Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):m1548–m1549. doi: 10.1107/S160053680803328X

A monoclinic polymorph of di-μ-oxido-bis­({2-[2-(methyl­amino)ethyl­imino­methyl]phenolato-κ3 N,N′,O}oxidovanadium(V))

Grzegorz Romanowski a,*, Michał Wera a, Artur Sikorski a
PMCID: PMC2959960  PMID: 21581160

Abstract

A new monoclinic polymorph of the title compound, [V2(C10H13N2O)2O4], which is a centrosymmetric dimer, crystallizes in space group P21/c, whereas the previously known polymorph crystallizes in the ortho­rhom­bic space group Pbca [Mokry & Carrano (1993). Inorg. Chem. 32, 6119–6121]. Each VV atom is six-coordinated by one oxide group, two N atoms and one O atom from the Schiff base ligand, and by two additional bridging O atoms. The two methyl­ene groups are each disordered over two sites, with occupancy factors of 0.776 (14) and 0.224 (14). In the crystal structure, there are C—H⋯O hydrogen bonds and C—H⋯π inter­actions between the dimers.

Related literature

For general background, see: Butler & Walker (1993); Carter-Franklin et al. (2003); Eady (2003); Evangelou (2002); Mendz (1991); Rehder et al. (2003); Sakurai (2002). For related structures, see: Mokry & Carrano (1993); Rao et al. (1981); Romanowski et al. (2008); Root et al. (1993). For the synthesis, see: Kwiatkowski et al. (2003).graphic file with name e-64-m1548-scheme1.jpg

Experimental

Crystal data

  • [V2(C10H13N2O)2O4]

  • M r = 520.33

  • Monoclinic, Inline graphic

  • a = 6.6801 (2) Å

  • b = 11.9955 (6) Å

  • c = 13.8643 (7) Å

  • β = 92.156 (4)°

  • V = 1110.18 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 295 (2) K

  • 0.6 × 0.1 × 0.1 mm

Data collection

  • Oxford Diffraction Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.532, T max = 0.915

  • 6336 measured reflections

  • 1960 independent reflections

  • 1288 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.106

  • S = 0.90

  • 1960 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803328X/hy2159sup1.cif

e-64-m1548-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803328X/hy2159Isup2.hkl

e-64-m1548-Isup2.hkl (96.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

O7—V14 1.926 (2)
N9—V14 2.158 (3)
N12—V14 2.146 (3)
V14—O16 1.612 (2)
V14—O15 1.674 (2)
V14—O15i 2.316 (2)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O16ii 0.93 2.60 3.520 (4) 170
C11B—H11CCg1iiiiii 0.97 2.82 3.47 (2) 124

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic. Cg1 is the centroid of the C1–C6 ring.

Acknowledgments

The Polish Ministry of Science and Higher Education under grants BW/8000-5-0462-8 and DS/8210-40-086-8 financially supported this work.

supplementary crystallographic information

Comment

In the past few decades, the interest in the coordination chemistry and biochemistry of vanadium compounds has increased due to their influence on biological systems, viz. in diabetes mellitus (Sakurai, 2002) and cancer treatment (Evangelou, 2002). Moreover, vanadium activity has been discovered in the inhibitory and promotory processes like nitrogenases (Eady, 2003), haloperoxidases (Butler & Walker, 1993; Carter-Franklin et al., 2003; Rehder et al., 2003), mutases and isomerases (Mendz, 1991).

The structure of the title compound was first reported in orthorhombic space group Pbca (Mokry & Carrano, 1993). Here we report the synthesis and structure of a new polymorph of the compound in space group P21/c. We have described earlier the spectroscopic properties (IR, UV-Vis, 1H and 51V NMR) of this compound (Kwiatkowski et al., 2003). The half of the molecule, constituting the asymmetric unit of the structure, is related to the other half by a center of symmetry. Each VV atom is six-coordinated by two strongly (O15, O16) and one weakly (O15i) associated oxide groups and by the tridentate Schiff base ligand, viz. a phenolate O atom (O7), a secondary amine N atom (N12), both occupying the axial positions, and an imine N atom (N9) (Fig. 1). The geometry about the V atom is distorted octahedral. The V14 ═O16 bond length of 1.612 (2) Å (Table 1) compares well with the distances between V and the doubly bonded O atoms (Romanowski et al., 2008; Root et al., 1993). The V14, O15, V14i, O15i atoms are situated at vertices of a parallelogram with the acute O15—V14—O15i angle of 78.64 (8)° [symmetry code: (i) -x, -y+2, -z]. The five-membered ring comprising the ethylenediamine moiety exhibits twofold disorder. The C10 and C11 atoms are disordered over two sites, with occupancy factors of 0.776 (14) and 0.224 (14) for C10A/C11A and C10B/C11B, respectively. The five-membered chelate ring defined by V14, N9, C10A, C11A, N12 adopts an envelope conformation on C10A, with P = 244.0 (3)° and τ(M) = 54.9 (4)° for reference bond V14—N9 (Rao et al., 1981) and the ring formed by V14, N9, C10B, C11B, N12 takes the envelope conformation on C11B, with P = 81.8 (7)° and τ(M) = 62.3 (9)° for reference bond V14—N9 (Fig. 1).

In the crystal structure, the dimers are linked through C—H···O hydrogen bonds (Table 1), forming columns along the a-axis. There are C—H···π interactions (Fig. 2), involving minor disordered C11B atom [C11B···Cg1iii = 3.47 (2), H11C···Cg1iii = 2.82 Å; Cg1 = centroid of the ring C1–C6; symmetry code: (iii) x, 3/2-y, -1/2+z].

Experimental

The title compound was obtained in a template/complexation reaction, which was described earlier (Kwiatkowski et al., 2003). A solution of N-methylethylenediamine (1 mmol) in absolute EtOH (10 ml) was added under stirring to a freshly filtered solution of vanadium(V) oxytriethoxide (1 mmol) in absolute EtOH (50 ml), producing a yellow suspension of the intermediate. Salicylaldehyde (1 mmol) dissolved in absolute EtOH was added to the aforementioned suspension. After refluxing (70 ml) of the resulting mixture for 2 h and its cooling to room temperature, the separated solids were filtered off, washed several times with EtOH, recrystallized from DMSO-EtOH mixture and dried over molecular sieves.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (CH), 0.97 (CH2) and 0.96 (CH3)Å and N—H = 0.91 Å, and with Uiso(H) = 1.2 (or 1.5 for methyl)Ueq(C,N). The occupancy ratio was determined by isotropic refinement for the disordered site and was refined freely. The minor disordered sites were refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 25% probability level. [Symmetry code: (i) -x, -y+2, -z.]

Fig. 2.

Fig. 2.

The arrangement of the molecules viewed approximately along the a-axis. The C—H···O hydrogen bonds are represented by dashed lines and the C—H···π interactions are represented by dotted lines. [Symmetry codes: (ii) 1+x, y, z; (iii) x, 3/2-y, -1/2+z.]

Crystal data

[V2(C10H13N2O)2O4] F000 = 536
Mr = 520.33 Dx = 1.557 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1960 reflections
a = 6.6801 (2) Å θ = 3.1–25.1º
b = 11.9955 (6) Å µ = 0.89 mm1
c = 13.8643 (7) Å T = 295 (2) K
β = 92.156 (4)º Needle, yellow
V = 1110.18 (9) Å3 0.6 × 0.1 × 0.1 mm
Z = 2

Data collection

Oxford Diffraction Ruby CCD diffractometer 1960 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1288 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.050
Detector resolution: 10.4002 pixels mm-1 θmax = 25.1º
T = 295(2) K θmin = 3.1º
ω scans h = −7→7
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2006) k = −13→14
Tmin = 0.532, Tmax = 0.915 l = −13→16
6336 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.106   w = 1/[σ2(Fo2) + (0.064P)2] where P = (Fo2 + 2Fc2)/3
S = 0.90 (Δ/σ)max < 0.001
1960 reflections Δρmax = 0.36 e Å3
155 parameters Δρmin = −0.39 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.2360 (4) 0.9625 (3) 0.2273 (2) 0.0439 (8)
C2 0.4291 (4) 0.9220 (3) 0.2071 (2) 0.0463 (9)
C3 0.5887 (5) 0.9466 (4) 0.2713 (3) 0.0609 (10)
H3A 0.7156 0.9199 0.2583 0.073*
C4 0.5646 (6) 1.0085 (4) 0.3528 (3) 0.0739 (12)
H4A 0.6735 1.0239 0.3945 0.089*
C5 0.3749 (6) 1.0482 (4) 0.3724 (3) 0.0696 (11)
H5A 0.3562 1.0900 0.4278 0.084*
C6 0.2169 (5) 1.0261 (3) 0.3110 (2) 0.0553 (9)
H6A 0.0916 1.0542 0.3250 0.066*
O7 0.0760 (3) 0.9451 (2) 0.16978 (15) 0.0495 (6)
C8 0.4690 (5) 0.8585 (3) 0.1220 (3) 0.0505 (9)
H8A 0.5981 0.8309 0.1163 0.061*
N9 0.3417 (4) 0.8368 (3) 0.0538 (2) 0.0514 (8)
C10A 0.3951 (9) 0.7645 (7) −0.0286 (4) 0.0583 (19) 0.776 (14)
H10A 0.5393 0.7566 −0.0312 0.070* 0.776 (14)
H10B 0.3361 0.6911 −0.0226 0.070* 0.776 (14)
C10B 0.442 (3) 0.820 (2) −0.0377 (13) 0.042 (6)* 0.224 (14)
H10C 0.5616 0.7741 −0.0293 0.050* 0.224 (14)
H10D 0.4755 0.8895 −0.0683 0.050* 0.224 (14)
C11A 0.3133 (8) 0.8217 (7) −0.1157 (4) 0.058 (2) 0.776 (14)
H11A 0.3336 0.7765 −0.1726 0.070* 0.776 (14)
H11B 0.3797 0.8928 −0.1239 0.070* 0.776 (14)
C11B 0.272 (2) 0.758 (2) −0.0932 (14) 0.044 (6)* 0.224 (14)
H11C 0.3148 0.7358 −0.1566 0.053* 0.224 (14)
H11D 0.2347 0.6911 −0.0584 0.053* 0.224 (14)
N12 0.0951 (4) 0.8389 (3) −0.1021 (2) 0.0504 (7)
H12A 0.0674 0.9027 −0.1355 0.060*
C13 −0.0425 (6) 0.7569 (4) −0.1475 (3) 0.0758 (12)
H13A −0.0093 0.7463 −0.2136 0.114*
H13B −0.1777 0.7836 −0.1448 0.114*
H13C −0.0305 0.6872 −0.1137 0.114*
V14 0.02849 (7) 0.88119 (5) 0.04358 (4) 0.0417 (2)
O15 −0.1739 (3) 0.95553 (19) 0.00898 (15) 0.0437 (6)
O16 −0.0525 (3) 0.7584 (2) 0.06852 (19) 0.0629 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0506 (18) 0.043 (2) 0.0391 (19) 0.0011 (16) 0.0086 (15) 0.0132 (17)
C2 0.0465 (18) 0.046 (2) 0.047 (2) 0.0026 (16) 0.0079 (16) 0.0110 (17)
C3 0.0506 (19) 0.066 (3) 0.066 (3) 0.0006 (19) −0.0012 (18) 0.007 (2)
C4 0.061 (2) 0.087 (3) 0.073 (3) −0.002 (2) −0.015 (2) −0.003 (3)
C5 0.084 (3) 0.069 (3) 0.055 (2) −0.004 (2) −0.003 (2) −0.008 (2)
C6 0.063 (2) 0.052 (2) 0.051 (2) 0.0049 (19) 0.0067 (17) 0.005 (2)
O7 0.0427 (11) 0.0664 (17) 0.0397 (13) 0.0116 (12) 0.0066 (10) 0.0001 (12)
C8 0.0410 (17) 0.056 (2) 0.056 (2) 0.0101 (16) 0.0118 (17) 0.0117 (19)
N9 0.0452 (14) 0.065 (2) 0.0452 (17) 0.0181 (14) 0.0153 (14) 0.0048 (16)
C10A 0.050 (3) 0.055 (4) 0.071 (4) 0.015 (3) 0.024 (3) −0.004 (3)
C11A 0.068 (3) 0.058 (5) 0.050 (3) 0.014 (3) 0.027 (2) −0.001 (3)
N12 0.0481 (14) 0.0490 (18) 0.0544 (18) 0.0095 (14) 0.0058 (13) −0.0125 (15)
C13 0.094 (3) 0.063 (3) 0.070 (3) −0.013 (2) −0.005 (2) −0.016 (2)
V14 0.0397 (3) 0.0394 (4) 0.0468 (4) 0.0031 (3) 0.0116 (2) 0.0003 (3)
O15 0.0386 (11) 0.0426 (14) 0.0505 (13) 0.0024 (10) 0.0085 (9) −0.0031 (11)
O16 0.0645 (14) 0.0455 (15) 0.0805 (19) 0.0012 (12) 0.0262 (13) 0.0087 (14)

Geometric parameters (Å, °)

C1—O7 1.326 (4) C10B—C11B 1.54 (3)
C1—C6 1.398 (5) C10B—H10C 0.9700
C1—C2 1.417 (4) C10B—H10D 0.9700
C2—C3 1.395 (5) C11A—N12 1.491 (5)
C2—C8 1.437 (5) C11A—H11A 0.9700
C3—C4 1.367 (5) C11A—H11B 0.9700
C3—H3A 0.9300 C11B—N12 1.535 (17)
C4—C5 1.390 (5) C11B—H11C 0.9700
C4—H4A 0.9300 C11B—H11D 0.9700
C5—C6 1.357 (5) N12—C13 1.471 (4)
C5—H5A 0.9300 N12—V14 2.146 (3)
C6—H6A 0.9300 N12—H12A 0.9100
O7—V14 1.926 (2) C13—H13A 0.9600
C8—N9 1.275 (4) C13—H13B 0.9600
C8—H8A 0.9300 C13—H13C 0.9600
N9—C10B 1.472 (18) V14—O16 1.612 (2)
N9—C10A 1.489 (6) V14—O15 1.674 (2)
N9—V14 2.158 (3) V14—O15i 2.316 (2)
C10A—C11A 1.476 (9) V14—V14i 3.1136 (11)
C10A—H10A 0.9700 O15—V14i 2.316 (2)
C10A—H10B 0.9700
O7—C1—C6 119.2 (3) H11A—C11A—H11B 108.5
O7—C1—C2 123.1 (3) N12—C11B—C10B 106.6 (16)
C6—C1—C2 117.6 (3) N12—C11B—H11C 110.4
C3—C2—C1 118.8 (3) C10B—C11B—H11C 110.4
C3—C2—C8 118.4 (3) N12—C11B—H11D 110.4
C1—C2—C8 122.8 (3) C10B—C11B—H11D 110.4
C4—C3—C2 122.1 (3) H11C—C11B—H11D 108.6
C4—C3—H3A 118.9 C13—N12—C11A 116.9 (4)
C2—C3—H3A 118.9 C13—N12—C11B 94.5 (8)
C3—C4—C5 118.9 (4) C13—N12—V14 114.3 (2)
C3—C4—H4A 120.5 C11A—N12—V14 112.9 (2)
C5—C4—H4A 120.5 C11B—N12—V14 105.1 (7)
C6—C5—C4 120.3 (4) C13—N12—H12A 103.5
C6—C5—H5A 119.9 C11A—N12—H12A 103.5
C4—C5—H5A 119.9 C11B—N12—H12A 135.8
C5—C6—C1 122.3 (3) V14—N12—H12A 103.5
C5—C6—H6A 118.9 N12—C13—H13A 109.5
C1—C6—H6A 118.9 N12—C13—H13B 109.5
C1—O7—V14 135.30 (19) H13A—C13—H13B 109.5
N9—C8—C2 125.3 (3) N12—C13—H13C 109.5
N9—C8—H8A 117.4 H13A—C13—H13C 109.5
C2—C8—H8A 117.4 H13B—C13—H13C 109.5
C8—N9—C10B 110.8 (7) O16—V14—O15 105.93 (11)
C8—N9—C10A 121.1 (3) O16—V14—O7 102.36 (12)
C8—N9—V14 128.1 (2) O15—V14—O7 98.73 (9)
C10B—N9—V14 116.8 (7) O16—V14—N12 93.95 (13)
C10A—N9—V14 110.7 (3) O15—V14—N12 92.87 (10)
C11A—C10A—N9 105.4 (5) O7—V14—N12 156.46 (10)
C11A—C10A—H10A 110.7 O16—V14—N9 95.31 (12)
N9—C10A—H10A 110.7 O15—V14—N9 156.99 (11)
C11A—C10A—H10B 110.7 O7—V14—N9 84.96 (10)
N9—C10A—H10B 110.7 N12—V14—N9 76.64 (10)
H10A—C10A—H10B 108.8 O16—V14—O15i 171.43 (10)
N9—C10B—C11B 98.5 (15) O15—V14—O15i 78.64 (8)
N9—C10B—H10C 112.1 O7—V14—O15i 83.83 (9)
C11B—C10B—H10C 112.1 N12—V14—O15i 78.44 (10)
N9—C10B—H10D 112.1 N9—V14—O15i 79.20 (9)
C11B—C10B—H10D 112.1 O16—V14—V14i 152.02 (10)
H10C—C10B—H10D 109.7 O15—V14—V14i 46.82 (7)
C10A—C11A—N12 107.1 (5) O7—V14—V14i 90.10 (8)
C10A—C11A—H11A 110.3 N12—V14—V14i 82.99 (9)
N12—C11A—H11A 110.3 N9—V14—V14i 110.83 (8)
C10A—C11A—H11B 110.3 O15i—V14—V14i 31.82 (5)
N12—C11A—H11B 110.3 V14—O15—V14i 101.36 (8)
O7—C1—C2—C3 178.8 (3) C11B—N12—V14—O16 −68.6 (10)
C6—C1—C2—C3 0.5 (5) C13—N12—V14—O15 −72.6 (3)
O7—C1—C2—C8 0.1 (5) C11A—N12—V14—O15 150.5 (4)
C6—C1—C2—C8 −178.2 (3) C11B—N12—V14—O15 −174.8 (10)
C1—C2—C3—C4 −0.2 (6) C13—N12—V14—O7 167.7 (3)
C8—C2—C3—C4 178.6 (4) C11A—N12—V14—O7 30.8 (5)
C2—C3—C4—C5 0.1 (7) C11B—N12—V14—O7 65.5 (10)
C3—C4—C5—C6 −0.5 (6) C13—N12—V14—N9 128.1 (3)
C4—C5—C6—C1 0.8 (6) C11A—N12—V14—N9 −8.8 (4)
O7—C1—C6—C5 −179.2 (3) C11B—N12—V14—N9 26.0 (10)
C2—C1—C6—C5 −0.8 (5) C13—N12—V14—O15i −150.4 (3)
C6—C1—O7—V14 171.4 (2) C11A—N12—V14—O15i 72.7 (4)
C2—C1—O7—V14 −6.9 (5) C11B—N12—V14—O15i 107.4 (10)
C3—C2—C8—N9 −174.6 (4) C13—N12—V14—V14i −118.5 (2)
C1—C2—C8—N9 4.1 (6) C11A—N12—V14—V14i 104.6 (4)
C2—C8—N9—C10B 153.2 (11) C11B—N12—V14—V14i 139.4 (10)
C2—C8—N9—C10A −176.4 (5) C8—N9—V14—O16 −104.1 (3)
C2—C8—N9—V14 −2.2 (5) C10B—N9—V14—O16 101.9 (12)
C8—N9—C10A—C11A −135.7 (5) C10A—N9—V14—O16 70.7 (4)
C10B—N9—C10A—C11A −59.1 (15) C8—N9—V14—O15 98.4 (4)
V14—N9—C10A—C11A 49.1 (7) C10B—N9—V14—O15 −55.7 (12)
C8—N9—C10B—C11B 161.4 (12) C10A—N9—V14—O15 −86.8 (5)
C10A—N9—C10B—C11B 44.5 (16) C8—N9—V14—O7 −2.1 (3)
V14—N9—C10B—C11B −40 (2) C10B—N9—V14—O7 −156.2 (12)
N9—C10A—C11A—N12 −55.7 (8) C10A—N9—V14—O7 172.7 (4)
N9—C10B—C11B—N12 63 (2) C8—N9—V14—N12 163.1 (3)
C10A—C11A—N12—C13 −97.6 (6) C10B—N9—V14—N12 9.0 (11)
C10A—C11A—N12—C11B −44.7 (12) C10A—N9—V14—N12 −22.1 (4)
C10A—C11A—N12—V14 38.2 (8) C8—N9—V14—O15i 82.6 (3)
C10B—C11B—N12—C13 −175.1 (16) C10B—N9—V14—O15i −71.5 (11)
C10B—C11B—N12—C11A 50.5 (15) C10A—N9—V14—O15i −102.7 (4)
C10B—C11B—N12—V14 −58.4 (19) C8—N9—V14—V14i 86.1 (3)
C1—O7—V14—O16 101.1 (3) C10B—N9—V14—V14i −68.0 (12)
C1—O7—V14—O15 −150.4 (3) C10A—N9—V14—V14i −99.1 (4)
C1—O7—V14—N12 −31.7 (5) O16—V14—O15—V14i −172.54 (11)
C1—O7—V14—N9 6.8 (3) O7—V14—O15—V14i 81.85 (10)
C1—O7—V14—O15i −72.9 (3) N12—V14—O15—V14i −77.60 (10)
C1—O7—V14—V14i −104.1 (3) N9—V14—O15—V14i −15.9 (3)
C13—N12—V14—O16 33.6 (3) O15i—V14—O15—V14i 0.0
C11A—N12—V14—O16 −103.3 (4)

Symmetry codes: (i) −x, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8A···O16ii 0.93 2.60 3.520 (4) 170
C11B—H11C···Cg1iiiiii 0.97 2.82 3.47 (2) 124

Symmetry codes: (ii) x+1, y, z; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2159).

References

  1. Butler, A. & Walker, J. V. (1993). Chem. Rev.93, 1937–1944.
  2. Carter-Franklin, J. N., Parrish, J. D., Tchirret-Guth, R. A., Little, R. D. & Butler, A. (2003). J. Am. Chem. Soc.125, 3688–3689. [DOI] [PubMed]
  3. Eady, R. R. (2003). Coord. Chem. Rev.237, 23–30.
  4. Evangelou, A. M. (2002). Crit. Rev. Oncol. Hematol.42, 249–265. [DOI] [PubMed]
  5. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  6. Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009–1018.
  7. Mendz, G. L. (1991). Arch. Biochem. Biophys.291, 201–211. [DOI] [PubMed]
  8. Mokry, L. M. & Carrano, C. J. (1993). Inorg. Chem.32, 6119–6121.
  9. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  10. Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.
  11. Rehder, D., Antoni, G., Licini, G. M., Schulzke, C. & Meier, B. (2003). Coord. Chem. Rev.237, 53–63.
  12. Romanowski, G., Kwiatkowski, E., Nowicki, W., Kwiatkowski, M. & Lis, T. (2008). Polyhedron, 27, 1601–1609.
  13. Root, C. A., Hoeschele, J. D., Cornman, C. R., Kampf, J. W. & Pecoraro, V. L. (1993). Inorg. Chem.32, 3855–3861.
  14. Sakurai, H. (2002). Chem. Rec.2, 237–248. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803328X/hy2159sup1.cif

e-64-m1548-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803328X/hy2159Isup2.hkl

e-64-m1548-Isup2.hkl (96.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES