug discovery project, see: Yang et al. (2008).graphic file with name e-64-o2325-scheme1.jpg

Experimental

Crystal data

  • C16H14ClN3O2

  • M r = 315.75

  • Monoclinic, Inline graphic

  • a = 9.0707 (18) Å

  • b = 11.345 (2) Å

  • c = 14.143 (3) Å

  • β = 96.98 (3)°

  • V = 1444.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 273 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.947, T max = 0.973

  • 8113 measured reflections

  • 2824 independent reflections

  • 2300 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.108

  • S = 1.05

  • 2824 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001; data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036623/ez2147sup1.cif

e-64-o2325-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036623/ez2147Isup2.hkl

e-64-o2325-Isup2.hkl (138.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.839 (18) 1.993 (19) 2.8017 (19) 161.8 (17)
O2—H2A⋯O1i 0.86 (2) 1.86 (2) 2.7180 (18) 174 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefully acknowledge financial support of this work as a project of the Natural Science Foundation of Hubei Province under grant No. 2006ABA334.

supplementary crystallographic information

Comment

One of the most frequently encountered heterocyclic molecules in medicinal chemistry is 4(3H)-quinazolinone, which has wide application as a result of antibacterial, antifungal, anticonvulsant, and anti-inflammatory activities (Armarego, 1963; Gravier et al., 1992; Fisnerova et al., 1986). In our ongoing heterocyclic synthesis and drug discovery project (Yang et al., 2008) we have focused on the synthesis of quinazolinones and pyrazolo pyrimidinones. Herein, the title compound was synthesized and determined by single-crystal X-ray diffraction.

In the molecule (Fig. 1), the dihedral angle between the chlorophenyl and pyrimidinone rings is 14.8 (1)°, and the dihedral angle between the fused benzene and pyrimidinone rings is 3.8 (1)°.

In the crystal structure, molecules are linked by intramolecular N1–H1A···O2 hydrogen-bonds together with O2–H2A···O1i intermolecular hydrogen-bonding interactions (symmetry code: i, -1/2 - x,1/2 + y,3/2 - z) (Fig. 2).

Experimental

To a solution of 2-ethoxycarbonyliminophosphorane (1.27 g, 3 mmol) in 10 ml absolute anhydrous CH2Cl2, 4-chlorophenylisocyanate (0.46 g, 3 mmol) was added dropwise at room temperature. The reaction mixture was left unstirred for 6 h at 273–278 K, whereafter a solution of 2-hydroxyethylamine (0.18 g, 3 mmol) in 5 ml absolute anhydrous CH2Cl2was added. The reaction mixture was then stirred overnight, the solution cooled and the reaction product recrystallized from CH3OH to give colorless crystals of the title compound suitable for X-ray analysis in 58% yield.

Refinement

H atoms bonded to C atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and included in the riding model approximation. The positional parameters of H atoms bonded to N and O atoms were refined independently. For all H atoms Uiso (H) = 1.2Uiso (C,N) or 1.5Uiso (O).

Figures

Fig. 1.

Fig. 1.

View of the molecule with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H14ClN3O2 F000 = 656
Mr = 315.75 Dx = 1.452 Mg m3
Monoclinic, P21/n Melting point = 432–434 K
Hall symbol: -P 2yn Mo Kα radiation λ = 0.71073 Å
a = 9.0707 (18) Å Cell parameters from 3170 reflections
b = 11.345 (2) Å θ = 2.3–26.2º
c = 14.143 (3) Å µ = 0.28 mm1
β = 96.98 (3)º T = 273 (2) K
V = 1444.6 (5) Å3 Block, colourless
Z = 4 0.20 × 0.20 × 0.10 mm

Data collection

Bruker SMART APEX CCD diffractometer 2824 independent reflections
Radiation source: fine-focus sealed tube 2300 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.019
T = 273(2) K θmax = 26.0º
φ and ω scans θmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 2001) h = −11→9
Tmin = 0.947, Tmax = 0.973 k = −11→13
8113 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108   w = 1/[σ2(Fo2) + (0.0587P)2 + 0.2177P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2824 reflections Δρmax = 0.16 e Å3
205 parameters Δρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.24608 (18) 1.06958 (14) 0.90802 (11) 0.0460 (4)
H1 0.2103 1.0780 0.8439 0.055*
C2 0.34154 (18) 1.15287 (15) 0.95164 (11) 0.0495 (4)
H2 0.3699 1.2173 0.9174 0.059*
C3 0.39474 (17) 1.13990 (14) 1.04660 (12) 0.0460 (4)
C4 0.35073 (19) 1.04650 (15) 1.09827 (12) 0.0524 (4)
H4 0.3857 1.0395 1.1626 0.063*
C5 0.25416 (18) 0.96263 (15) 1.05448 (11) 0.0502 (4)
H5 0.2242 0.8995 1.0895 0.060*
C6 0.20225 (16) 0.97305 (13) 0.95836 (11) 0.0397 (3)
C7 0.03780 (15) 0.79644 (13) 0.93558 (10) 0.0396 (3)
C8 −0.13344 (17) 0.63934 (14) 0.88093 (11) 0.0465 (4)
C9 −0.13969 (17) 0.61551 (14) 0.98083 (11) 0.0460 (4)
C10 −0.04823 (16) 0.68016 (14) 1.04878 (11) 0.0427 (4)
C11 −0.05282 (18) 0.65638 (16) 1.14562 (12) 0.0520 (4)
H11 0.0091 0.6974 1.1915 0.062*
C12 −0.1479 (2) 0.57314 (17) 1.17282 (13) 0.0608 (5)
H12 −0.1512 0.5588 1.2373 0.073*
C13 −0.2398 (2) 0.50952 (18) 1.10526 (15) 0.0672 (5)
H13 −0.3044 0.4533 1.1247 0.081*
C14 −0.2352 (2) 0.52964 (16) 1.01032 (13) 0.0607 (5)
H14 −0.2956 0.4862 0.9652 0.073*
C15 −0.00780 (19) 0.74122 (15) 0.76189 (11) 0.0477 (4)
H15A −0.0208 0.6648 0.7312 0.057*
H15B 0.0951 0.7643 0.7613 0.057*
C16 −0.1053 (2) 0.82925 (16) 0.70402 (12) 0.0572 (4)
H16A −0.1005 0.8163 0.6367 0.069*
H16B −0.2076 0.8194 0.7161 0.069*
Cl1 0.51722 (6) 1.24474 (4) 1.10084 (4) 0.06868 (19)
N1 0.10834 (15) 0.89234 (12) 0.90499 (9) 0.0450 (3)
H1A 0.0750 (19) 0.9182 (16) 0.8510 (13) 0.054*
N2 −0.03685 (14) 0.72897 (11) 0.86188 (9) 0.0422 (3)
N3 0.03988 (14) 0.77194 (11) 1.02486 (9) 0.0436 (3)
O1 −0.20317 (14) 0.58621 (11) 0.81420 (9) 0.0639 (4)
O2 −0.05636 (14) 0.94472 (12) 0.72940 (9) 0.0606 (3)
H2A −0.129 (3) 0.992 (2) 0.7132 (17) 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0555 (9) 0.0443 (9) 0.0388 (8) −0.0021 (7) 0.0088 (7) 0.0014 (7)
C2 0.0578 (10) 0.0417 (9) 0.0510 (9) −0.0077 (7) 0.0148 (7) 0.0012 (7)
C3 0.0454 (8) 0.0386 (8) 0.0536 (9) −0.0025 (7) 0.0049 (7) −0.0039 (7)
C4 0.0591 (10) 0.0470 (9) 0.0480 (9) −0.0069 (8) −0.0063 (7) 0.0057 (7)
C5 0.0551 (10) 0.0435 (9) 0.0493 (9) −0.0087 (7) −0.0040 (7) 0.0097 (7)
C6 0.0385 (8) 0.0355 (8) 0.0450 (8) 0.0015 (6) 0.0043 (6) −0.0006 (6)
C7 0.0374 (8) 0.0374 (8) 0.0431 (8) 0.0016 (6) 0.0016 (6) −0.0023 (6)
C8 0.0476 (9) 0.0403 (9) 0.0512 (9) −0.0021 (7) 0.0043 (7) −0.0092 (7)
C9 0.0481 (9) 0.0372 (8) 0.0531 (9) −0.0018 (7) 0.0078 (7) −0.0045 (7)
C10 0.0421 (8) 0.0391 (8) 0.0465 (8) 0.0006 (6) 0.0035 (6) 0.0020 (7)
C11 0.0526 (9) 0.0539 (10) 0.0482 (9) −0.0061 (8) 0.0008 (7) 0.0042 (8)
C12 0.0657 (11) 0.0616 (12) 0.0556 (10) −0.0088 (9) 0.0093 (9) 0.0124 (9)
C13 0.0748 (13) 0.0568 (12) 0.0714 (12) −0.0225 (10) 0.0149 (10) 0.0049 (10)
C14 0.0681 (11) 0.0491 (10) 0.0654 (11) −0.0179 (9) 0.0099 (9) −0.0083 (9)
C15 0.0560 (10) 0.0468 (9) 0.0403 (8) 0.0042 (7) 0.0065 (7) −0.0050 (7)
C16 0.0626 (11) 0.0598 (11) 0.0466 (9) 0.0048 (9) −0.0035 (8) −0.0017 (8)
Cl1 0.0759 (4) 0.0539 (3) 0.0731 (3) −0.0218 (2) −0.0037 (3) −0.0055 (2)
N1 0.0489 (7) 0.0433 (8) 0.0408 (7) −0.0053 (6) −0.0027 (6) 0.0043 (6)
N2 0.0466 (7) 0.0386 (7) 0.0411 (7) 0.0003 (5) 0.0039 (5) −0.0046 (5)
N3 0.0445 (7) 0.0434 (7) 0.0421 (7) −0.0048 (5) 0.0018 (5) 0.0005 (6)
O1 0.0715 (8) 0.0628 (8) 0.0562 (7) −0.0195 (6) 0.0029 (6) −0.0179 (6)
O2 0.0660 (8) 0.0522 (8) 0.0596 (7) 0.0103 (6) −0.0079 (6) 0.0050 (6)

Geometric parameters (Å, °)

C1—C2 1.376 (2) C9—C14 1.400 (2)
C1—C6 1.390 (2) C10—N3 1.3796 (19)
C1—H1 0.9300 C10—C11 1.402 (2)
C2—C3 1.379 (2) C11—C12 1.365 (2)
C2—H2 0.9300 C11—H11 0.9300
C3—C4 1.374 (2) C12—C13 1.391 (3)
C3—Cl1 1.7408 (16) C12—H12 0.9300
C4—C5 1.387 (2) C13—C14 1.368 (3)
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.389 (2) C14—H14 0.9300
C5—H5 0.9300 C15—N2 1.476 (2)
C6—N1 1.406 (2) C15—C16 1.508 (2)
C7—N3 1.2907 (19) C15—H15A 0.9700
C7—N1 1.3593 (19) C15—H15B 0.9700
C7—N2 1.400 (2) C16—O2 1.415 (2)
C8—O1 1.2283 (19) C16—H16A 0.9700
C8—N2 1.390 (2) C16—H16B 0.9700
C8—C9 1.446 (2) N1—H1A 0.839 (18)
C9—C10 1.398 (2) O2—H2A 0.86 (2)
C2—C1—C6 120.99 (15) C12—C11—H11 119.9
C2—C1—H1 119.5 C10—C11—H11 119.9
C6—C1—H1 119.5 C11—C12—C13 120.77 (17)
C1—C2—C3 119.35 (15) C11—C12—H12 119.6
C1—C2—H2 120.3 C13—C12—H12 119.6
C3—C2—H2 120.3 C14—C13—C12 120.04 (17)
C4—C3—C2 120.70 (15) C14—C13—H13 120.0
C4—C3—Cl1 120.26 (13) C12—C13—H13 120.0
C2—C3—Cl1 119.04 (13) C13—C14—C9 120.15 (17)
C3—C4—C5 120.01 (15) C13—C14—H14 119.9
C3—C4—H4 120.0 C9—C14—H14 119.9
C5—C4—H4 120.0 N2—C15—C16 114.90 (14)
C4—C5—C6 119.95 (15) N2—C15—H15A 108.5
C4—C5—H5 120.0 C16—C15—H15A 108.5
C6—C5—H5 120.0 N2—C15—H15B 108.5
C5—C6—C1 118.97 (14) C16—C15—H15B 108.5
C5—C6—N1 125.54 (14) H15A—C15—H15B 107.5
C1—C6—N1 115.48 (14) O2—C16—C15 109.27 (14)
N3—C7—N1 122.16 (14) O2—C16—H16A 109.8
N3—C7—N2 123.99 (14) C15—C16—H16A 109.8
N1—C7—N2 113.85 (13) O2—C16—H16B 109.8
O1—C8—N2 119.21 (15) C15—C16—H16B 109.8
O1—C8—C9 125.53 (15) H16A—C16—H16B 108.3
N2—C8—C9 115.25 (13) C7—N1—C6 128.91 (13)
C10—C9—C14 119.79 (15) C7—N1—H1A 116.0 (12)
C10—C9—C8 118.88 (14) C6—N1—H1A 112.9 (13)
C14—C9—C8 121.33 (15) C8—N2—C7 121.00 (13)
N3—C10—C9 122.70 (14) C8—N2—C15 116.40 (13)
N3—C10—C11 118.15 (14) C7—N2—C15 122.37 (13)
C9—C10—C11 119.01 (14) C7—N3—C10 117.54 (13)
C12—C11—C10 120.22 (16) C16—O2—H2A 107.7 (16)
C6—C1—C2—C3 0.2 (2) C12—C13—C14—C9 −1.0 (3)
C1—C2—C3—C4 −1.5 (3) C10—C9—C14—C13 0.4 (3)
C1—C2—C3—Cl1 179.23 (12) C8—C9—C14—C13 −179.47 (17)
C2—C3—C4—C5 1.3 (3) N2—C15—C16—O2 75.96 (19)
Cl1—C3—C4—C5 −179.42 (13) N3—C7—N1—C6 6.0 (2)
C3—C4—C5—C6 0.1 (3) N2—C7—N1—C6 −174.53 (14)
C4—C5—C6—C1 −1.4 (2) C5—C6—N1—C7 7.1 (3)
C4—C5—C6—N1 177.75 (15) C1—C6—N1—C7 −173.72 (14)
C2—C1—C6—C5 1.2 (2) O1—C8—N2—C7 176.07 (14)
C2—C1—C6—N1 −178.01 (14) C9—C8—N2—C7 −5.2 (2)
O1—C8—C9—C10 177.05 (16) O1—C8—N2—C15 −9.3 (2)
N2—C8—C9—C10 −1.6 (2) C9—C8—N2—C15 169.47 (13)
O1—C8—C9—C14 −3.1 (3) N3—C7—N2—C8 9.8 (2)
N2—C8—C9—C14 178.30 (15) N1—C7—N2—C8 −169.68 (13)
C14—C9—C10—N3 −174.93 (15) N3—C7—N2—C15 −164.55 (14)
C8—C9—C10—N3 5.0 (2) N1—C7—N2—C15 16.0 (2)
C14—C9—C10—C11 0.8 (2) C16—C15—N2—C8 94.27 (17)
C8—C9—C10—C11 −179.30 (14) C16—C15—N2—C7 −91.15 (19)
N3—C10—C11—C12 174.43 (16) N1—C7—N3—C10 173.12 (13)
C9—C10—C11—C12 −1.5 (3) N2—C7—N3—C10 −6.3 (2)
C10—C11—C12—C13 1.0 (3) C9—C10—N3—C7 −1.1 (2)
C11—C12—C13—C14 0.3 (3) C11—C10—N3—C7 −176.85 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.839 (18) 1.993 (19) 2.8017 (19) 161.8 (17)
O2—H2A···O1i 0.86 (2) 1.86 (2) 2.7180 (18) 174 (2)

Symmetry codes: (i) −x−1/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2147).

References

  1. Armarego, W. L. F. (1963). Advanced Heterocyclic Chemistry, Vol. 1, pp. 253–309. New York: Academic Press. [DOI] [PubMed]
  2. Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fisnerova, L., Grimova, J., Roubal, Z., Maturova, E. & Brunova, B. (1986). Cesk. Farm.3, 447–450. [PubMed]
  4. Gravier, D., Dupin, J. P., Casadebaig, F., Hou, G., Boisseau, M. & Bernard, H. (1992). Pharmazie, 47, 91–94. [PubMed]
  5. Sheldrick, G. M. (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  8. Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem.5, 1365–1369.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036623/ez2147sup1.cif

e-64-o2325-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036623/ez2147Isup2.hkl

e-64-o2325-Isup2.hkl (138.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES