Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 22;64(Pt 12):m1602. doi: 10.1107/S1600536808038348

Poly[4,4′-imino­dipyridinium [tetra-μ3-oxido-tetra­oxido-di-μ4-phosphato-κ4 O:O′:O′′:O′′′-tetra­vanadium(V)]]

Gregory A Farnum a, Robert L LaDuca a,*
PMCID: PMC2959979  PMID: 21581199

Abstract

In the title salt, {(C10H11N3)[V4O8(PO4)2]}n, cubane-like [V4O8]4+ clusters are connected by phosphate anions into anionic [V4P2O16]n 2n layers. These aggregate into the three-dimensional structure via N—H⋯O hydrogen-bonding mechanisms imparted by 4,4′-imino­dipyridinium dications situated between the layers.

Related literature

For a nickel vanadate phase incorporating 4,4′-dipyridylamine, see: LaDuca et al. (2001). For a related layered vanadium phosphate solid containing doubly protonated 4,4′-bipyridine cations, see: Shi et al. (2004).graphic file with name e-64-m1602-scheme1.jpg

Experimental

Crystal data

  • (C10H11N3)[V4O8(PO4)2]

  • M r = 694.92

  • Monoclinic, Inline graphic

  • a = 7.4431 (10) Å

  • b = 14.524 (2) Å

  • c = 18.825 (3) Å

  • β = 94.363 (2)°

  • V = 2029.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 173 (2) K

  • 0.20 × 0.20 × 0.04 mm

Data collection

  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.786, T max = 0.922

  • 21687 measured reflections

  • 4652 independent reflections

  • 3678 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.101

  • S = 1.09

  • 4652 reflections

  • 325 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038348/tk2326sup1.cif

e-64-m1602-sup1.cif (27.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038348/tk2326Isup2.hkl

e-64-m1602-Isup2.hkl (227.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O10 0.93 (4) 2.14 (4) 2.885 (4) 136 (4)
N1—H1N⋯O9i 0.93 (4) 2.45 (4) 3.018 (5) 119 (4)
N2—H2N⋯O2ii 0.862 (19) 2.35 (2) 3.195 (4) 166 (4)
N3—H3N⋯O8iii 0.90 (5) 2.02 (5) 2.902 (4) 164 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

supplementary crystallographic information

Comment

The kinked and hydrogen-bonding capable imine 4,4'-dipyridylamine has proven useful in the construction of novel mixed metal oxide phases (LaDuca et al., 2001). In an attempt to extend this chemistry into a metal phosphate oxide system, yellow plate-like crystals of the title compound (I) were obtained.

The asymmetric unit of (I) comprises a cluster of four pentavalent V atoms, four terminal O atoms, four triply bridging O atoms, two phosphate anions and an unligated 4,4'-iminodipyridinium dication (Fig. 1). Each V atom is octahedrally coordinated, with three µ3O atom donors, two O atoms from two different phosphate anions, and one terminal O atom with a formal V=O double bond. The four V=O groups and four µ3 O atoms form a cubane-type [V4O8]4+ cluster.

Quadruply bridging phosphate anions bridge these cationic clusters into anionic [V4O8(PO4)2]n2n- layers that are situated parallel to the bc-planes (Fig. 2). The phosphate groups bracket rhomboid apertures within the layers, with through-space P···P contact distances of 7.2685 (2) and 7.4431 (2) Å. Adjacent [V4O8(PO4)2]n2n- layers stack in an AB pattern into the 3-D structure by N—H···O hydrogen bonding mediated by the protonated pyridyl-N atoms and the central amine groups of the 4,4'-iminodipyridinium cations situated in the interlamellar regions (Fig. 3).

The overall structure of (I) is very similar to a related phase incorporating doubly protonated 4,4'-bipyridine cations (Shi et al., 2004).

Experimental

All chemicals were obtained commercially. Vanadium(V) oxide (140 mg, 0.77 mmol) and 4,4'-dipyridylamine (132 mg, 0.77 mmol) and phosphoric acid (526 mg of an 85.5% aqueous solution, 4.56 mmol) were placed into H2O (10 ml ) in a 23 ml Teflon-lined Parr acid digestion bomb. The bomb was heated at 393 K for 72 h and was then allowed to cool to room temperature. Yellow plates of (I) were obtained along with a reddish-brown amorphous solid.

Refinement

All H atoms bound to C atoms were placed in calculated positions with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C). All H atoms bound to N atoms were found via Fourier difference map, restrained with N—H = 0.89 Å, and refined with Uiso=1.2Ueq(N). The largest residual electron density peak of 1.03 e- Å-3 was located 2.25 Å from the H2 atom.

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of (I), showing 50% probability ellipsoids and atom numbering scheme. Most H atom positions are shown as gray sticks. Color code: dark blue V, violet P, light blue N, red O, black C, pink H.

Fig. 2.

Fig. 2.

A single [V4P2O16]n2n- layer in (I).

Fig. 3.

Fig. 3.

Packing diagram illustrating the ABAB layer stacking pattern, which forms the 3-D crystal structure of (I) through hydrogen bonding between the inorganic layers and 4,4'-iminodipyridinium cations.

Crystal data

(C10H11N3)[V4O8(PO4)2] F000 = 1368
Mr = 694.92 Dx = 2.275 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 21687 reflections
a = 7.4431 (10) Å θ = 1.8–28.2º
b = 14.524 (2) Å µ = 2.04 mm1
c = 18.825 (3) Å T = 173 (2) K
β = 94.363 (2)º Plate, yellow
V = 2029.1 (5) Å3 0.20 × 0.20 × 0.04 mm
Z = 4

Data collection

Bruker SMART 1K diffractometer 4652 independent reflections
Radiation source: fine-focus sealed tube 3678 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.047
T = 173(2) K θmax = 28.2º
ω scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.786, Tmax = 0.922 k = −19→19
21687 measured reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101   w = 1/[σ2(Fo2) + (0.0382P)2 + 6.7132P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
4652 reflections Δρmax = 1.03 e Å3
325 parameters Δρmin = −0.76 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
V1 0.62200 (8) 0.45521 (4) 0.16868 (3) 0.00774 (14)
V2 0.65671 (8) 0.54528 (4) 0.33252 (3) 0.00778 (14)
V3 0.91535 (8) 0.41272 (4) 0.30933 (3) 0.00822 (14)
V4 0.89067 (8) 0.58608 (4) 0.19276 (3) 0.00808 (14)
P1 0.27074 (12) 0.50073 (6) 0.25058 (5) 0.00875 (19)
P2 0.74459 (12) 0.25121 (6) 0.21337 (5) 0.00750 (19)
O1 0.6496 (4) 0.53003 (17) 0.41627 (14) 0.0146 (6)
O2 0.5880 (3) 0.47775 (17) 0.08568 (14) 0.0141 (6)
O3 0.9438 (4) 0.38002 (18) 0.38988 (14) 0.0157 (6)
O4 0.3769 (3) 0.45212 (17) 0.19477 (14) 0.0117 (5)
O5 0.8869 (3) 0.62016 (17) 0.11231 (14) 0.0144 (5)
O6 0.6464 (3) 0.57326 (16) 0.20696 (13) 0.0093 (5)
O7 0.6413 (3) 0.32294 (16) 0.16610 (13) 0.0095 (5)
O8 0.6626 (3) 0.42384 (16) 0.29886 (13) 0.0093 (5)
O9 0.3989 (3) 0.54901 (17) 0.30680 (14) 0.0115 (5)
O10 0.8333 (3) 0.18063 (16) 0.16577 (13) 0.0093 (5)
O11 0.8977 (3) 0.29677 (16) 0.26015 (14) 0.0101 (5)
O12 0.6105 (3) 0.20382 (16) 0.25905 (14) 0.0104 (5)
O13 0.8962 (3) 0.54013 (16) 0.31834 (14) 0.0095 (5)
O14 0.1453 (3) 0.57446 (16) 0.21577 (14) 0.0114 (5)
O15 0.1609 (3) 0.42794 (16) 0.28734 (14) 0.0121 (5)
O16 0.8712 (3) 0.46004 (16) 0.18407 (13) 0.0096 (5)
N1 1.1851 (5) 0.2291 (3) 0.1230 (2) 0.0247 (8)
H1N 1.113 (5) 0.212 (3) 0.1588 (19) 0.030*
N2 1.5138 (4) 0.3207 (2) −0.02781 (18) 0.0157 (7)
H2N 1.481 (6) 0.370 (2) −0.050 (2) 0.019*
N3 1.9274 (4) 0.1840 (2) −0.11738 (19) 0.0161 (7)
H3N 2.016 (6) 0.152 (3) −0.136 (2) 0.019*
C1 1.1673 (5) 0.3154 (3) 0.0975 (2) 0.0215 (9)
H1 1.0813 0.3544 0.1146 0.026*
C2 1.2741 (5) 0.3461 (3) 0.0469 (2) 0.0174 (8)
H2 1.2593 0.4054 0.0287 0.021*
C3 1.4072 (5) 0.2878 (3) 0.0223 (2) 0.0128 (7)
C4 1.4197 (5) 0.1975 (3) 0.0485 (2) 0.0180 (8)
H4 1.5027 0.1566 0.0317 0.022*
C5 1.3089 (6) 0.1704 (3) 0.0990 (2) 0.0223 (9)
H5 1.3182 0.1110 0.1172 0.027*
C6 1.9152 (5) 0.1759 (3) −0.0472 (2) 0.0183 (8)
H6 1.9969 0.1389 −0.0205 0.022*
C7 1.7833 (5) 0.2217 (3) −0.0142 (2) 0.0159 (8)
H7 1.7759 0.2167 0.0347 0.019*
C8 1.6598 (5) 0.2760 (2) −0.0557 (2) 0.0133 (7)
C9 1.6813 (5) 0.2865 (2) −0.1276 (2) 0.0128 (7)
H9 1.6058 0.3257 −0.1553 0.015*
C10 1.8149 (5) 0.2386 (2) −0.1577 (2) 0.0142 (8)
H10 1.8279 0.2440 −0.2063 0.017*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
V1 0.0072 (3) 0.0038 (3) 0.0120 (3) 0.0000 (2) −0.0006 (2) −0.0003 (2)
V2 0.0073 (3) 0.0036 (3) 0.0125 (3) −0.0003 (2) 0.0011 (2) −0.0002 (2)
V3 0.0071 (3) 0.0039 (3) 0.0134 (3) 0.0005 (2) −0.0003 (2) 0.0008 (2)
V4 0.0074 (3) 0.0041 (3) 0.0128 (3) −0.0002 (2) 0.0014 (2) 0.0002 (2)
P1 0.0057 (4) 0.0041 (4) 0.0165 (5) 0.0002 (3) 0.0008 (3) −0.0012 (3)
P2 0.0070 (4) 0.0027 (4) 0.0130 (4) 0.0005 (3) 0.0012 (3) −0.0002 (3)
O1 0.0196 (14) 0.0111 (13) 0.0135 (14) −0.0002 (10) 0.0040 (11) −0.0003 (10)
O2 0.0155 (13) 0.0113 (13) 0.0151 (14) 0.0003 (10) −0.0013 (10) 0.0011 (10)
O3 0.0179 (14) 0.0113 (13) 0.0174 (15) 0.0027 (10) −0.0014 (11) 0.0018 (10)
O4 0.0079 (12) 0.0092 (12) 0.0181 (14) −0.0003 (10) 0.0007 (10) −0.0043 (10)
O5 0.0172 (13) 0.0104 (13) 0.0160 (14) −0.0013 (10) 0.0033 (11) 0.0007 (10)
O6 0.0069 (11) 0.0049 (11) 0.0159 (13) 0.0026 (9) 0.0003 (9) −0.0015 (9)
O7 0.0102 (12) 0.0027 (11) 0.0155 (14) 0.0013 (9) −0.0006 (10) −0.0007 (9)
O8 0.0090 (12) 0.0044 (11) 0.0147 (13) −0.0019 (9) 0.0021 (10) −0.0006 (9)
O9 0.0069 (12) 0.0094 (12) 0.0183 (14) −0.0010 (9) 0.0019 (10) −0.0049 (10)
O10 0.0094 (12) 0.0039 (11) 0.0148 (14) 0.0007 (9) 0.0020 (10) 0.0005 (9)
O11 0.0084 (11) 0.0036 (11) 0.0180 (14) 0.0005 (9) −0.0012 (10) 0.0002 (10)
O12 0.0095 (12) 0.0052 (11) 0.0171 (14) 0.0000 (9) 0.0046 (10) 0.0012 (10)
O13 0.0081 (12) 0.0030 (11) 0.0175 (14) −0.0002 (9) 0.0005 (10) −0.0013 (10)
O14 0.0076 (11) 0.0043 (11) 0.0229 (15) −0.0003 (9) 0.0050 (10) 0.0035 (10)
O15 0.0080 (12) 0.0054 (12) 0.0227 (15) 0.0000 (9) 0.0004 (10) 0.0023 (10)
O16 0.0090 (12) 0.0043 (11) 0.0157 (13) 0.0016 (9) 0.0014 (10) −0.0007 (10)
N1 0.0218 (19) 0.033 (2) 0.0203 (19) −0.0092 (16) 0.0068 (15) −0.0002 (16)
N2 0.0182 (16) 0.0098 (15) 0.0197 (18) 0.0021 (13) 0.0064 (13) 0.0039 (13)
N3 0.0143 (16) 0.0121 (16) 0.0224 (19) −0.0020 (13) 0.0040 (14) −0.0034 (13)
C1 0.0154 (19) 0.029 (2) 0.021 (2) −0.0051 (17) 0.0042 (16) −0.0103 (17)
C2 0.0147 (19) 0.017 (2) 0.021 (2) −0.0027 (15) 0.0012 (15) −0.0053 (16)
C3 0.0111 (17) 0.0165 (18) 0.0107 (18) −0.0032 (15) 0.0006 (13) −0.0017 (14)
C4 0.0168 (19) 0.018 (2) 0.019 (2) −0.0013 (15) 0.0033 (16) 0.0012 (16)
C5 0.021 (2) 0.023 (2) 0.023 (2) −0.0058 (17) 0.0041 (17) 0.0069 (17)
C6 0.0160 (19) 0.0130 (19) 0.025 (2) −0.0007 (15) −0.0037 (16) 0.0032 (16)
C7 0.0170 (19) 0.0152 (19) 0.015 (2) −0.0017 (15) 0.0013 (15) 0.0018 (15)
C8 0.0133 (17) 0.0080 (17) 0.018 (2) −0.0048 (14) −0.0003 (15) −0.0016 (14)
C9 0.0157 (18) 0.0069 (16) 0.0155 (19) −0.0057 (14) 0.0001 (14) 0.0002 (14)
C10 0.0185 (19) 0.0073 (17) 0.0171 (19) −0.0077 (14) 0.0030 (15) −0.0013 (14)

Geometric parameters (Å, °)

V1—O2 1.598 (3) P2—O11 1.536 (2)
V1—O16 1.857 (2) P2—O7 1.538 (2)
V1—O6 1.863 (2) P2—O10 1.543 (3)
V1—O4 1.925 (3) N1—C1 1.345 (6)
V1—O7 1.927 (2) N1—C5 1.357 (6)
V1—O8 2.488 (3) N1—H1N 0.93 (4)
V2—O1 1.597 (3) N2—C3 1.364 (5)
V2—O13 1.824 (2) N2—C8 1.401 (5)
V2—O8 1.876 (2) N2—H2N 0.862 (19)
V2—O9 1.944 (2) N3—C6 1.336 (5)
V2—O10i 1.967 (2) N3—C10 1.346 (5)
V2—O6 2.394 (3) N3—H3N 0.90 (5)
V3—O3 1.588 (3) C1—C2 1.362 (6)
V3—O13 1.865 (2) C1—H1 0.9300
V3—O8 1.883 (2) C2—C3 1.408 (5)
V3—O15ii 1.917 (3) C2—H2 0.9300
V3—O11 1.921 (2) C3—C4 1.402 (5)
V3—O16 2.454 (3) C4—C5 1.363 (6)
V4—O5 1.592 (3) C4—H4 0.9300
V4—O16 1.843 (2) C5—H5 0.9300
V4—O6 1.867 (2) C6—C7 1.373 (6)
V4—O14ii 1.919 (2) C6—H6 0.9300
V4—O12i 1.936 (2) C7—C8 1.404 (5)
V4—O13 2.454 (3) C7—H7 0.9300
P1—O15 1.533 (3) C8—C9 1.384 (5)
P1—O4 1.534 (3) C9—C10 1.371 (5)
P1—O14 1.535 (3) C9—H9 0.9300
P1—O9 1.539 (3) C10—H10 0.9300
P2—O12 1.529 (3)
O2—V1—O16 103.13 (13) O12—P2—O11 111.02 (15)
O2—V1—O6 101.14 (12) O12—P2—O7 108.15 (14)
O16—V1—O6 80.68 (10) O11—P2—O7 110.88 (13)
O2—V1—O4 99.88 (13) O12—P2—O10 110.73 (14)
O16—V1—O4 156.29 (11) O11—P2—O10 106.72 (14)
O6—V1—O4 89.38 (11) O7—P2—O10 109.35 (14)
O2—V1—O7 100.73 (12) P1—O4—V1 135.36 (15)
O16—V1—O7 88.06 (10) V1—O6—V4 95.95 (11)
O6—V1—O7 157.17 (11) V1—O6—V2 102.74 (11)
O4—V1—O7 93.27 (11) V4—O6—V2 101.53 (10)
O2—V1—O8 177.48 (11) P2—O7—V1 134.08 (15)
O16—V1—O8 78.94 (10) V2—O8—V3 95.40 (11)
O6—V1—O8 77.68 (10) V2—O8—V1 98.99 (10)
O4—V1—O8 77.93 (10) V3—O8—V1 99.46 (10)
O7—V1—O8 80.71 (9) P1—O9—V2 135.01 (16)
O1—V2—O13 104.17 (13) P2—O10—V2iii 132.20 (15)
O1—V2—O8 101.92 (12) P2—O11—V3 132.42 (15)
O13—V2—O8 82.17 (10) P2—O12—V4iii 133.42 (15)
O1—V2—O9 98.26 (13) V2—O13—V3 97.83 (11)
O13—V2—O9 157.22 (12) V2—O13—V4 100.65 (10)
O8—V2—O9 89.43 (10) V3—O13—V4 100.26 (11)
O1—V2—O10i 97.26 (12) P1—O14—V4iv 135.73 (15)
O13—V2—O10i 90.42 (10) P1—O15—V3iv 136.61 (15)
O8—V2—O10i 160.60 (11) V4—O16—V1 97.02 (11)
O9—V2—O10i 90.66 (10) V4—O16—V3 100.90 (11)
O1—V2—O6 175.87 (11) V1—O16—V3 101.46 (11)
O13—V2—O6 79.67 (10) C1—N1—C5 121.2 (4)
O8—V2—O6 79.97 (10) C1—N1—H1N 118 (3)
O9—V2—O6 78.02 (10) C5—N1—H1N 121 (3)
O10i—V2—O6 81.07 (9) C3—N2—C8 127.3 (3)
O3—V3—O13 102.45 (13) C3—N2—H2N 118 (3)
O3—V3—O8 100.68 (13) C8—N2—H2N 114 (3)
O13—V3—O8 80.90 (10) C6—N3—C10 121.6 (3)
O3—V3—O15ii 100.40 (13) C6—N3—H3N 117 (3)
O13—V3—O15ii 89.19 (11) C10—N3—H3N 122 (3)
O8—V3—O15ii 158.20 (11) N1—C1—C2 120.5 (4)
O3—V3—O11 101.38 (12) N1—C1—H1 119.7
O13—V3—O11 155.60 (11) C2—C1—H1 119.7
O8—V3—O11 89.63 (10) C1—C2—C3 119.7 (4)
O15ii—V3—O11 91.63 (11) C1—C2—H2 120.1
O3—V3—O16 178.86 (12) C3—C2—H2 120.1
O13—V3—O16 78.69 (10) N2—C3—C4 123.0 (3)
O8—V3—O16 79.38 (10) N2—C3—C2 118.5 (4)
O15ii—V3—O16 79.66 (10) C4—C3—C2 118.4 (4)
O11—V3—O16 77.48 (10) C5—C4—C3 119.2 (4)
O5—V4—O16 103.23 (13) C5—C4—H4 120.4
O5—V4—O6 102.74 (13) C3—C4—H4 120.4
O16—V4—O6 80.95 (10) N1—C5—C4 120.8 (4)
O5—V4—O14ii 100.81 (13) N1—C5—H5 119.6
O16—V4—O14ii 90.13 (10) C4—C5—H5 119.6
O6—V4—O14ii 156.16 (12) N3—C6—C7 120.6 (4)
O5—V4—O12i 99.84 (12) N3—C6—H6 119.7
O16—V4—O12i 156.34 (11) C7—C6—H6 119.7
O6—V4—O12i 88.95 (10) C6—C7—C8 118.8 (4)
O14ii—V4—O12i 90.67 (11) C6—C7—H7 120.6
O5—V4—O13 177.67 (11) C8—C7—H7 120.6
O16—V4—O13 79.09 (10) C9—C8—N2 117.8 (3)
O6—V4—O13 77.30 (10) C9—C8—C7 119.1 (4)
O14ii—V4—O13 79.32 (10) N2—C8—C7 123.1 (4)
O12i—V4—O13 77.83 (10) C10—C9—C8 119.3 (4)
O15—P1—O4 108.18 (14) C10—C9—H9 120.3
O15—P1—O14 110.24 (14) C8—C9—H9 120.3
O4—P1—O14 110.92 (15) N3—C10—C9 120.4 (4)
O15—P1—O9 109.13 (15) N3—C10—H10 119.8
O4—P1—O9 110.85 (14) C9—C10—H10 119.8
O14—P1—O9 107.51 (14)
O15—P1—O4—V1 −133.2 (2) O8—V3—O11—P2 15.9 (2)
O14—P1—O4—V1 105.7 (2) O15ii—V3—O11—P2 −142.4 (2)
O2—V1—O4—P1 −125.5 (2) O16—V3—O11—P2 −63.3 (2)
O16—V1—O4—P1 40.4 (4) O11—P2—O12—V4iii −81.1 (2)
O6—V1—O4—P1 −24.3 (2) O7—P2—O12—V4iii 157.06 (19)
O7—V1—O4—P1 133.0 (2) O10—P2—O12—V4iii 37.3 (3)
O8—V1—O4—P1 53.2 (2) O1—V2—O13—V3 85.66 (14)
O2—V1—O6—V4 −84.30 (13) O8—V2—O13—V3 −14.73 (11)
O16—V1—O6—V4 17.36 (11) O9—V2—O13—V3 −84.0 (3)
O4—V1—O6—V4 175.75 (12) O10i—V2—O13—V3 −176.74 (12)
O7—V1—O6—V4 78.8 (3) O6—V2—O13—V3 −95.89 (11)
O8—V1—O6—V4 97.97 (11) O1—V2—O13—V4 −172.29 (11)
O2—V1—O6—V2 172.42 (11) O8—V2—O13—V4 87.33 (11)
O16—V1—O6—V2 −85.91 (11) O9—V2—O13—V4 18.0 (3)
O4—V1—O6—V2 72.48 (11) O10i—V2—O13—V4 −74.69 (10)
O7—V1—O6—V2 −24.5 (3) O6—V2—O13—V4 6.16 (8)
O8—V1—O6—V2 −5.31 (8) O3—V3—O13—V2 −84.30 (14)
O5—V4—O6—V1 84.15 (13) O8—V3—O13—V2 14.72 (11)
O16—V4—O6—V1 −17.49 (11) O15ii—V3—O13—V2 175.22 (12)
O14ii—V4—O6—V1 −86.7 (3) O11—V3—O13—V2 83.1 (3)
O12i—V4—O6—V1 −176.00 (12) O16—V3—O13—V2 95.61 (11)
O13—V4—O6—V1 −98.25 (11) O3—V3—O13—V4 173.31 (11)
O5—V4—O6—V2 −171.52 (11) O8—V3—O13—V4 −87.67 (10)
O16—V4—O6—V2 86.85 (11) O15ii—V3—O13—V4 72.83 (11)
O14ii—V4—O6—V2 17.6 (3) O11—V3—O13—V4 −19.3 (3)
O12i—V4—O6—V2 −71.67 (11) O16—V3—O13—V4 −6.78 (8)
O13—V4—O6—V2 6.09 (8) O16—V4—O13—V2 −91.04 (12)
O1—V2—O6—V1 −110.6 (16) O6—V4—O13—V2 −7.98 (11)
O13—V2—O6—V1 90.76 (11) O14ii—V4—O13—V2 176.74 (12)
O8—V2—O6—V1 6.99 (11) O12i—V4—O13—V2 83.71 (11)
O9—V2—O6—V1 −84.57 (11) O16—V4—O13—V3 9.03 (11)
O10i—V2—O6—V1 −177.17 (12) O6—V4—O13—V3 92.09 (11)
O13—V2—O6—V4 −8.13 (11) O14ii—V4—O13—V3 −83.19 (11)
O8—V2—O6—V4 −91.91 (11) O12i—V4—O13—V3 −176.22 (12)
O9—V2—O6—V4 176.53 (12) O15—P1—O14—V4iv −13.6 (3)
O10i—V2—O6—V4 83.94 (11) O4—P1—O14—V4iv 106.2 (2)
O12—P2—O7—V1 104.0 (2) O9—P1—O14—V4iv −132.5 (2)
O11—P2—O7—V1 −18.0 (3) O4—P1—O15—V3iv −129.8 (2)
O10—P2—O7—V1 −135.4 (2) O14—P1—O15—V3iv −8.3 (3)
O2—V1—O7—P2 149.9 (2) O9—P1—O15—V3iv 109.6 (2)
O16—V1—O7—P2 46.9 (2) O5—V4—O16—V1 −83.47 (14)
O6—V1—O7—P2 −13.3 (4) O6—V4—O16—V1 17.59 (11)
O4—V1—O7—P2 −109.4 (2) O14ii—V4—O16—V1 175.38 (12)
O8—V1—O7—P2 −32.2 (2) O12i—V4—O16—V1 83.4 (3)
O1—V2—O8—V3 −88.41 (13) O13—V4—O16—V1 96.29 (11)
O13—V2—O8—V3 14.51 (11) O5—V4—O16—V3 173.38 (11)
O9—V2—O8—V3 173.26 (12) O6—V4—O16—V3 −85.56 (11)
O10i—V2—O8—V3 82.9 (3) O14ii—V4—O16—V3 72.23 (11)
O6—V2—O8—V3 95.33 (10) O12i—V4—O16—V3 −19.7 (3)
O1—V2—O8—V1 171.10 (11) O13—V4—O16—V3 −6.86 (8)
O13—V2—O8—V1 −85.99 (11) O2—V1—O16—V4 81.73 (13)
O9—V2—O8—V1 72.77 (10) O6—V1—O16—V4 −17.64 (11)
O10i—V2—O8—V1 −17.6 (4) O4—V1—O16—V4 −84.0 (3)
O6—V2—O8—V1 −5.16 (8) O7—V1—O16—V4 −177.70 (12)
O3—V3—O8—V2 86.84 (13) O8—V1—O16—V4 −96.79 (11)
O13—V3—O8—V2 −14.23 (11) O2—V1—O16—V3 −175.60 (11)
O15ii—V3—O8—V2 −78.2 (3) O6—V1—O16—V3 85.03 (11)
O11—V3—O8—V2 −171.65 (11) O4—V1—O16—V3 18.7 (3)
O16—V3—O8—V2 −94.32 (10) O7—V1—O16—V3 −75.03 (11)
O3—V3—O8—V1 −173.09 (11) O8—V1—O16—V3 5.88 (8)
O13—V3—O8—V1 85.84 (10) O13—V3—O16—V4 9.06 (11)
O15ii—V3—O8—V1 21.9 (3) O8—V3—O16—V4 91.79 (11)
O11—V3—O8—V1 −71.58 (10) O15ii—V3—O16—V4 −82.19 (11)
O16—V3—O8—V1 5.75 (8) O11—V3—O16—V4 −176.21 (12)
O16—V1—O8—V2 89.44 (11) O13—V3—O16—V1 −90.50 (12)
O6—V1—O8—V2 6.69 (10) O8—V3—O16—V1 −7.77 (11)
O4—V1—O8—V2 −85.33 (11) O15ii—V3—O16—V1 178.25 (12)
O7—V1—O8—V2 179.27 (12) O11—V3—O16—V1 84.23 (11)
O16—V1—O8—V3 −7.62 (10) C5—N1—C1—C2 −0.2 (6)
O6—V1—O8—V3 −90.37 (11) N1—C1—C2—C3 −1.5 (6)
O4—V1—O8—V3 177.60 (12) C8—N2—C3—C4 −6.6 (6)
O7—V1—O8—V3 82.21 (11) C8—N2—C3—C2 175.7 (4)
O15—P1—O9—V2 106.2 (2) C1—C2—C3—N2 −179.2 (4)
O4—P1—O9—V2 −12.8 (3) C1—C2—C3—C4 3.0 (5)
O14—P1—O9—V2 −134.2 (2) N2—C3—C4—C5 179.5 (4)
O1—V2—O9—P1 −129.9 (2) C2—C3—C4—C5 −2.8 (6)
O13—V2—O9—P1 40.0 (4) C1—N1—C5—C4 0.3 (6)
O8—V2—O9—P1 −27.9 (2) C3—C4—C5—N1 1.2 (6)
O10i—V2—O9—P1 132.7 (2) C10—N3—C6—C7 1.8 (6)
O6—V2—O9—P1 51.9 (2) N3—C6—C7—C8 0.9 (6)
O12—P2—O10—V2iii −14.4 (2) C3—N2—C8—C9 141.3 (4)
O11—P2—O10—V2iii 106.6 (2) C3—N2—C8—C7 −38.6 (6)
O7—P2—O10—V2iii −133.43 (19) C6—C7—C8—C9 −4.0 (5)
O12—P2—O11—V3 −82.1 (2) C6—C7—C8—N2 175.9 (3)
O7—P2—O11—V3 38.1 (3) N2—C8—C9—C10 −175.4 (3)
O10—P2—O11—V3 157.15 (19) C7—C8—C9—C10 4.5 (5)
O3—V3—O11—P2 116.7 (2) C6—N3—C10—C9 −1.3 (5)
O13—V3—O11—P2 −50.7 (4) C8—C9—C10—N3 −1.9 (5)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x+1, y, z; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O10 0.93 (4) 2.14 (4) 2.885 (4) 136 (4)
N1—H1N···O9iii 0.93 (4) 2.45 (4) 3.018 (5) 119 (4)
N2—H2N···O2v 0.862 (19) 2.35 (2) 3.195 (4) 166 (4)
N3—H3N···O8vi 0.90 (5) 2.02 (5) 2.902 (4) 164 (4)

Symmetry codes: (iii) −x+3/2, y−1/2, −z+1/2; (v) −x+2, −y+1, −z; (vi) x+3/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2326).

References

  1. Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. LaDuca, R. L., Rarig, R. S. & Zubieta, J. (2001). Inorg. Chem.40, 607–612. [DOI] [PubMed]
  3. Palmer, D. (2007). CrystalMaker CrystalMaker Software Ltd, Bicester, Oxfordshire, England.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Shi, F.-N., Paz, F. A. A., Rocha, J., Klinowski, Ja. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp.3031–3037.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038348/tk2326sup1.cif

e-64-m1602-sup1.cif (27.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038348/tk2326Isup2.hkl

e-64-m1602-Isup2.hkl (227.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES