Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 20;64(Pt 12):m1577. doi: 10.1107/S1600536808037744

catena-Poly[[(1,10-phenanthroline-κ2 N,N′)copper(I)]-μ-thiocyanato-κ2 N:S-[(1,10-phenanthroline-κ2 N,N′)copper(I)]-μ-cyanido-κ2 N:C]

Jun Zhao a, Wen-Wen Dong a, Dong-Sheng Li a,*, Xi-Jun Ke a
PMCID: PMC2959958  PMID: 21581179

Abstract

In the title complex, [Cu2(CN)(NCS)(C12H8N2)2], which was synthesized under hydro­thermal conditions, both CuI atoms have a slightly distorted tetra­hedral geometry. They are coordinated by two N atoms of one 1,10-phenanthroline ligand, one bridging thio­cyanate anion and one bridging cyanide anion. In the crystal structure, infinite helical {Cu–CN–Cu–SCN}n chains are formed along [Inline graphic01].

Related literature

For related literature, see: Cheng et al. (2006); Greig & Philp (2001); Luan et al. (2006); Piguet et al. (1997).graphic file with name e-64-m1577-scheme1.jpg

Experimental

Crystal data

  • [Cu2(CN)(NCS)(C12H8N2)2]

  • M r = 571.59

  • Monoclinic, Inline graphic

  • a = 13.046 (7) Å

  • b = 13.470 (7) Å

  • c = 13.538 (7) Å

  • β = 90.044 (9)°

  • V = 2379 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 293 (2) K

  • 0.30 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan SADABS (Sheldrick, 1996) T min = 0.599, T max = 0.804

  • 15496 measured reflections

  • 4959 independent reflections

  • 3662 reflections with I > 2σ(I)

  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.164

  • S = 1.00

  • 4959 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536808037744/bt2813sup1.cif

e-64-m1577-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037744/bt2813Isup2.hkl

e-64-m1577-Isup2.hkl (242.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (grant No. 20773104), the Program for New Century Excellent Talents in University (grant No. NCET-06-0891), the Key Project of the Chinese Ministry of Education (grant No. 208143), and the Important Project of Hubei Provincial Education Office (grant No. 09HB81).

supplementary crystallographic information

Comment

Self-assembly processes that lead to helical structures are common throughout biology and chemistry (Luan et al., 2006; Piguet et al., 2005). Protein α-helices and the DNA double helix are well known biological examples which have inspired the work of synthetic chemists aiming to create chemical analogs of these complex structures (Greig et al., 2001). However, there is a little known about meso-helical self-assembling systems within this very active field of helical structure research in supramolecular chemistry (Cheng et al., 2006).

The crystal structure of the title complex contains two 1,10-Phen ligands, one CuSCN and one CuCN co-existing in the asymmetric unit, as illustrated in Fig. 1. The coordianation geometry of the four-coordinated Cu(1) is slightly distorted tetrahedral with two N donors of the chelating 1,10-Phen and another N donor [N(1)] of the CN- occupying the basal sites and a S donor of SCN- occupying the vertex site. The Cu(2) also has a slightly distorted tetrahedral geometry and is coordinated by two N atoms of one 1,10-Phen ligand, one bridging thiocyanate anion N atom [N(2)] and one bridging cyanide C atom [C(1)]. It is noteworthy that the Cu(I)atoms are linked by CN- and SCN- anions into infinite helical {CuCN-CuSCN}n chains along a 21 screw axis, furthermore, the Cu2(CN)(SCN) chains run around and cross two parallel axes forming meso-helices as showed in Fig. 2.

Experimental

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. A mixture of CuSCN (0.60 mmol, 0.07 g), NaCN (1 mmol, 0.05 g),1,10-Phen (0.40 mmol, 0.07 g) and water (10 ml) in a 25 ml Teflon-lined stainless steel reactor was heated from 298 to 453 K in 2 h and maintained at 453 K for 72 h. After the mixture wascooled to 298 K, red crystals of the title compound were obtained (yield 43%).

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) values equal to 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Left: presentation of the location of the copper centres of coordination polymer; Right: View of the meso-helical arrangement.

Crystal data

[Cu2(CN)(NCS)(C12H8N2)2] F000 = 1152
Mr = 571.59 Dx = 1.596 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2103 reflections
a = 13.046 (7) Å θ = 2.2–27.5º
b = 13.470 (7) Å µ = 1.90 mm1
c = 13.538 (7) Å T = 293 (2) K
β = 90.044 (9)º Prism, red
V = 2379 (2) Å3 0.30 × 0.15 × 0.12 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 4959 independent reflections
Radiation source: fine-focus sealed tube 3662 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.081
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5º
T = 293(2) K θmin = 2.2º
CCD Profile fitting scans h = −15→16
Absorption correction: multi-scanSADABS (Sheldrick, 1996) k = −17→15
Tmin = 0.599, Tmax = 0.804 l = −17→17
15496 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061 H-atom parameters constrained
wR(F2) = 0.164   w = 1/[σ2(Fo2) + (0.0669P)2 + 0.4979P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
4959 reflections Δρmax = 0.47 e Å3
316 parameters Δρmin = −0.57 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.08441 (4) 0.73813 (3) 0.04132 (4) 0.06012 (19)
Cu2 0.45032 (3) 0.76203 (3) −0.04863 (3) 0.05589 (18)
C1 0.3089 (3) 0.7520 (2) −0.0233 (3) 0.0502 (8)
N2 0.5019 (2) 0.8164 (2) −0.1747 (2) 0.0623 (7)
N3 −0.0405 (2) 0.73312 (19) −0.0551 (2) 0.0557 (7)
N4 0.0024 (2) 0.86301 (19) 0.0898 (2) 0.0524 (6)
N5 0.54334 (18) 0.8232 (2) 0.06500 (19) 0.0501 (6)
N6 0.5591 (2) 0.64667 (19) −0.02813 (19) 0.0515 (6)
N1 0.2232 (2) 0.74724 (19) −0.0059 (2) 0.0619 (8)
C2 0.5338 (2) 0.8478 (2) −0.2473 (2) 0.0505 (7)
C3 −0.0636 (3) 0.6686 (3) −0.1262 (3) 0.0712 (10)
H3A −0.0226 0.6125 −0.1325 0.085*
C4 −0.1433 (4) 0.6793 (3) −0.1905 (4) 0.0901 (14)
H4A −0.1549 0.6324 −0.2397 0.108*
C5 −0.2064 (4) 0.7608 (3) −0.1815 (4) 0.0854 (15)
H5A −0.2610 0.7697 −0.2248 0.103*
C6 −0.1878 (2) 0.8295 (2) −0.1071 (3) 0.0609 (9)
C7 −0.2500 (3) 0.9176 (3) −0.0924 (3) 0.0709 (10)
H7A −0.3060 0.9296 −0.1333 0.085*
C8 −0.2269 (3) 0.9819 (3) −0.0200 (3) 0.0662 (10)
H8A −0.2675 1.0380 −0.0119 0.079*
C9 −0.1417 (2) 0.9670 (2) 0.0451 (3) 0.0523 (7)
C10 −0.1156 (3) 1.0327 (2) 0.1207 (3) 0.0597 (9)
H10A −0.1545 1.0896 0.1311 0.072*
C11 −0.0333 (3) 1.0133 (3) 0.1790 (3) 0.0682 (10)
H11A −0.0155 1.0563 0.2299 0.082*
C12 0.0254 (3) 0.9263 (3) 0.1610 (2) 0.0625 (9)
H12A 0.0820 0.9135 0.2008 0.075*
C13 −0.0798 (2) 0.8824 (2) 0.0330 (2) 0.0473 (7)
C14 −0.1038 (2) 0.8128 (2) −0.0458 (2) 0.0502 (7)
C15 0.5371 (3) 0.9102 (3) 0.1122 (3) 0.0639 (9)
H15A 0.4849 0.9536 0.0943 0.077*
C16 0.6044 (3) 0.9392 (3) 0.1865 (3) 0.0747 (10)
H16A 0.5968 1.0008 0.2167 0.090*
C17 0.6812 (3) 0.8776 (3) 0.2149 (3) 0.0733 (10)
H17A 0.7253 0.8954 0.2659 0.088*
C18 0.6929 (3) 0.7856 (3) 0.1653 (3) 0.0559 (8)
C19 0.7759 (3) 0.7185 (3) 0.1877 (3) 0.0692 (10)
H19A 0.8219 0.7332 0.2382 0.083*
C20 0.7865 (3) 0.6345 (3) 0.1351 (3) 0.0696 (10)
H20A 0.8424 0.5937 0.1478 0.084*
C21 0.7157 (2) 0.6058 (2) 0.0611 (3) 0.0581 (8)
C22 0.7226 (3) 0.5174 (3) 0.0063 (3) 0.0743 (12)
H22A 0.7770 0.4740 0.0168 0.089*
C23 0.6491 (3) 0.4955 (3) −0.0622 (3) 0.0783 (12)
H23A 0.6530 0.4370 −0.0985 0.094*
C24 0.5680 (3) 0.5616 (3) −0.0775 (3) 0.0641 (9)
H24A 0.5182 0.5455 −0.1240 0.077*
C25 0.6313 (2) 0.6691 (2) 0.0399 (2) 0.0471 (7)
C26 0.6224 (3) 0.7617 (2) 0.0929 (2) 0.0468 (7)
S1 0.58145 (8) 0.89734 (6) −0.34839 (7) 0.0644 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0442 (3) 0.0592 (3) 0.0770 (4) 0.01178 (17) 0.0058 (2) 0.00483 (19)
Cu2 0.0407 (3) 0.0623 (3) 0.0646 (3) 0.00543 (17) −0.0032 (2) 0.00538 (18)
C1 0.0387 (17) 0.0418 (15) 0.070 (2) 0.0058 (12) 0.0049 (15) 0.0057 (13)
N2 0.0498 (15) 0.0711 (19) 0.0659 (18) −0.0020 (14) −0.0025 (13) 0.0112 (15)
N3 0.0468 (16) 0.0429 (14) 0.077 (2) 0.0043 (11) 0.0045 (15) −0.0008 (12)
N4 0.0538 (14) 0.0452 (13) 0.0582 (15) 0.0046 (12) 0.0092 (12) 0.0053 (12)
N5 0.0421 (13) 0.0504 (14) 0.0577 (15) 0.0087 (11) 0.0024 (11) −0.0010 (12)
N6 0.0503 (14) 0.0457 (14) 0.0584 (15) 0.0028 (11) 0.0049 (12) 0.0001 (12)
N1 0.0516 (19) 0.0502 (16) 0.084 (2) 0.0083 (12) 0.0027 (16) 0.0065 (14)
C2 0.0389 (14) 0.0447 (16) 0.068 (2) 0.0002 (13) −0.0035 (14) −0.0008 (14)
C3 0.061 (2) 0.056 (2) 0.097 (3) 0.0088 (17) −0.003 (2) −0.023 (2)
C4 0.084 (3) 0.067 (3) 0.119 (4) 0.008 (2) −0.017 (3) −0.036 (3)
C5 0.060 (3) 0.069 (3) 0.127 (4) 0.0007 (19) −0.027 (3) −0.022 (2)
C6 0.0396 (15) 0.0487 (17) 0.094 (3) −0.0007 (14) −0.0049 (16) −0.0069 (17)
C7 0.0495 (18) 0.0507 (19) 0.113 (3) 0.0065 (16) −0.0176 (19) −0.005 (2)
C8 0.0518 (19) 0.0413 (17) 0.106 (3) 0.0098 (15) −0.0004 (19) 0.0024 (18)
C9 0.0471 (16) 0.0394 (15) 0.071 (2) 0.0027 (13) 0.0081 (15) 0.0049 (14)
C10 0.067 (2) 0.0431 (17) 0.069 (2) 0.0091 (15) 0.0118 (18) 0.0027 (15)
C11 0.089 (3) 0.056 (2) 0.060 (2) 0.006 (2) 0.004 (2) 0.0001 (16)
C12 0.071 (2) 0.060 (2) 0.0563 (19) 0.0092 (18) −0.0005 (16) 0.0008 (16)
C13 0.0384 (14) 0.0383 (15) 0.0653 (18) 0.0014 (12) 0.0091 (13) 0.0044 (13)
C14 0.0395 (14) 0.0389 (15) 0.072 (2) 0.0000 (12) 0.0074 (14) 0.0024 (14)
C15 0.0590 (19) 0.060 (2) 0.072 (2) 0.0170 (17) 0.0047 (17) −0.0110 (17)
C16 0.078 (2) 0.074 (2) 0.072 (2) 0.011 (2) −0.001 (2) −0.023 (2)
C17 0.071 (2) 0.085 (3) 0.065 (2) −0.006 (2) −0.0035 (18) −0.016 (2)
C18 0.0430 (17) 0.066 (2) 0.0590 (19) −0.0033 (16) −0.0031 (14) 0.0115 (17)
C19 0.049 (2) 0.086 (3) 0.072 (2) 0.003 (2) −0.0150 (17) 0.017 (2)
C20 0.0497 (18) 0.073 (2) 0.086 (3) 0.0160 (18) −0.0044 (18) 0.030 (2)
C21 0.0468 (17) 0.0500 (18) 0.077 (2) 0.0118 (14) 0.0091 (16) 0.0149 (16)
C22 0.072 (3) 0.052 (2) 0.099 (3) 0.0215 (19) 0.020 (2) 0.013 (2)
C23 0.092 (3) 0.047 (2) 0.097 (3) 0.012 (2) 0.021 (3) −0.005 (2)
C24 0.075 (2) 0.0519 (18) 0.065 (2) 0.0020 (17) 0.0054 (17) −0.0055 (16)
C25 0.0397 (14) 0.0446 (15) 0.0570 (17) 0.0076 (12) 0.0079 (13) 0.0080 (13)
C26 0.0429 (17) 0.0476 (16) 0.0500 (17) 0.0051 (12) 0.0054 (14) 0.0045 (12)
S1 0.0725 (6) 0.0491 (5) 0.0717 (6) −0.0137 (4) 0.0150 (5) −0.0022 (4)

Geometric parameters (Å, °)

Cu1—N1 1.924 (3) C8—H8A 0.9300
Cu1—N3 2.089 (3) C9—C10 1.395 (5)
Cu1—N4 2.099 (3) C9—C13 1.406 (4)
Cu1—S1i 2.3581 (13) C10—C11 1.358 (5)
Cu2—C1 1.882 (3) C10—H10A 0.9300
Cu2—N2 1.976 (3) C11—C12 1.420 (5)
Cu2—N6 2.123 (3) C11—H11A 0.9300
Cu2—N5 2.125 (3) C12—H12A 0.9300
C1—N1 1.145 (5) C13—C14 1.454 (5)
N2—C2 1.148 (4) C15—C16 1.391 (5)
N3—C3 1.331 (5) C15—H15A 0.9300
N3—C14 1.360 (4) C16—C17 1.356 (6)
N4—C12 1.322 (4) C16—H16A 0.9300
N4—C13 1.345 (4) C17—C18 1.417 (5)
N5—C15 1.336 (4) C17—H17A 0.9300
N5—C26 1.376 (4) C18—C26 1.382 (5)
N6—C24 1.331 (4) C18—C19 1.443 (5)
N6—C25 1.351 (4) C19—C20 1.343 (6)
C2—S1 1.645 (3) C19—H19A 0.9300
C3—C4 1.363 (6) C20—C21 1.416 (5)
C3—H3A 0.9300 C20—H20A 0.9300
C4—C5 1.377 (6) C21—C22 1.406 (5)
C4—H4A 0.9300 C21—C25 1.421 (4)
C5—C6 1.390 (6) C22—C23 1.366 (6)
C5—H5A 0.9300 C22—H22A 0.9300
C6—C14 1.392 (5) C23—C24 1.399 (5)
C6—C7 1.452 (5) C23—H23A 0.9300
C7—C8 1.341 (5) C24—H24A 0.9300
C7—H7A 0.9300 C25—C26 1.444 (4)
C8—C9 1.433 (5) S1—Cu1ii 2.3581 (13)
N1—Cu1—N3 121.90 (14) C9—C10—H10A 120.1
N1—Cu1—N4 122.18 (11) C10—C11—C12 119.1 (3)
N3—Cu1—N4 79.83 (11) C10—C11—H11A 120.5
N1—Cu1—S1i 105.99 (9) C12—C11—H11A 120.5
N3—Cu1—S1i 110.96 (8) N4—C12—C11 122.4 (3)
N4—Cu1—S1i 114.43 (8) N4—C12—H12A 118.8
C1—Cu2—N2 121.25 (14) C11—C12—H12A 118.8
C1—Cu2—N6 125.39 (12) N4—C13—C9 123.2 (3)
N2—Cu2—N6 98.99 (11) N4—C13—C14 117.7 (3)
C1—Cu2—N5 117.10 (13) C9—C13—C14 119.0 (3)
N2—Cu2—N5 106.65 (12) N3—C14—C6 123.4 (3)
N6—Cu2—N5 78.93 (11) N3—C14—C13 116.6 (3)
N1—C1—Cu2 178.3 (4) C6—C14—C13 120.1 (3)
C2—N2—Cu2 178.7 (3) N5—C15—C16 123.6 (3)
C3—N3—C14 116.5 (3) N5—C15—H15A 118.2
C3—N3—Cu1 130.5 (2) C16—C15—H15A 118.2
C14—N3—Cu1 112.9 (2) C17—C16—C15 119.9 (4)
C12—N4—C13 118.2 (3) C17—C16—H16A 120.1
C12—N4—Cu1 129.0 (2) C15—C16—H16A 120.1
C13—N4—Cu1 112.6 (2) C16—C17—C18 118.8 (4)
C15—N5—C26 116.2 (3) C16—C17—H17A 120.6
C15—N5—Cu2 130.6 (2) C18—C17—H17A 120.6
C26—N5—Cu2 113.1 (2) C26—C18—C17 117.9 (3)
C24—N6—C25 118.3 (3) C26—C18—C19 120.1 (4)
C24—N6—Cu2 128.5 (3) C17—C18—C19 122.0 (4)
C25—N6—Cu2 113.0 (2) C20—C19—C18 119.6 (4)
C1—N1—Cu1 172.5 (4) C20—C19—H19A 120.2
N2—C2—S1 177.3 (3) C18—C19—H19A 120.2
N3—C3—C4 124.4 (4) C19—C20—C21 122.5 (3)
N3—C3—H3A 117.8 C19—C20—H20A 118.7
C4—C3—H3A 117.8 C21—C20—H20A 118.7
C3—C4—C5 118.9 (4) C22—C21—C20 124.2 (3)
C3—C4—H4A 120.5 C22—C21—C25 116.8 (4)
C5—C4—H4A 120.5 C20—C21—C25 118.9 (3)
C4—C5—C6 119.4 (4) C23—C22—C21 119.7 (3)
C4—C5—H5A 120.3 C23—C22—H22A 120.1
C6—C5—H5A 120.3 C21—C22—H22A 120.1
C14—C6—C5 117.5 (3) C22—C23—C24 119.5 (4)
C14—C6—C7 119.4 (3) C22—C23—H23A 120.2
C5—C6—C7 123.1 (4) C24—C23—H23A 120.2
C8—C7—C6 120.1 (3) N6—C24—C23 122.7 (4)
C8—C7—H7A 119.9 N6—C24—H24A 118.7
C6—C7—H7A 119.9 C23—C24—H24A 118.7
C7—C8—C9 122.2 (3) N6—C25—C21 122.9 (3)
C7—C8—H8A 118.9 N6—C25—C26 118.4 (3)
C9—C8—H8A 118.9 C21—C25—C26 118.7 (3)
C10—C9—C13 117.4 (3) N5—C26—C18 123.6 (3)
C10—C9—C8 123.4 (3) N5—C26—C25 116.4 (3)
C13—C9—C8 119.1 (3) C18—C26—C25 120.0 (3)
C11—C10—C9 119.7 (3) C2—S1—Cu1ii 102.69 (12)
C11—C10—H10A 120.1
N2—Cu2—C1—N1 −122 (11) Cu1—N4—C13—C14 4.5 (3)
N6—Cu2—C1—N1 107 (11) C10—C9—C13—N4 −0.5 (4)
N5—Cu2—C1—N1 11 (11) C8—C9—C13—N4 179.1 (3)
C1—Cu2—N2—C2 178 (100) C10—C9—C13—C14 −179.2 (3)
N6—Cu2—N2—C2 −41 (13) C8—C9—C13—C14 0.3 (4)
N5—Cu2—N2—C2 40 (13) C3—N3—C14—C6 −1.2 (5)
N1—Cu1—N3—C3 59.4 (4) Cu1—N3—C14—C6 175.1 (3)
N4—Cu1—N3—C3 −178.9 (3) C3—N3—C14—C13 178.9 (3)
S1i—Cu1—N3—C3 −66.5 (3) Cu1—N3—C14—C13 −4.8 (4)
N1—Cu1—N3—C14 −116.3 (2) C5—C6—C14—N3 −0.3 (5)
N4—Cu1—N3—C14 5.5 (2) C7—C6—C14—N3 −179.0 (3)
S1i—Cu1—N3—C14 117.9 (2) C5—C6—C14—C13 179.6 (4)
N1—Cu1—N4—C12 −58.1 (3) C7—C6—C14—C13 0.9 (5)
N3—Cu1—N4—C12 −179.6 (3) N4—C13—C14—N3 0.2 (4)
S1i—Cu1—N4—C12 71.9 (3) C9—C13—C14—N3 179.0 (3)
N1—Cu1—N4—C13 116.1 (2) N4—C13—C14—C6 −179.7 (3)
N3—Cu1—N4—C13 −5.3 (2) C9—C13—C14—C6 −0.9 (4)
S1i—Cu1—N4—C13 −113.87 (19) C26—N5—C15—C16 −0.8 (5)
C1—Cu2—N5—C15 −55.7 (3) Cu2—N5—C15—C16 179.4 (3)
N2—Cu2—N5—C15 83.8 (3) N5—C15—C16—C17 −0.3 (6)
N6—Cu2—N5—C15 −180.0 (3) C15—C16—C17—C18 2.0 (6)
C1—Cu2—N5—C26 124.4 (2) C16—C17—C18—C26 −2.6 (5)
N2—Cu2—N5—C26 −96.0 (2) C16—C17—C18—C19 176.6 (4)
N6—Cu2—N5—C26 0.2 (2) C26—C18—C19—C20 2.5 (5)
C1—Cu2—N6—C24 67.3 (3) C17—C18—C19—C20 −176.7 (4)
N2—Cu2—N6—C24 −71.8 (3) C18—C19—C20—C21 −3.5 (6)
N5—Cu2—N6—C24 −177.2 (3) C19—C20—C21—C22 −178.3 (4)
C1—Cu2—N6—C25 −117.6 (2) C19—C20—C21—C25 1.4 (5)
N2—Cu2—N6—C25 103.2 (2) C20—C21—C22—C23 178.7 (3)
N5—Cu2—N6—C25 −2.1 (2) C25—C21—C22—C23 −0.9 (5)
Cu2—C1—N1—Cu1 −39 (13) C21—C22—C23—C24 0.3 (6)
N3—Cu1—N1—C1 −177 (2) C25—N6—C24—C23 −0.6 (5)
N4—Cu1—N1—C1 85 (2) Cu2—N6—C24—C23 174.2 (3)
S1i—Cu1—N1—C1 −49 (2) C22—C23—C24—N6 0.5 (6)
Cu2—N2—C2—S1 −66 (17) C24—N6—C25—C21 −0.2 (4)
C14—N3—C3—C4 2.1 (6) Cu2—N6—C25—C21 −175.7 (2)
Cu1—N3—C3—C4 −173.4 (3) C24—N6—C25—C26 179.4 (3)
N3—C3—C4—C5 −1.3 (8) Cu2—N6—C25—C26 3.9 (3)
C3—C4—C5—C6 −0.3 (8) C22—C21—C25—N6 0.9 (5)
C4—C5—C6—C14 1.1 (7) C20—C21—C25—N6 −178.7 (3)
C4—C5—C6—C7 179.7 (4) C22—C21—C25—C26 −178.7 (3)
C14—C6—C7—C8 −0.4 (6) C20—C21—C25—C26 1.7 (4)
C5—C6—C7—C8 −179.0 (4) C15—N5—C26—C18 0.1 (5)
C6—C7—C8—C9 −0.2 (6) Cu2—N5—C26—C18 180.0 (2)
C7—C8—C9—C10 179.7 (4) C15—N5—C26—C25 −178.1 (3)
C7—C8—C9—C13 0.2 (5) Cu2—N5—C26—C25 1.8 (3)
C13—C9—C10—C11 −0.1 (5) C17—C18—C26—N5 1.6 (5)
C8—C9—C10—C11 −179.7 (3) C19—C18—C26—N5 −177.7 (3)
C9—C10—C11—C12 0.6 (5) C17—C18—C26—C25 179.7 (3)
C13—N4—C12—C11 −0.2 (5) C19—C18—C26—C25 0.5 (5)
Cu1—N4—C12—C11 173.8 (2) N6—C25—C26—N5 −3.8 (4)
C10—C11—C12—N4 −0.4 (5) C21—C25—C26—N5 175.8 (3)
C12—N4—C13—C9 0.6 (4) N6—C25—C26—C18 177.9 (3)
Cu1—N4—C13—C9 −174.3 (2) C21—C25—C26—C18 −2.5 (4)
C12—N4—C13—C14 179.4 (3) N2—C2—S1—Cu1ii 163 (6)

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) x+1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2813).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cheng, L., Lin, J.-B., Gong, J.-Z., Sun, A.-P., Ye, B.-H. & Chen, X.-M. (2006). Cryst. Growth Des.6, 2739–2746.
  3. Greig, L. M. & Philp, D. (2001). Chem. Soc. Rev 30, 287–302.
  4. Luan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J.12, 6281–6289. [DOI] [PubMed]
  5. Piguet, C., Bermardinelli, G. & Hopfgartner, G. (1997). Chem. Rev 97, 2005-2062. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536808037744/bt2813sup1.cif

e-64-m1577-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037744/bt2813Isup2.hkl

e-64-m1577-Isup2.hkl (242.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES