Abstract
In the title salt, K+·C4H7BF3O−, the K atom is surrounded by six anions making close contacts through seven F [K⋯F = 2.779 (1)–3.048 (1) Å] and two O [K⋯O = 2.953 (2) and 3.127 (2) Å] atoms in a trivacant fac-vIC-9 icosahedral coordination geometry.
Related literature
For related structures, see: Caracelli et al. (2007 ▶); Stefani et al. (2006 ▶); For related literature, see: Ruiz-Martínez et al. (2008 ▶); Vieira et al. (2008 ▶). 
         
Experimental
Crystal data
- K+·C4H7BF3O− 
- M r = 178.01 
- Monoclinic,   
- a = 10.882 (2) Å 
- b = 7.2668 (15) Å 
- c = 9.2317 (18) Å 
- β = 101.52 (3)° 
- V = 715.3 (3) Å3 
- Z = 4 
- Mo Kα radiation 
- μ = 0.72 mm−1 
- T = 291 (2) K 
- 0.31 × 0.22 × 0.11 mm 
Data collection
- Nonius KappaCCD diffractometer 
- Absorption correction: multi-scan (SADABS; Bruker, 2006 ▶) T min = 0.804, T max = 0.924 
- 16605 measured reflections 
- 1327 independent reflections 
- 1182 reflections with I > 2σ(I) 
- R int = 0.059 
Refinement
- R[F 2 > 2σ(F 2)] = 0.027 
- wR(F 2) = 0.072 
- S = 1.00 
- 1327 reflections 
- 92 parameters 
- H-atom parameters constrained 
- Δρmax = 0.25 e Å−3 
- Δρmin = −0.20 e Å−3 
Data collection: COLLECT (Nonius, 1998 ▶); cell refinement: PHICHI (Duisenberg et al., 2000 ▶); data reduction: EVAL-14 (CCD) (Duisenberg et al., 2003 ▶); program(s) used to solve structure: SIR97 (Altomare et al., 1999 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036428/ng2510sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036428/ng2510Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
We thank FAPESP (07/59404–2 to HAS and 08/02531–5 to JZS), CNPq (300613/2007 to HAS and 307121/2006–0 to JZS) and CAPES for financial support.
supplementary crystallographic information
Comment
Organic compounds of tellurium, such as Z-vinylic tellurides, are important synthetic precursors of organometallic molecules and organic salts and can be useful in the synthesis of new potassium vinyl trifluoroborate salts. Organotrifluoroborates represent an alternative to boronic acids, boronate esters, and organoboranes for use in the Suzuki-Miyaura reaction and other transition-metal-catalyzed cross-coupling reactions (Vieira et al. 2008). Following the ideas of Ruiz-Martínez et al. (2008) the geometry around the K+ ion can be described as a trivacant icosahedron, fac-vIC-9, a non spherical shape, as shown in Figure 2. The independent molecules in (I) are connected via C3···F2i = 3.214 (2) Å, C3—H3B···F2i = 137° (i = x - 1/2, -y + 3/2, z).
Experimental
nBuLi (0.8 mmol) was added dropwise at 203 K to a solution of the appropriated Z-vinylic telluride (1 mmol) in Et2O (6 ml). The bath temperature was raised to 253 K. After 20 minutes B(OiPr)3 (1.0 mmol) was added at 233 K. After 1 h, a aqueous solution of KHF2 (4 mmol in 10 ml of water) was added to the reaction mixture. Then, the solvent and water were eliminated by evaporation. To the obtained solid hot acetone was added and the bulk reactional was filtered and dried, yielding 67% of (Z)-potassium vinyltrifluoroborate salt. Single crystals were obtained by slow evaporation from Et2O.
Refinement
The H atoms were refined in the riding-model approximation, with C—H = 0.93–0.97Å and Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(remaining C).
Figures
Fig. 1.
The molecular structure of the title compound showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
Fig. 2.
The trivacant icosahedron, fac-vIC-9, around the K+ ion. Symmetry operations: i = 1 - x, y - 1/2, 1/2 - z; ii = 1 - x, y - 1, -z; iii = 1 - x, y + 1/2, 1/2 - z; iv = 1 - x, -2 - y, -z; v = x, -3/2 - y, z - 1/2; vi = x, -3/2 - y, 1/2 + z.
Crystal data
| K+·C4H7BF3O– | F000 = 360 | 
| Mr = 178.01 | Dx = 1.653 Mg m−3 | 
| Monoclinic, P21/c | Mo Kα radiation λ = 0.71073 Å | 
| Hall symbol: -P 2ybc | Cell parameters from 9536 reflections | 
| a = 10.882 (2) Å | θ = 2.3–21.8º | 
| b = 7.2668 (15) Å | µ = 0.72 mm−1 | 
| c = 9.2317 (18) Å | T = 291 (2) K | 
| β = 101.52 (3)º | Block, colourless | 
| V = 715.3 (3) Å3 | 0.31 × 0.22 × 0.11 mm | 
| Z = 4 | 
Data collection
| Enraf–Nonius KappaCCD diffractometer | 1327 independent reflections | 
| Radiation source: fine-focus sealed tube | 1182 reflections with I > 2σ(I) | 
| Monochromator: graphite | Rint = 0.059 | 
| T = 290(2) K | θmax = 25.5º | 
| φ and ω scans | θmin = 4.3º | 
| Absorption correction: multi-scan(SADABS; Bruker, 2006) | h = −13→13 | 
| Tmin = 0.804, Tmax = 0.924 | k = −8→8 | 
| 16605 measured reflections | l = −11→11 | 
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map | 
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites | 
| R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained | 
| wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0364P)2 + 0.2723P] where P = (Fo2 + 2Fc2)/3 | 
| S = 1.00 | (Δ/σ)max < 0.001 | 
| 1327 reflections | Δρmax = 0.25 e Å−3 | 
| 92 parameters | Δρmin = −0.20 e Å−3 | 
| Primary atom site location: structure-invariant direct methods | Extinction correction: none | 
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. | 
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. | 
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| B | 0.64509 (18) | −0.7960 (2) | 0.0837 (2) | 0.0305 (4) | |
| C1 | 0.77652 (16) | −0.7044 (2) | 0.16327 (19) | 0.0371 (4) | |
| H1 | 0.8143 | −0.7569 | 0.253 | 0.045* | |
| C2 | 0.83849 (15) | −0.5637 (2) | 0.11809 (19) | 0.0352 (4) | |
| H2 | 0.9123 | −0.5254 | 0.1798 | 0.042* | |
| C3 | 0.79730 (17) | −0.4641 (2) | −0.02438 (18) | 0.0379 (4) | |
| H3A | 0.863 | −0.4722 | −0.0814 | 0.045* | |
| H3B | 0.7233 | −0.5242 | −0.0806 | 0.045* | |
| C4 | 0.8776 (2) | −0.1624 (3) | 0.0361 (3) | 0.0588 (6) | |
| H4A | 0.8539 | −0.0349 | 0.0304 | 0.088* | |
| H4B | 0.9337 | −0.1857 | −0.0299 | 0.088* | |
| H4C | 0.9186 | −0.1916 | 0.1354 | 0.088* | |
| F1 | 0.63816 (10) | −0.84405 (14) | −0.06632 (11) | 0.0438 (3) | |
| F2 | 0.61847 (9) | −0.95573 (12) | 0.16043 (10) | 0.0396 (3) | |
| F3 | 0.54238 (9) | −0.67152 (13) | 0.08481 (11) | 0.0384 (3) | |
| K | 0.40701 (3) | −0.83116 (5) | 0.27917 (4) | 0.03619 (15) | |
| O | 0.76899 (12) | −0.27319 (17) | −0.00483 (16) | 0.0469 (3) | 
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| B | 0.0374 (9) | 0.0264 (9) | 0.0288 (9) | −0.0009 (7) | 0.0095 (7) | 0.0035 (7) | 
| C1 | 0.0362 (9) | 0.0389 (9) | 0.0344 (8) | −0.0009 (7) | 0.0030 (7) | 0.0085 (7) | 
| C2 | 0.0304 (8) | 0.0362 (9) | 0.0376 (9) | −0.0027 (7) | 0.0034 (7) | 0.0001 (7) | 
| C3 | 0.0488 (10) | 0.0295 (9) | 0.0353 (9) | −0.0089 (7) | 0.0080 (7) | −0.0018 (7) | 
| C4 | 0.0504 (12) | 0.0335 (10) | 0.0867 (17) | −0.0095 (9) | −0.0005 (11) | −0.0073 (10) | 
| F1 | 0.0508 (6) | 0.0504 (6) | 0.0312 (5) | −0.0058 (5) | 0.0104 (4) | −0.0054 (4) | 
| F2 | 0.0477 (6) | 0.0291 (5) | 0.0412 (6) | −0.0057 (4) | 0.0064 (4) | 0.0077 (4) | 
| F3 | 0.0359 (5) | 0.0332 (5) | 0.0454 (6) | 0.0032 (4) | 0.0059 (4) | 0.0007 (4) | 
| K | 0.0380 (2) | 0.0316 (2) | 0.0396 (2) | 0.00022 (14) | 0.00919 (16) | 0.00628 (15) | 
| O | 0.0390 (7) | 0.0293 (6) | 0.0682 (9) | −0.0014 (5) | 0.0007 (6) | 0.0024 (6) | 
Geometric parameters (Å, °)
| B—F1 | 1.415 (2) | C2—H2 | 0.9300 | 
| B—F2 | 1.4198 (19) | C3—O | 1.440 (2) | 
| B—F3 | 1.440 (2) | C3—H3A | 0.9700 | 
| B—C1 | 1.615 (3) | C3—H3B | 0.9700 | 
| B—K | 3.450 (2) | C4—O | 1.417 (2) | 
| C1—C2 | 1.337 (2) | C4—H4A | 0.9600 | 
| C1—H1 | 0.9300 | C4—H4B | 0.9600 | 
| C2—C3 | 1.490 (2) | C4—H4C | 0.9600 | 
| F1—B—F2 | 108.08 (13) | O—C3—H3A | 109.0 | 
| F1—B—F3 | 105.82 (13) | C2—C3—H3A | 109.0 | 
| F2—B—F3 | 105.89 (13) | O—C3—H3B | 109.0 | 
| F1—B—C1 | 114.59 (15) | C2—C3—H3B | 109.0 | 
| F2—B—C1 | 111.11 (13) | H3A—C3—H3B | 107.8 | 
| F3—B—C1 | 110.86 (13) | O—C4—H4A | 109.5 | 
| C2—C1—B | 129.00 (15) | O—C4—H4B | 109.5 | 
| C2—C1—H1 | 115.5 | H4A—C4—H4B | 109.5 | 
| B—C1—H1 | 115.5 | O—C4—H4C | 109.5 | 
| C1—C2—C3 | 124.44 (15) | H4A—C4—H4C | 109.5 | 
| C1—C2—H2 | 117.8 | H4B—C4—H4C | 109.5 | 
| C3—C2—H2 | 117.8 | C4—O—C3 | 113.13 (14) | 
| O—C3—C2 | 113.05 (14) | ||
| F1—B—C1—C2 | 50.8 (3) | B—C1—C2—C3 | −2.2 (3) | 
| F2—B—C1—C2 | 173.64 (17) | C1—C2—C3—O | 116.83 (19) | 
| F3—B—C1—C2 | −68.9 (2) | C2—C3—O—C4 | 76.3 (2) | 
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2510).
References
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
- Bruker (2006). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Caracelli, I., Stefani, H. A., Vieira, A. S., Machado, M. M. P. & Zukerman-Schpector, J. (2007). Z. Kristallogr. New Cryst. Struct.222, 345–346.
- Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst.33, 893–898.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst.36, 220–229.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
- Ruiz-Martínez, A., Casanova, D. & Alvarez, S. (2008). Dalton Trans. pp. 2583–2591. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Stefani, H. A., Cella, R., Zukerman-Schpector, J. & Caracelli, I. (2006). Z. Kristallogr. New Cryst. Struct.221, 167–168.
- Vieira, A. S., Fiorante, P. F., Zukerman-Schpector, J., Alves, D., Botteselle, G. V. & Stefani, H. A. (2008). Tetrahedron, 64, 7234–7241.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036428/ng2510sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036428/ng2510Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


