Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2330. doi: 10.1107/S1600536808036854

1,3,5-Tri-p-tolyl­pentane-1,5-dione

You-Liang Shen a,*
PMCID: PMC2959968  PMID: 21581305

Abstract

In the crystal structure of the title compound, C26H26O2, the dihedral angle between the tolyl rings at each end of the 1,5-dione chain is 70.3 (1)°; the tolyl group at the middle of the chain makes dihedral angles of 67.8 (2) and 85.1 (2)° with the terminal rings. One benzene C atom and one methyl­ene C atom inter­act with a carbonyl O atom of an adjacent mol­ecule through C—H⋯O hydrogen bonds, forming chains in the crystal.

Related literature

For the details of related structures, see: Burroughes et al. (1990); Smith et al. (2005); Li et al. (2004); Sariciftci et al. (1992). For the synthesis of the title compound, see: Yang et al. (2005).graphic file with name e-64-o2330-scheme1.jpg

Experimental

Crystal data

  • C26H26O2

  • M r = 370.47

  • Orthorhombic, Inline graphic

  • a = 10.6611 (19) Å

  • b = 10.3876 (18) Å

  • c = 19.541 (3) Å

  • V = 2164.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 (2) K

  • 0.34 × 0.24 × 0.18 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.977, T max = 0.991

  • 8705 measured reflections

  • 2138 independent reflections

  • 1733 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.135

  • S = 1.06

  • 2138 reflections

  • 256 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036854/wn2290sup1.cif

e-64-o2330-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036854/wn2290Isup2.hkl

e-64-o2330-Isup2.hkl (105.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.93 2.46 3.381 (5) 171 (1)
C18—H18A⋯O2i 0.97 2.52 3.460 (5) 164 (1)

Symmetry code: (i) Inline graphic.

Acknowledgments

The author thanks Jiangxi Science and Technology Normal University for supporting this study.

supplementary crystallographic information

Comment

Over the past several decades, linear π-conjugated organic molecules and polymers have attracted considerable interest because of their many promising applications, such as for organic light-emitting diodes, non-linear optical properties, conductivity, photocells, field-effect transistors, and so on, due to their delocalized π systems (Burroughes et al., 1990; Smith et al., 2005; Li et al., 2004; Sariciftci et al., 1992). In the course of our synthesis of the π-conjugated organic molecule, 2,4,6-tri-p-tolyl-pyridine, we synthesized the 1,5-dione intermediate 1,3,5-tri-p-tolyl-pentane-1,5-dione; the 1,5-dione intermediate was then cyclized by adding concentrated aqueous ammonia. We report here the crystal structure of the 1,5-dione intermediate, 1,3,5-tri-p-tolyl-pentane-1,5-dione.

As shown in Fig. 1, the title molecule is non-planar, and the dihedral angles between each pair of the three tolyl rings are 67.8 (2)° [C2–C7, C11–C16], 70.3 (1 ° [C11–C16, C20–C25] and 85.1 (2)° [C2–C7, C20–C25]. The C—C, Car—Car and C═O bond lengths are within their normal ranges. One benzene C atom (C7) and one methylene C atom (C18) interact with a carbonyl group O atom (O2) of an adjacent molecule through C—H···O hydrogen bonds [3.381 (5) Å, 3.460 (5) Å] to form a one-dimensional supramolecular array (Fig. 2).

Experimental

The title compound was synthesized according to a modified procedure (Yang et al., 2005). 4-Methylacetophenone (0.5 g, 4 mmol), 1,3-di-p-tolyl-propenone (0.9 g, 4 mmol) and powdered NaOH (0.6 g, 15 mmol) were crushed together for 2 h, using a pestle and mortar. Recrystallization from ethanol gave colorless prismatic crystals. Yield: 1.2 g (88%).

Refinement

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, 0.97 Å , 0.98 Å, Uiso(H) = 1.2Ueq(C) for aromatic, methylene and methine H atoms; 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl groups. In the absence of significant anomalous scattering effects, the Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure, with the displacement ellipsoids drawn at the 30% probability level. The H atoms are shown as spheres of arbitary radii.

Fig. 2.

Fig. 2.

A packing diagram of the title structure, showing the intermolecular C—H···O hydrogen bonds as dashed lines. The H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C26H26O2 F000 = 792
Mr = 370.47 Dx = 1.137 Mg m3
Orthorhombic, Pna21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 1747 reflections
a = 10.6611 (19) Å θ = 2.2–23.5º
b = 10.3876 (18) Å µ = 0.07 mm1
c = 19.541 (3) Å T = 295 (2) K
V = 2164.0 (6) Å3 Needle, colorless
Z = 4 0.34 × 0.24 × 0.18 mm

Data collection

Bruker SMART APEX area-detector diffractometer 2138 independent reflections
Radiation source: fine-focus sealed tube 1733 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.031
T = 295(2) K θmax = 26.0º
φ and ω scans θmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −13→7
Tmin = 0.977, Tmax = 0.991 k = −12→12
8705 measured reflections l = −22→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.135   w = 1/[σ2(Fo2) + (0.0666P)2 + 0.0883P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2138 reflections Δρmax = 0.14 e Å3
256 parameters Δρmin = −0.12 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1548 (3) 0.9299 (3) 0.61714 (16) 0.0824 (9)
O2 −0.0475 (3) 0.8225 (3) 0.80106 (17) 0.0857 (10)
C1 0.1191 (4) 0.7133 (3) 0.70389 (19) 0.0548 (9)
H1 0.0388 0.7453 0.6864 0.066*
C2 0.0994 (4) 0.5757 (3) 0.72761 (18) 0.0529 (9)
C3 −0.0047 (4) 0.5062 (4) 0.7085 (3) 0.0791 (12)
H3 −0.0676 0.5465 0.6835 0.095*
C4 −0.0181 (5) 0.3786 (4) 0.7256 (3) 0.0899 (15)
H4 −0.0904 0.3352 0.7122 0.108*
C5 0.0718 (5) 0.3135 (4) 0.7616 (3) 0.0782 (11)
C6 0.1716 (4) 0.3836 (4) 0.7829 (3) 0.0769 (12)
H6 0.2322 0.3439 0.8099 0.092*
C7 0.1870 (4) 0.5121 (4) 0.7660 (2) 0.0706 (11)
H7 0.2580 0.5558 0.7809 0.085*
C8 0.0598 (6) 0.1716 (4) 0.7788 (3) 0.1081 (17)
H8A −0.0175 0.1569 0.8026 0.162*
H8B 0.1289 0.1459 0.8072 0.162*
H8C 0.0607 0.1221 0.7373 0.162*
C9 0.2132 (4) 0.7156 (4) 0.64500 (19) 0.0607 (10)
H9A 0.2951 0.6936 0.6632 0.073*
H9B 0.1901 0.6487 0.6127 0.073*
C10 0.2252 (4) 0.8403 (4) 0.6063 (2) 0.0606 (10)
C11 0.3257 (4) 0.8509 (3) 0.55339 (19) 0.0609 (10)
C12 0.3500 (5) 0.9686 (4) 0.5225 (3) 0.0853 (14)
H12 0.3015 1.0398 0.5339 0.102*
C13 0.4443 (5) 0.9817 (5) 0.4753 (3) 0.0933 (16)
H13 0.4578 1.0616 0.4550 0.112*
C14 0.5194 (5) 0.8798 (5) 0.4572 (2) 0.0795 (13)
C15 0.4960 (5) 0.7631 (4) 0.4875 (2) 0.0800 (13)
H15 0.5449 0.6923 0.4757 0.096*
C16 0.4018 (5) 0.7487 (4) 0.5350 (2) 0.0738 (12)
H16 0.3890 0.6686 0.5551 0.089*
C17 0.6266 (6) 0.8948 (6) 0.4070 (3) 0.1075 (17)
H17A 0.6484 0.8121 0.3886 0.161*
H17B 0.6979 0.9308 0.4302 0.161*
H17C 0.6015 0.9510 0.3705 0.161*
C18 0.1605 (4) 0.8028 (3) 0.76181 (19) 0.0553 (9)
H18A 0.2365 0.7687 0.7822 0.066*
H18B 0.1803 0.8866 0.7428 0.066*
C19 0.0632 (4) 0.8189 (3) 0.8167 (2) 0.0559 (9)
C20 0.0996 (4) 0.8358 (3) 0.8894 (2) 0.0549 (9)
C21 0.2152 (4) 0.7957 (4) 0.9149 (2) 0.0653 (10)
H21 0.2747 0.7611 0.8854 0.078*
C22 0.2420 (5) 0.8068 (4) 0.9838 (2) 0.0801 (13)
H22 0.3194 0.7788 0.9999 0.096*
C23 0.1575 (6) 0.8582 (4) 1.0291 (2) 0.0835 (12)
C24 0.0430 (6) 0.9012 (4) 1.0035 (3) 0.0887 (14)
H24 −0.0153 0.9381 1.0329 0.106*
C25 0.0156 (4) 0.8894 (4) 0.9351 (2) 0.0752 (13)
H25 −0.0617 0.9182 0.9192 0.090*
C26 0.1894 (7) 0.8665 (6) 1.1037 (3) 0.1172 (19)
H26A 0.1194 0.9016 1.1283 0.176*
H26B 0.2611 0.9211 1.1097 0.176*
H26C 0.2080 0.7820 1.1208 0.176*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.094 (2) 0.0654 (17) 0.0881 (19) 0.0209 (16) −0.0006 (18) 0.0156 (16)
O2 0.0433 (17) 0.115 (2) 0.099 (2) 0.0087 (15) −0.0059 (16) −0.0162 (19)
C1 0.048 (2) 0.0560 (19) 0.060 (2) 0.0067 (16) −0.0107 (18) 0.0025 (16)
C2 0.050 (2) 0.0518 (19) 0.057 (2) 0.0026 (16) −0.0078 (17) −0.0037 (15)
C3 0.075 (3) 0.072 (2) 0.091 (3) −0.006 (2) −0.032 (2) 0.004 (2)
C4 0.088 (3) 0.072 (3) 0.110 (4) −0.023 (2) −0.024 (3) −0.002 (3)
C5 0.089 (3) 0.0534 (18) 0.092 (3) −0.005 (2) 0.003 (2) 0.005 (2)
C6 0.068 (3) 0.065 (2) 0.098 (3) 0.001 (2) −0.014 (2) 0.021 (2)
C7 0.055 (2) 0.064 (2) 0.093 (3) −0.0060 (18) −0.019 (2) 0.009 (2)
C8 0.125 (4) 0.061 (2) 0.139 (4) −0.010 (2) 0.002 (3) 0.010 (3)
C9 0.069 (3) 0.0511 (19) 0.061 (2) 0.0057 (17) −0.0043 (19) 0.0020 (16)
C10 0.070 (3) 0.054 (2) 0.058 (2) 0.0094 (19) −0.015 (2) 0.0019 (17)
C11 0.081 (3) 0.053 (2) 0.049 (2) −0.0012 (19) −0.0134 (19) 0.0049 (15)
C12 0.107 (4) 0.061 (2) 0.088 (3) 0.007 (2) 0.000 (3) 0.013 (2)
C13 0.115 (4) 0.068 (3) 0.097 (4) −0.014 (3) 0.008 (3) 0.024 (3)
C14 0.099 (4) 0.081 (3) 0.059 (2) −0.019 (3) −0.003 (2) 0.000 (2)
C15 0.097 (4) 0.068 (2) 0.075 (3) −0.002 (2) 0.011 (3) −0.003 (2)
C16 0.100 (3) 0.053 (2) 0.068 (2) −0.001 (2) 0.006 (3) 0.0071 (18)
C17 0.127 (4) 0.107 (4) 0.089 (3) −0.028 (3) 0.017 (3) −0.002 (3)
C18 0.047 (2) 0.0551 (19) 0.064 (2) −0.0002 (16) −0.0026 (18) 0.0019 (17)
C19 0.041 (2) 0.0504 (19) 0.076 (2) 0.0015 (16) 0.0002 (19) −0.0025 (17)
C20 0.052 (2) 0.0413 (17) 0.072 (2) −0.0100 (16) 0.0101 (19) −0.0044 (16)
C21 0.066 (3) 0.066 (2) 0.064 (3) 0.003 (2) 0.002 (2) −0.0019 (19)
C22 0.095 (4) 0.075 (3) 0.070 (3) 0.004 (3) −0.002 (3) 0.008 (2)
C23 0.124 (3) 0.055 (2) 0.071 (3) −0.027 (2) 0.016 (3) −0.005 (2)
C24 0.113 (3) 0.067 (2) 0.086 (3) −0.018 (2) 0.032 (3) −0.025 (2)
C25 0.066 (3) 0.061 (2) 0.098 (4) −0.007 (2) 0.013 (2) −0.021 (2)
C26 0.176 (6) 0.103 (4) 0.072 (3) −0.035 (4) 0.008 (4) −0.010 (3)

Geometric parameters (Å, °)

O1—C10 1.214 (4) C13—C14 1.374 (7)
O2—C19 1.219 (5) C13—H13 0.9300
C1—C2 1.517 (5) C14—C15 1.371 (7)
C1—C9 1.527 (6) C14—C17 1.514 (8)
C1—C18 1.530 (5) C15—C16 1.375 (7)
C1—H1 0.9800 C15—H15 0.9300
C2—C7 1.368 (5) C16—H16 0.9300
C2—C3 1.375 (6) C17—H17A 0.9600
C3—C4 1.373 (6) C17—H17B 0.9600
C3—H3 0.9300 C17—H17C 0.9600
C4—C5 1.369 (7) C18—C19 1.501 (6)
C4—H4 0.9300 C18—H18A 0.9700
C5—C6 1.355 (7) C18—H18B 0.9700
C5—C8 1.517 (6) C19—C20 1.483 (6)
C6—C7 1.385 (6) C20—C25 1.383 (6)
C6—H6 0.9300 C20—C21 1.393 (6)
C7—H7 0.9300 C21—C22 1.380 (6)
C8—H8A 0.9600 C21—H21 0.9300
C8—H8B 0.9600 C22—C23 1.371 (7)
C8—H8C 0.9600 C22—H22 0.9300
C9—C10 1.506 (5) C23—C24 1.392 (8)
C9—H9A 0.9700 C23—C26 1.499 (8)
C9—H9B 0.9700 C24—C25 1.372 (8)
C10—C11 1.493 (6) C24—H24 0.9300
C11—C16 1.384 (6) C25—H25 0.9300
C11—C12 1.389 (6) C26—H26A 0.9600
C12—C13 1.371 (7) C26—H26B 0.9600
C12—H12 0.9300 C26—H26C 0.9600
C2—C1—C9 109.6 (3) C15—C14—C13 117.7 (5)
C2—C1—C18 112.7 (3) C15—C14—C17 120.5 (5)
C9—C1—C18 111.0 (3) C13—C14—C17 121.8 (5)
C2—C1—H1 107.8 C14—C15—C16 121.3 (5)
C9—C1—H1 107.8 C14—C15—H15 119.3
C18—C1—H1 107.8 C16—C15—H15 119.3
C7—C2—C3 116.5 (4) C15—C16—C11 121.3 (4)
C7—C2—C1 121.9 (3) C15—C16—H16 119.3
C3—C2—C1 121.6 (3) C11—C16—H16 119.3
C4—C3—C2 121.7 (4) C14—C17—H17A 109.5
C4—C3—H3 119.2 C14—C17—H17B 109.5
C2—C3—H3 119.2 H17A—C17—H17B 109.5
C5—C4—C3 121.9 (4) C14—C17—H17C 109.5
C5—C4—H4 119.0 H17A—C17—H17C 109.5
C3—C4—H4 119.0 H17B—C17—H17C 109.5
C6—C5—C4 116.2 (4) C19—C18—C1 113.3 (3)
C6—C5—C8 121.4 (5) C19—C18—H18A 108.9
C4—C5—C8 122.3 (5) C1—C18—H18A 108.9
C5—C6—C7 122.5 (4) C19—C18—H18B 108.9
C5—C6—H6 118.7 C1—C18—H18B 108.9
C7—C6—H6 118.7 H18A—C18—H18B 107.7
C2—C7—C6 121.1 (4) O2—C19—C20 119.3 (4)
C2—C7—H7 119.5 O2—C19—C18 119.6 (4)
C6—C7—H7 119.5 C20—C19—C18 121.1 (3)
C5—C8—H8A 109.5 C25—C20—C21 117.5 (4)
C5—C8—H8B 109.5 C25—C20—C19 119.8 (4)
H8A—C8—H8B 109.5 C21—C20—C19 122.7 (3)
C5—C8—H8C 109.5 C22—C21—C20 120.5 (4)
H8A—C8—H8C 109.5 C22—C21—H21 119.7
H8B—C8—H8C 109.5 C20—C21—H21 119.7
C10—C9—C1 116.6 (3) C23—C22—C21 121.7 (5)
C10—C9—H9A 108.1 C23—C22—H22 119.2
C1—C9—H9A 108.1 C21—C22—H22 119.1
C10—C9—H9B 108.1 C22—C23—C24 118.0 (5)
C1—C9—H9B 108.1 C22—C23—C26 120.0 (6)
H9A—C9—H9B 107.3 C24—C23—C26 122.0 (5)
O1—C10—C11 120.6 (3) C25—C24—C23 120.5 (5)
O1—C10—C9 121.3 (4) C25—C24—H24 119.7
C11—C10—C9 118.1 (3) C23—C24—H24 119.7
C16—C11—C12 116.9 (4) C24—C25—C20 121.8 (5)
C16—C11—C10 123.0 (3) C24—C25—H25 119.1
C12—C11—C10 120.0 (4) C20—C25—H25 119.1
C13—C12—C11 121.1 (5) C23—C26—H26A 109.5
C13—C12—H12 119.4 C23—C26—H26B 109.5
C11—C12—H12 119.4 H26A—C26—H26B 109.5
C12—C13—C14 121.6 (4) C23—C26—H26C 109.5
C12—C13—H13 119.2 H26A—C26—H26C 109.5
C14—C13—H13 119.2 H26B—C26—H26C 109.5
C9—C1—C2—C7 75.1 (5) C12—C13—C14—C15 0.7 (8)
C18—C1—C2—C7 −49.1 (5) C12—C13—C14—C17 −177.8 (5)
C9—C1—C2—C3 −101.4 (4) C13—C14—C15—C16 −0.8 (7)
C18—C1—C2—C3 134.5 (4) C17—C14—C15—C16 177.7 (5)
C7—C2—C3—C4 −1.7 (7) C14—C15—C16—C11 0.9 (7)
C1—C2—C3—C4 174.9 (4) C12—C11—C16—C15 −0.8 (6)
C2—C3—C4—C5 −0.8 (8) C10—C11—C16—C15 −178.0 (4)
C3—C4—C5—C6 3.5 (8) C2—C1—C18—C19 −64.7 (4)
C3—C4—C5—C8 −178.0 (5) C9—C1—C18—C19 171.9 (3)
C4—C5—C6—C7 −3.8 (8) C1—C18—C19—O2 −36.5 (5)
C8—C5—C6—C7 177.7 (5) C1—C18—C19—C20 145.9 (3)
C3—C2—C7—C6 1.5 (7) O2—C19—C20—C25 −17.7 (5)
C1—C2—C7—C6 −175.2 (4) C18—C19—C20—C25 159.9 (3)
C5—C6—C7—C2 1.4 (7) O2—C19—C20—C21 160.1 (4)
C2—C1—C9—C10 168.5 (3) C18—C19—C20—C21 −22.3 (5)
C18—C1—C9—C10 −66.3 (4) C25—C20—C21—C22 1.5 (6)
C1—C9—C10—O1 −6.9 (6) C19—C20—C21—C22 −176.3 (4)
C1—C9—C10—C11 173.5 (3) C20—C21—C22—C23 −0.5 (7)
O1—C10—C11—C16 −174.6 (4) C21—C22—C23—C24 −0.9 (7)
C9—C10—C11—C16 5.0 (6) C21—C22—C23—C26 178.9 (5)
O1—C10—C11—C12 8.3 (6) C22—C23—C24—C25 1.4 (7)
C9—C10—C11—C12 −172.1 (4) C26—C23—C24—C25 −178.4 (4)
C16—C11—C12—C13 0.8 (7) C23—C24—C25—C20 −0.4 (7)
C10—C11—C12—C13 178.0 (4) C21—C20—C25—C24 −1.0 (6)
C11—C12—C13—C14 −0.7 (8) C19—C20—C25—C24 176.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···O2i 0.93 2.46 3.381 (5) 171 (1)
C18—H18A···O2i 0.97 2.52 3.460 (5) 164 (1)

Symmetry codes: (i) x+1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2290).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Mark, R. N., Mackay, K., Friend, R. H., Burns, P. L. & Holmes, A. B. (1990). Nature (London), 347, 539–541.
  3. Li, Y. N., Ding, J. F., Day, M., Tao, Y., Lu, J. P. & D’iorio, M. (2004). Chem. Mater.16, 2165–2173.
  4. Sariciftci, N. S., Smilowitz, L. & Heeger, A. J. (1992). Science, 258, 1474–1476. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Smith, C. B., Raston, C. L. & Sobolev, A. N. (2005). Green Chem.7, 650–654.
  8. Yang, J.-X., Tao, X.-T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc.127, 3278–3279. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036854/wn2290sup1.cif

e-64-o2330-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036854/wn2290Isup2.hkl

e-64-o2330-Isup2.hkl (105.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES