Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2320. doi: 10.1107/S1600536808036271

N′-(4-Bromo­benzyl­idene)isonicotino­hydrazide

Li-Min Li a, Fang-Fang Jian a,*
PMCID: PMC2959976  PMID: 21581296

Abstract

The title compound, C13H10BrN3O, was prepared by the reaction of isonicotinohydrazide and 4-bromo­benzaldehyde. The dihedral angle between the benzene and pyridine rings is 8.60 (12)°. The crystal packing is stabilized by inter­molecular C—H⋯O and N—H⋯O hydogen-bonding inter­actions.

Related literature

For background on Schiff bases, see: Chiu et al. (1998). For comparative bond-length data, see: Cimerman et al. (1997). graphic file with name e-64-o2320-scheme1.jpg

Experimental

Crystal data

  • C13H10BrN3O

  • M r = 304.15

  • Monoclinic, Inline graphic

  • a = 18.715 (9) Å

  • b = 6.517 (3) Å

  • c = 10.126 (5) Å

  • β = 95.512 (9)°

  • V = 1229.3 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.33 mm−1

  • T = 273 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 7721 measured reflections

  • 2992 independent reflections

  • 1914 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.094

  • S = 1.01

  • 2992 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036271/at2659sup1.cif

e-64-o2320-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036271/at2659Isup2.hkl

e-64-o2320-Isup2.hkl (146.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.14 2.966 (3) 161
C12—H12A⋯O1i 0.93 2.60 3.377 (3) 142

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Schiff bases have received considerable attention in the literature. They are attractive from several points of view, such as the possibility of analytical application (Cimerman et al., 1997). As part of our search for new schiff base compounds we synthesized the title compound (I), and herein we report the crstal structure of (I).

In (I) (Fig. 1),

As seen in Fig. 1, the C12—N3 bond length of 1.276 (3)Å is comparable with C—N double bond [1.284 (2) Å] reported (Chiu et al., 1998). In the title molecule, the benzene ring (C6–C10) is essentialy planar with a maximum deviation of 0.009 (2) Å for C6 and C9, while the pyridine ring is planar, with a maximum deviation of 0.012 (2) Å for C3. The dihedral angle between the benzene and pyridine rings is 8.60 (12)°.

The crystal packing is stabilized by intermolecular C—H···O and N—H···O hydogen-bonding interactions.

Experimental

A mixture of the isonicotinohydrazide (0.1 mol), and 4-bromobenzaldehyde (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.082 mol, yield 82%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with N—H = 0.86 Å and C—H = 0.93 Å, and with Uiso=1.2–Ueq(C,N).

All H atoms were placed in idealized positions and refined with riding constraints, with N—H = 0.86 Å and C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the title compound (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C13H10BrN3O F000 = 608
Mr = 304.15 Dx = 1.643 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2167 reflections
a = 18.715 (9) Å θ = 3.3–24.3º
b = 6.517 (3) Å µ = 3.33 mm1
c = 10.126 (5) Å T = 273 (2) K
β = 95.512 (9)º Block, yellow
V = 1229.3 (11) Å3 0.25 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 1914 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.034
Monochromator: graphite θmax = 28.4º
T = 273(2) K θmin = 2.2º
φ and ω scans h = −18→25
Absorption correction: none k = −7→8
7721 measured reflections l = −13→13
2992 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036   w = 1/[σ2(Fo2) + (0.0429P)2 + 0.1134P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094 (Δ/σ)max < 0.001
S = 1.01 Δρmax = 0.39 e Å3
2992 reflections Δρmin = −0.55 e Å3
164 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0072 (10)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.038461 (17) 0.64201 (4) 0.85386 (4) 0.08031 (18)
N3 0.25010 (10) 1.5120 (3) 0.93706 (17) 0.0390 (4)
N2 0.29511 (10) 1.6713 (3) 0.90925 (18) 0.0386 (4)
H2A 0.3079 1.6847 0.8304 0.046*
O1 0.30311 (10) 1.7983 (3) 1.11880 (16) 0.0529 (4)
C7 0.10215 (13) 0.8680 (3) 0.8543 (3) 0.0457 (6)
C10 0.19040 (12) 1.2072 (3) 0.8503 (2) 0.0369 (5)
N1 0.46415 (11) 2.2729 (3) 0.8926 (2) 0.0545 (6)
C4 0.36913 (11) 1.9665 (3) 0.9610 (2) 0.0349 (5)
C13 0.31906 (12) 1.8058 (3) 1.0047 (2) 0.0362 (5)
C9 0.19163 (13) 1.0539 (4) 0.7549 (2) 0.0446 (6)
H9A 0.2229 1.0656 0.6893 0.054*
C12 0.23656 (13) 1.3861 (3) 0.8414 (2) 0.0417 (5)
H12A 0.2570 1.4094 0.7626 0.050*
C3 0.37459 (13) 2.1531 (3) 1.0273 (2) 0.0448 (6)
H3B 0.3471 2.1787 1.0972 0.054*
C5 0.41305 (13) 1.9365 (4) 0.8605 (2) 0.0455 (6)
H5A 0.4115 1.8140 0.8133 0.055*
C11 0.14423 (13) 1.1841 (4) 0.9499 (2) 0.0438 (6)
H11A 0.1429 1.2844 1.0150 0.053*
C8 0.14730 (14) 0.8850 (3) 0.7560 (3) 0.0488 (6)
H8A 0.1480 0.7843 0.6911 0.059*
C6 0.10088 (13) 1.0151 (4) 0.9526 (2) 0.0473 (6)
H6A 0.0708 0.9994 1.0199 0.057*
C2 0.42134 (14) 2.3003 (4) 0.9882 (3) 0.0515 (6)
H2B 0.4229 2.4263 1.0315 0.062*
C1 0.45933 (14) 2.0919 (4) 0.8314 (3) 0.0552 (7)
H1B 0.4891 2.0684 0.7646 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.0729 (3) 0.04607 (19) 0.1216 (4) −0.01855 (14) 0.0075 (2) −0.00034 (16)
N3 0.0430 (11) 0.0399 (10) 0.0350 (10) −0.0045 (8) 0.0083 (8) 0.0038 (9)
N2 0.0456 (11) 0.0415 (10) 0.0301 (10) −0.0063 (8) 0.0103 (8) 0.0034 (8)
O1 0.0674 (12) 0.0593 (10) 0.0341 (9) −0.0110 (9) 0.0160 (8) −0.0036 (8)
C7 0.0409 (13) 0.0333 (12) 0.0618 (16) 0.0013 (9) −0.0016 (12) 0.0032 (11)
C10 0.0383 (12) 0.0367 (11) 0.0352 (12) 0.0003 (9) 0.0013 (10) 0.0032 (10)
N1 0.0568 (14) 0.0567 (14) 0.0492 (13) −0.0143 (11) 0.0019 (11) 0.0077 (11)
C4 0.0363 (12) 0.0387 (12) 0.0294 (11) 0.0036 (9) 0.0022 (9) 0.0023 (9)
C13 0.0380 (13) 0.0390 (11) 0.0321 (12) 0.0051 (9) 0.0055 (10) 0.0024 (10)
C9 0.0509 (14) 0.0462 (13) 0.0375 (13) 0.0051 (11) 0.0081 (11) −0.0005 (11)
C12 0.0469 (14) 0.0440 (13) 0.0355 (12) −0.0016 (10) 0.0102 (11) 0.0037 (11)
C3 0.0457 (14) 0.0457 (14) 0.0437 (13) 0.0035 (10) 0.0086 (11) −0.0041 (11)
C5 0.0482 (14) 0.0493 (13) 0.0400 (13) −0.0052 (11) 0.0097 (11) −0.0050 (11)
C11 0.0472 (14) 0.0443 (13) 0.0403 (13) −0.0005 (10) 0.0060 (11) −0.0057 (10)
C8 0.0571 (16) 0.0396 (13) 0.0487 (15) 0.0076 (11) 0.0005 (13) −0.0090 (11)
C6 0.0431 (14) 0.0510 (14) 0.0489 (14) −0.0025 (11) 0.0103 (11) 0.0065 (12)
C2 0.0532 (16) 0.0402 (13) 0.0596 (16) −0.0022 (11) −0.0029 (14) −0.0006 (12)
C1 0.0541 (16) 0.0706 (18) 0.0428 (14) −0.0117 (13) 0.0139 (12) 0.0010 (13)

Geometric parameters (Å, °)

Br—C7 1.894 (2) C4—C13 1.500 (3)
N3—C12 1.276 (3) C9—C8 1.379 (3)
N3—N2 1.383 (2) C9—H9A 0.9300
N2—C13 1.349 (3) C12—H12A 0.9300
N2—H2A 0.8600 C3—C2 1.382 (3)
O1—C13 1.222 (3) C3—H3B 0.9300
C7—C8 1.371 (4) C5—C1 1.382 (3)
C7—C6 1.384 (3) C5—H5A 0.9300
C10—C9 1.391 (3) C11—C6 1.370 (3)
C10—C11 1.398 (3) C11—H11A 0.9300
C10—C12 1.459 (3) C8—H8A 0.9300
N1—C2 1.326 (3) C6—H6A 0.9300
N1—C1 1.331 (3) C2—H2B 0.9300
C4—C5 1.382 (3) C1—H1B 0.9300
C4—C3 1.388 (3)
C12—N3—N2 114.10 (18) C10—C12—H12A 118.6
C13—N2—N3 120.59 (18) C4—C3—C2 119.3 (2)
C13—N2—H2A 119.7 C4—C3—H3B 120.4
N3—N2—H2A 119.7 C2—C3—H3B 120.4
C8—C7—C6 121.4 (2) C4—C5—C1 118.9 (2)
C8—C7—Br 119.52 (19) C4—C5—H5A 120.6
C6—C7—Br 119.09 (19) C1—C5—H5A 120.6
C9—C10—C11 118.4 (2) C6—C11—C10 120.6 (2)
C9—C10—C12 118.8 (2) C6—C11—H11A 119.7
C11—C10—C12 122.8 (2) C10—C11—H11A 119.7
C2—N1—C1 116.1 (2) C7—C8—C9 118.9 (2)
C5—C4—C3 117.3 (2) C7—C8—H8A 120.5
C5—C4—C13 123.5 (2) C9—C8—H8A 120.5
C3—C4—C13 119.2 (2) C11—C6—C7 119.5 (2)
O1—C13—N2 123.8 (2) C11—C6—H6A 120.3
O1—C13—C4 121.6 (2) C7—C6—H6A 120.3
N2—C13—C4 114.59 (18) N1—C2—C3 124.0 (2)
C8—C9—C10 121.2 (2) N1—C2—H2B 118.0
C8—C9—H9A 119.4 C3—C2—H2B 118.0
C10—C9—H9A 119.4 N1—C1—C5 124.4 (2)
N3—C12—C10 122.9 (2) N1—C1—H1B 117.8
N3—C12—H12A 118.6 C5—C1—H1B 117.8

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O1i 0.86 2.14 2.966 (3) 161
C12—H12A···O1i 0.93 2.60 3.377 (3) 142

Symmetry codes: (i) x, −y+7/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2659).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chiu, P., Chen, B. & Cheng, K. F. (1998). Tetrahedron Lett 39, 9229–9232.
  3. Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036271/at2659sup1.cif

e-64-o2320-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036271/at2659Isup2.hkl

e-64-o2320-Isup2.hkl (146.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES