Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 29;64(Pt 12):o2497. doi: 10.1107/S1600536808039603

(4-Chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone

Ryosuke Mitsui a, Kosuke Nakaema a, Keiichi Noguchi b, Noriyuki Yonezawa a,*
PMCID: PMC2959982  PMID: 21581458

Abstract

The title compound, C18H13ClO3, has an intra­molecular O—H⋯O=C hydrogen bond between the carbonyl group and the hydr­oxy substituent on the naphthalene ring system. The angle between the C=O bond plane and the naphthalene ring system is relatively small [20.96 (8)°]. The angle between the benzene ring and the carbonyl group is rather large [35.65 (9)°] compared to that in an analogous compound [3.43 (11)°] having a meth­oxy group instead of a hydroxy substituent.

Related literature

For the structures of closely related compounds, see: Nakaema et al. (2007, 2008); Mitsui et al. (2008).graphic file with name e-64-o2497-scheme1.jpg

Experimental

Crystal data

  • C18H13ClO3

  • M r = 312.73

  • Orthorhombic, Inline graphic

  • a = 17.8030 (3) Å

  • b = 8.68121 (10) Å

  • c = 18.8683 (3) Å

  • V = 2916.14 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.41 mm−1

  • T = 123 K

  • 0.60 × 0.15 × 0.05 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.485, T max = 0.886

  • 49864 measured reflections

  • 2669 independent reflections

  • 2347 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.096

  • S = 1.08

  • 2669 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039603/su2069sup1.cif

e-64-o2497-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039603/su2069Isup2.hkl

e-64-o2497-Isup2.hkl (128.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.94 (2) 1.71 (2) 2.5573 (16) 148 (2)

Acknowledgments

This work was financially supported by SEIKI KOGYO CO., Ltd, Tokorozawa, Saitama, Japan.

supplementary crystallographic information

Comment

Recently, we have reported on the crystal structure of 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene, (I) [Mitsui et al., 2008]. As a part of our ongoing studies on the synthesis and crystal structure analyses of aroylated naphthalene derivatives, we prepared and analysed the crystal structure of the title compound, (II). Compound (II) was prepared by regioselective demethylation reaction of compound (I) with aluminium trichloride.

The molecular structure of compound (II) is illustrated in Fig. 1. In analogous aroylated naphthalenes, for example compound (I) shown in Fig. 2, the C═O bond plane is almost perpendicular to the mean plane of the naphthalene ring (Nakaema et al., 2007, 2008; Mitsui et al., 2008). In contrast, the angle between the C═O bond and the naphthalene ring in compound (II) is considerably smaller, i.e. 20.96 (8)°. This is apparently caused by the intramolecular O—H···O═C hydrogen bond, which forms a six-membered ring including the carbonyl group and an edge of the naphthalene ring (Fig. 1 and Table 1).

In compound (I) the C═O bond and the benzene ring are almost coplanar with a dihedral angle of 3.43 (11)°. In compound (II) the mean plane of the benzene ring is twisted away from the C═O bond by 35.65 (9)°. This is presumably caused by the release of the rather large steric repulsion between the benzene ring and the naphthalene ring brought about by the small angle of the C═O bond plane and the naphthalene ring. The dihedral angle between the naphthalene ring (C1—C10) and the benzene ring (C12—C17) is 58.10 (6)°.

In the crystal structure the molecular packing of (II) is mainly stabilized by van der Waals interactions. The naphthalene rings interact with the phenyl rings [C5···C13 = 3.363 (2) Å] and the carbonyl groups [H6···O1 = 2.70 Å] along the a-axis. They also interact with the methyl groups [H3···C18 = 2.79 Å] and aroyl groups [H6···Cl1 = 2.88 Å] along the c-axis (Fig. 3). On the other hand, the naphthalene rings also interact with the methyl groups [C6···H18B = 2.81 Å, C7···H18B = 2.70 Å] and the phenyl rings [C6···H17 = 2.88 Å, C7···H17 = 2.79 Å] along the b-axis. The naphthalene rings are almost perpendicular to the phenyl rings of the adjacent molecules along the b-axis. In addition, the hydroxy groups interact with the phenyl rings [O2···H14 = 2.71 Å] along the b-axis (Fig. 4).

Experimental

To a solution of 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (33 mg, 0.10 mmol) in CH2Cl2 (1.0 ml) was added AlCl3 (67 mg, 0.50 mmol). The reaction mixture was refluxed for 30 min giving a dark red solution, which was then poured into H2O (5 ml) and CHCl3 (3 ml). The aqueous layer was extracted with CHCl3 (3 × 5 ml). The combined organic layers were washed with brine (3 × 10 ml), and dried over MgSO4 overnight. The solvent was removed in vacuo and the crude material was purified by recrystallization from hexane to give compound (II) as yellow platelets (m.p. 391–391.5 K, yield 23 mg, 75%).

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 11.35 (s, 1H), 7.85 (d, 1H), 7.63 (d, 1H), 7.58 (d, 2H), 7.40 (d, 2H), 7.07 (d, 1H), 6.91 (dd, 1H), 6.58 (d, 1H), 3.37 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 199.1, 162.6, 158.2, 138.8, 138.7, 136.5, 133.8, 130.7, 130.2, 128.9, 123.7, 116.4, 115.8, 113.4, 106.5, 54.5; IR (KBr): 3434, 1623, 1583, 1513, 1214, 843.

Anal. Calcd for C18H13ClO3: C 69.13, H 4.19. Found: C 69.11, H 4.09.

Refinement

All the H-atoms could be located in difference Fourier maps. The OH hydrogen atom was freely refined: O2—H2 = 0.94 (2) Å. The C-bound H-atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of compound (II), showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The molecular structure of compound (I) [Mitsui et al., 2008], showing 50% probability displacement ellipsoids.

Fig. 3.

Fig. 3.

A partial crystal packing diagram of compound (II), viewed down the b-axis (the intermolecular C—H···O and C—H···π interactions are shown as dashed lines).

Fig. 4.

Fig. 4.

A partial crystal packing diagram of compound (II), viewed down the c-axis (the intermolecular C—H···O and C—H···π interactions are shown as dashed lines).

Crystal data

C18H13ClO3 Dx = 1.425 Mg m3
Mr = 312.73 Melting point = 391.0–391.5 K
Orthorhombic, Pbca Cu Kα radiation λ = 1.54187 Å
Hall symbol: -P 2ac 2ab Cell parameters from 42602 reflections
a = 17.8030 (3) Å θ = 3.4–68.2º
b = 8.68121 (10) Å µ = 2.41 mm1
c = 18.8683 (3) Å T = 123 K
V = 2916.14 (8) Å3 Plate, yellow
Z = 8 0.60 × 0.15 × 0.05 mm
F000 = 1296

Data collection

Rigaku R-AXIS RAPID diffractometer 2669 independent reflections
Radiation source: rotating anode 2347 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.033
Detector resolution: 10.00 pixels mm-1 θmax = 68.2º
T = 123 K θmin = 4.7º
ω scans h = −21→21
Absorption correction: numerical(NUMABS; Higashi, 1999) k = −10→10
Tmin = 0.485, Tmax = 0.886 l = −22→22
49864 measured reflections

Refinement

Refinement on F2 Hydrogen site location: dfimap
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033   w = 1/[σ2(Fo2) + (0.0544P)2 + 0.6658P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096 (Δ/σ)max = 0.001
S = 1.08 Δρmax = 0.17 e Å3
2669 reflections Δρmin = −0.25 e Å3
205 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00062 (11)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.05110 (2) 0.23154 (6) 0.500766 (19) 0.05295 (17)
O1 0.04658 (5) 0.08073 (14) 0.17181 (6) 0.0439 (3)
O2 0.12423 (7) 0.21814 (15) 0.07692 (6) 0.0485 (3)
H2 0.0840 (13) 0.163 (3) 0.0974 (11) 0.070 (7)*
O3 0.29872 (6) 0.03670 (13) 0.41875 (6) 0.0474 (3)
C1 0.16824 (8) 0.17285 (16) 0.19660 (7) 0.0299 (3)
C2 0.17846 (9) 0.22425 (17) 0.12659 (8) 0.0373 (3)
C3 0.24694 (10) 0.28979 (18) 0.10428 (8) 0.0432 (4)
H3 0.2518 0.3289 0.0575 0.052*
C4 0.30589 (9) 0.29694 (18) 0.14974 (9) 0.0415 (4)
H4 0.3514 0.3439 0.1347 0.050*
C5 0.36473 (8) 0.23357 (18) 0.26380 (10) 0.0419 (4)
H5 0.4104 0.2779 0.2476 0.050*
C6 0.36219 (8) 0.16956 (18) 0.32922 (9) 0.0433 (4)
H6 0.4052 0.1714 0.3590 0.052*
C7 0.29510 (8) 0.10024 (17) 0.35260 (8) 0.0368 (3)
C8 0.23210 (7) 0.09796 (16) 0.31021 (7) 0.0312 (3)
H8 0.1880 0.0473 0.3262 0.037*
C9 0.23251 (7) 0.17038 (15) 0.24311 (7) 0.0293 (3)
C10 0.30113 (7) 0.23607 (16) 0.21894 (9) 0.0341 (3)
C11 0.09175 (7) 0.12732 (16) 0.21759 (8) 0.0325 (3)
C12 0.06218 (7) 0.14707 (16) 0.29105 (8) 0.0304 (3)
C13 0.00695 (8) 0.04620 (17) 0.31572 (8) 0.0354 (3)
H13 −0.0079 −0.0389 0.2873 0.042*
C14 −0.02637 (8) 0.06910 (18) 0.38113 (8) 0.0389 (4)
H14 −0.0630 −0.0011 0.3984 0.047*
C15 −0.00543 (8) 0.19623 (18) 0.42098 (8) 0.0364 (3)
C16 0.04883 (8) 0.29823 (17) 0.39772 (8) 0.0346 (3)
H16 0.0626 0.3846 0.4258 0.041*
C17 0.08296 (8) 0.27253 (16) 0.33264 (8) 0.0320 (3)
H17 0.1208 0.3411 0.3163 0.038*
C18 0.23232 (12) −0.0353 (2) 0.44536 (9) 0.0560 (5)
H18A 0.2422 −0.0770 0.4927 0.067*
H18B 0.2174 −0.1192 0.4135 0.067*
H18C 0.1918 0.0407 0.4481 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0399 (3) 0.0813 (4) 0.0376 (2) −0.0016 (2) 0.00670 (15) 0.00181 (19)
O1 0.0292 (6) 0.0561 (7) 0.0463 (6) −0.0002 (5) −0.0077 (4) −0.0137 (5)
O2 0.0513 (7) 0.0577 (8) 0.0364 (6) 0.0083 (6) −0.0084 (5) −0.0005 (5)
O3 0.0542 (7) 0.0414 (6) 0.0466 (6) 0.0105 (5) −0.0200 (5) −0.0052 (5)
C1 0.0286 (7) 0.0260 (7) 0.0351 (7) 0.0025 (5) −0.0004 (5) −0.0043 (5)
C2 0.0416 (8) 0.0317 (8) 0.0385 (8) 0.0069 (6) −0.0016 (6) −0.0048 (6)
C3 0.0554 (9) 0.0328 (9) 0.0413 (8) 0.0008 (7) 0.0116 (8) 0.0006 (7)
C4 0.0395 (8) 0.0313 (8) 0.0536 (10) −0.0038 (6) 0.0153 (7) −0.0075 (7)
C5 0.0245 (7) 0.0363 (8) 0.0649 (10) −0.0006 (6) 0.0027 (7) −0.0195 (7)
C6 0.0268 (7) 0.0396 (9) 0.0635 (11) 0.0073 (6) −0.0130 (7) −0.0200 (8)
C7 0.0368 (8) 0.0295 (8) 0.0441 (8) 0.0104 (6) −0.0112 (6) −0.0111 (6)
C8 0.0274 (7) 0.0263 (7) 0.0398 (7) 0.0028 (5) −0.0033 (5) −0.0053 (6)
C9 0.0253 (7) 0.0237 (7) 0.0388 (7) 0.0025 (5) 0.0001 (5) −0.0074 (5)
C10 0.0276 (7) 0.0267 (7) 0.0482 (9) 0.0006 (5) 0.0051 (6) −0.0102 (6)
C11 0.0264 (7) 0.0290 (7) 0.0422 (8) 0.0029 (6) −0.0056 (6) −0.0043 (6)
C12 0.0213 (6) 0.0298 (7) 0.0402 (7) 0.0025 (5) −0.0033 (5) −0.0007 (6)
C13 0.0263 (7) 0.0305 (8) 0.0493 (8) 0.0003 (6) −0.0043 (6) −0.0018 (6)
C14 0.0274 (7) 0.0392 (9) 0.0502 (9) −0.0027 (6) −0.0010 (6) 0.0097 (7)
C15 0.0281 (7) 0.0448 (9) 0.0363 (7) 0.0057 (6) 0.0007 (6) 0.0059 (6)
C16 0.0312 (7) 0.0342 (8) 0.0383 (8) 0.0026 (6) −0.0017 (6) −0.0028 (6)
C17 0.0258 (7) 0.0298 (7) 0.0405 (8) 0.0001 (5) −0.0008 (6) 0.0000 (6)
C18 0.0896 (14) 0.0381 (9) 0.0402 (9) −0.0063 (9) −0.0156 (9) 0.0008 (7)

Geometric parameters (Å, °)

Cl1—C15 1.7381 (15) C7—C8 1.3778 (19)
O1—C11 1.2476 (17) C8—C9 1.414 (2)
O2—C2 1.3466 (19) C8—H8 0.9500
O2—H2 0.94 (2) C9—C10 1.4233 (19)
O3—C7 1.3661 (19) C11—C12 1.493 (2)
O3—C18 1.429 (2) C12—C17 1.392 (2)
C1—C2 1.406 (2) C12—C13 1.397 (2)
C1—C9 1.4422 (19) C13—C14 1.384 (2)
C1—C11 1.4722 (19) C13—H13 0.9500
C2—C3 1.410 (2) C14—C15 1.387 (2)
C3—C4 1.357 (2) C14—H14 0.9500
C3—H3 0.9500 C15—C16 1.382 (2)
C4—C10 1.411 (2) C16—C17 1.388 (2)
C4—H4 0.9500 C16—H16 0.9500
C5—C6 1.354 (3) C17—H17 0.9500
C5—C10 1.414 (2) C18—H18A 0.9800
C5—H5 0.9500 C18—H18B 0.9800
C6—C7 1.408 (2) C18—H18C 0.9800
C6—H6 0.9500
C2—O2—H2 106.3 (13) C4—C10—C9 119.88 (14)
C7—O3—C18 117.31 (12) C5—C10—C9 119.30 (15)
C2—C1—C9 118.28 (13) O1—C11—C1 119.80 (13)
C2—C1—C11 117.23 (13) O1—C11—C12 116.93 (12)
C9—C1—C11 124.48 (12) C1—C11—C12 123.04 (12)
O2—C2—C1 123.27 (15) C17—C12—C13 119.32 (13)
O2—C2—C3 115.35 (14) C17—C12—C11 121.30 (13)
C1—C2—C3 121.36 (14) C13—C12—C11 119.07 (13)
C4—C3—C2 119.91 (15) C14—C13—C12 120.60 (14)
C4—C3—H3 120.0 C14—C13—H13 119.7
C2—C3—H3 120.0 C12—C13—H13 119.7
C3—C4—C10 121.42 (14) C13—C14—C15 118.87 (14)
C3—C4—H4 119.3 C13—C14—H14 120.6
C10—C4—H4 119.3 C15—C14—H14 120.6
C6—C5—C10 121.68 (15) C16—C15—C14 121.71 (14)
C6—C5—H5 119.2 C16—C15—Cl1 119.28 (12)
C10—C5—H5 119.2 C14—C15—Cl1 118.97 (12)
C5—C6—C7 119.28 (14) C15—C16—C17 118.95 (14)
C5—C6—H6 120.4 C15—C16—H16 120.5
C7—C6—H6 120.4 C17—C16—H16 120.5
O3—C7—C8 124.26 (14) C16—C17—C12 120.53 (13)
O3—C7—C6 114.75 (13) C16—C17—H17 119.7
C8—C7—C6 120.98 (15) C12—C17—H17 119.7
C7—C8—C9 120.61 (13) O3—C18—H18A 109.5
C7—C8—H8 119.7 O3—C18—H18B 109.5
C9—C8—H8 119.7 H18A—C18—H18B 109.5
C8—C9—C10 118.02 (13) O3—C18—H18C 109.5
C8—C9—C1 123.19 (12) H18A—C18—H18C 109.5
C10—C9—C1 118.68 (13) H18B—C18—H18C 109.5
C4—C10—C5 120.77 (14)
C9—C1—C2—O2 173.72 (13) C6—C5—C10—C9 0.3 (2)
C11—C1—C2—O2 −7.2 (2) C8—C9—C10—C4 174.23 (12)
C9—C1—C2—C3 −7.8 (2) C1—C9—C10—C4 −2.23 (19)
C11—C1—C2—C3 171.28 (13) C8—C9—C10—C5 −3.14 (19)
O2—C2—C3—C4 −177.98 (14) C1—C9—C10—C5 −179.59 (12)
C1—C2—C3—C4 3.4 (2) C2—C1—C11—O1 26.3 (2)
C2—C3—C4—C10 1.8 (2) C9—C1—C11—O1 −154.68 (14)
C10—C5—C6—C7 1.6 (2) C2—C1—C11—C12 −148.00 (14)
C18—O3—C7—C8 −0.5 (2) C9—C1—C11—C12 31.0 (2)
C18—O3—C7—C6 179.99 (13) O1—C11—C12—C17 −139.55 (14)
C5—C6—C7—O3 178.89 (13) C1—C11—C12—C17 34.9 (2)
C5—C6—C7—C8 −0.6 (2) O1—C11—C12—C13 33.95 (19)
O3—C7—C8—C9 178.21 (12) C1—C11—C12—C13 −151.57 (13)
C6—C7—C8—C9 −2.4 (2) C17—C12—C13—C14 −0.7 (2)
C7—C8—C9—C10 4.17 (19) C11—C12—C13—C14 −174.37 (13)
C7—C8—C9—C1 −179.55 (13) C12—C13—C14—C15 1.7 (2)
C2—C1—C9—C8 −169.18 (13) C13—C14—C15—C16 −1.4 (2)
C11—C1—C9—C8 11.8 (2) C13—C14—C15—Cl1 176.26 (11)
C2—C1—C9—C10 7.07 (19) C14—C15—C16—C17 0.2 (2)
C11—C1—C9—C10 −171.92 (13) Cl1—C15—C16—C17 −177.50 (11)
C3—C4—C10—C5 175.05 (14) C15—C16—C17—C12 0.8 (2)
C3—C4—C10—C9 −2.3 (2) C13—C12—C17—C16 −0.5 (2)
C6—C5—C10—C4 −177.05 (14) C11—C12—C17—C16 172.96 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1 0.94 (2) 1.71 (2) 2.5573 (16) 148 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2069).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. [DOI] [PMC free article] [PubMed]
  5. Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.
  6. Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [DOI] [PMC free article] [PubMed]
  7. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039603/su2069sup1.cif

e-64-o2497-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039603/su2069Isup2.hkl

e-64-o2497-Isup2.hkl (128.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES