Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 22;64(Pt 12):i82–i83. doi: 10.1107/S1600536808037884

Na5(NH4)Mn3[B9P6O33(OH)3]·1.5H2O

Zhi-Sheng Lin a,b,c, Ya-Xi Huang b,d, Yurii Prots b, Jing-Tai Zhao a, Rüdiger Kniep b,*
PMCID: PMC2959984  PMID: 21581107

Abstract

The overall hexa­gonal framework of the title compound, penta­sodium ammonium trimanganese(II) borophosphate sesquihydrate, consists of tube-like borophosphate anions, 1{[B3P2O11(OH)]4−}, made up of corner-sharing PO4 and BO4 tetra­hedra and BO2(OH) triangles, forming ten-membered ring windows. The tubes are inter­connected via distorted MnO6 octa­hedra, establishing a three-dimensional open-framework structure with two different types of ring-channels (12- and six-membered) that run along [001]. The 12-membered ring channels are occupied by NH4 + ions and water mol­ecules. The ten-membered ring windows in the walls of the tubes are occupied by Na+ ions. The remaining Na+ ions and the water mol­ecules, one of which is half-occupied, reside within the six-membered ring channels. The structural setup is consolidated by an O—H⋯O hydrogen bond between the OH group and an opposite O atom of the framework. Donor–acceptor distances ranging from 2.80 to 3.35 Å between the ammonium N atom, water O atoms and framework O atoms indicate further hydrogen-bonding inter­actions.

Related literature

Reviews on the preparation, crystal chemistry and applications of borophosphates are given in Kniep et al. (1998) and Ewald et al. (2007). For isostructural compounds, see Yang, Li et al. (2006) for Na2Mn[B3P2O11(OH)]·0.67H2O; Yang, Yu et al. (2006) for Na5(H3O)Mn3[B9P6O33(OH)3]·2H2O; Liu et al. (2006) for Na6Cu3[B9P6O33(OH)3]·2H2O.

Experimental

Crystal data

  • Na5(NH4)Mn3[B9P6O33(OH)3]·1.5(H2O)

  • M r = 2373.94

  • Hexagonal, Inline graphic

  • a = 11.9331 (2) Å

  • c = 12.1290 (4) Å

  • V = 1495.76 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 295 K

  • 0.08 × 0.04 × 0.04 mm

Data collection

  • Rigaku Mercury AFC7 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.779, T max = 0.931

  • 12243 measured reflections

  • 2891 independent reflections

  • 2784 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.099

  • S = 1.12

  • 2891 reflections

  • 191 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.81 e Å−3

  • Absolute structure: Flack (1983), 1374 Friedel pairs

  • Flack parameter: 0.43 (3)

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, ZSL_079. DOI: 10.1107/S1600536808037884/wm2204sup1.cif

e-64-00i82-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037884/wm2204Isup2.hkl

e-64-00i82-Isup2.hkl (586.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H1⋯O4i 0.86 (7) 2.11 (7) 2.959 (3) 167 (3)
O13⋯O10ii 2.8035 (11)
O13⋯Niii 3.077 (16)
O14⋯O8iv 3.284 (5)
O14⋯O6iv 3.333 (3)
N⋯O13v 2.988 (16)
N⋯O3vi 2.991 (3)
N⋯O7v 3.047 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

This project was supported by the doctoral joint project between the Chinese Academy of Sciences and the Max-Planck Society, the State ‘973’ project (grant No. 2007CB936704) and the Major Basic Research Programs of Shanghai (grant No. 07DJ14001).

supplementary crystallographic information

Comment

In the past several years, borophosphates have attracted extensive attention due to their rich structural chemistry and potential applications as catalysts (Kniep et al., 1998; Ewald et al., 2007). Although a large variety of borophosphate anions has been reported, tube-like borophosphate anions are particularly rare (Liu et al., 2006; Yang et al., 2006a; Yang et al., 2006b). Up to now, only two manganese compounds containing borophosphate tubes, viz. Na2Mn[B3P2O11(OH)].0.67H2O (Yang et al., 2006a) and Na5(H3O)Mn3[B9P6O33(OH)3].2H2O (Yang et al., 2006b) are listed in the literature. Here, we report on an ammonium substituted sodium manganese borophosphate, Na5(NH4)Mn3[B9P6O33(OH)3].1.5H2O.

The crystal structure of the title compound comprises tube-like borophosphate anions, 1{[B3P2O11(OH)]4-}, which are built from 12-membered rings of alternating BO4 and PO4 tetrahedra, further interlinked by sharing common O-corners of neighbouring rings, and loop-branched by BO2(OH) triangles resulting in 10-membered ring windows on the walls of the tubes (Fig. 1). The manganese atoms are in a distorted octahedral coordination, surrounded by four oxygen atoms from phosphate tetrahedra (O1, O2, O5, O6) and two oxygen atoms from borate tetrahedra (O10, O11). The Mn-coordination octahedra interconnect the neighboring borophosphate tubes to form a three-dimensional framework with two different types of channels (Fig. 2), namely 6- and 12-membered ring channels. The 12-membered ring channels are occupied by NH4+ ions and water molecules; the 10-membered ring windows in the walls of the tubes are occupied by Na+ ions. The remaining Na+ ions and water molecules reside in the 6-membered ring channels. The structural setup is consolidated by an O—H···O hydrogen bond between the OH group and an opposite O atom of the framework. Donor-acceptor distances ranging from 2.8 to 3.35 Å between the ammonium N atom, water O atoms and framework O atoms indicate further hydrogen bonding interactions, but the corresponding H atoms were not located.

Experimental

Transparent, colourless single crystals of the title compound were synthesized hydrothermally from a mixture of H3BO3 (32.2 mmol), Mn(CH3COO)2.4H2O (3 mmol), (NH4)2HPO4 (6.4 mmol), NaF (5 mmol), and water (133.4 mmol). The educt mixture was transferred into a Teflon-lined stainless steel autoclave (internal volume 25 ml) and kept at 513 K for five days. The autoclave was cooled down to ambient temperature by removing out of the oven. The reaction products were washed with hot distilled water (333 K) until the boric acid was completely removed. Finally, the solids were dried in air at 333 K. Hexagonal prismatic crystals were selected for single-crystal diffraction. The NH4+ content was determined by elemental analysis and confirmed by IR spectroscopy.

Refinement

The measured crystal was racemically twinned with an approximate twin fraction of 2:3. The hydrogen position bonded to O12 was found in a difference Fourier map and was refined freely. The hydrogen positions of the ammonium N atom and of the uncoordinated water atoms at O13 and O14 were not localized. The occupancy of O13 was refined to 0.50 (2). In the last refinement cycle this value was fixed to 0.50.

Figures

Fig. 1.

Fig. 1.

Borophosphate tubes in the crystal structure of Na5(NH4)Mn3[B9P6O33(OH)3].1.5H2O interconnected by MnO6 coordination octahedra.

Fig. 2.

Fig. 2.

The overall framework of Na5(NH4)Mn3[B9P6O33(OH)3].1.5H2O viewed along [001], showing the resulting channel-system.

Crystal data

Na5(NH4)Mn3[B9P6O33(OH)3]·1.5(H2O) Z = 1
Mr = 2373.94 F000 = 1164
Hexagonal, P63 Dx = 2.635 Mg m3
Hall symbol: P 6c Mo Kα radiation λ = 0.71073 Å
a = 11.9331 (2) Å Cell parameters from 7346 reflections
b = 11.9331 (2) Å θ = 2.0–33.6º
c = 12.1290 (4) Å µ = 1.79 mm1
α = 90º T = 295 K
β = 90º Prism, colourless
γ = 120º 0.08 × 0.04 × 0.04 mm
V = 1495.76 (6) Å3

Data collection

Rigaku Mercury AFC7 CCD diffractometer 2891 independent reflections
Radiation source: fine-focus sealed tube 2784 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.030
T = 295 K θmax = 30.0º
ω–scans θmin = 2.0º
Absorption correction: multi-scan(Blessing, 1995) h = −16→12
Tmin = 0.779, Tmax = 0.931 k = −16→16
12243 measured reflections l = −16→16

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040   w = 1/[σ2(Fo2) + (0.0419P)2 + 2.5644P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099 (Δ/σ)max < 0.001
S = 1.12 Δρmax = 0.66 e Å3
2891 reflections Δρmin = −0.81 e Å3
191 parameters Extinction correction: none
1 restraint Absolute structure: Flack (1983), 1374 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.43 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mn2 0.50444 (6) 0.50073 (7) 0.04544 (11) 0.01330 (12)
P1 0.62139 (9) 0.81051 (9) 0.00965 (7) 0.0111 (2)
P2 0.37924 (9) 0.19394 (10) 0.08857 (7) 0.0120 (2)
B1 0.2928 (4) 0.2502 (4) 0.6961 (4) 0.0118 (7)
B2 0.2992 (4) 0.2504 (5) 0.8974 (4) 0.0151 (8)
B3 0.4938 (3) 0.4004 (3) 0.7921 (5) 0.0159 (6)
O1 0.5750 (3) 0.6785 (3) 0.9591 (3) 0.0169 (6)
O2 0.7011 (3) 0.9084 (3) 0.9177 (2) 0.0162 (6)
O3 0.7199 (3) 0.8385 (3) 0.1043 (2) 0.0150 (6)
O4 0.5126 (3) 0.8296 (3) 0.0515 (3) 0.0177 (5)
O5 0.2925 (3) 0.0953 (3) 0.1789 (2) 0.0152 (5)
O6 0.4181 (3) 0.3245 (3) 0.1360 (3) 0.0179 (6)
O7 0.2859 (3) 0.1639 (3) 0.9886 (3) 0.0182 (6)
O8 0.6857 (3) 0.5090 (3) 0.0545 (3) 0.0175 (6)
O9 0.5731 (3) 0.6364 (3) 0.1961 (3) 0.0147 (5)
O10 0.26579 (18) 0.17981 (18) 0.7974 (3) 0.0132 (3)
O11 0.4355 (3) 0.3637 (3) 0.8933 (3) 0.0157 (6)
O12 0.6273 (2) 0.4785 (2) 0.7907 (3) 0.0235 (5)
H1 0.648 (7) 0.498 (7) 0.723 (6) 0.07 (2)*
Na1 0.71486 (14) 0.73129 (14) 0.8014 (2) 0.0273 (3)
Na2 0.3333 0.6667 0.9533 (3) 0.0251 (6)
N 0.0000 0.0000 0.0452 (12) 0.0243 (10)
Na3 0.6667 0.3333 0.9477 (3) 0.0248 (6)
O13 0.0000 0.0000 0.8007 (19) 0.041 (2)* 0.50
O14 0.3333 0.6667 0.7692 (9) 0.090 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn2 0.0140 (2) 0.01171 (19) 0.0136 (2) 0.00596 (15) −0.00045 (17) 0.00050 (14)
P1 0.0127 (4) 0.0114 (4) 0.0093 (4) 0.0061 (3) 0.0005 (3) 0.0014 (3)
P2 0.0128 (4) 0.0126 (4) 0.0103 (4) 0.0061 (4) −0.0003 (4) 0.0009 (3)
B1 0.0110 (17) 0.0120 (17) 0.0113 (18) 0.0050 (14) 0.0000 (15) 0.0011 (15)
B2 0.018 (2) 0.0153 (18) 0.014 (2) 0.0096 (16) 0.0016 (16) 0.0004 (16)
B3 0.0135 (13) 0.0121 (12) 0.0206 (17) 0.0054 (10) 0.0010 (19) 0.0038 (19)
O1 0.0212 (13) 0.0161 (12) 0.0113 (14) 0.0079 (11) 0.0016 (11) 0.0013 (10)
O2 0.0210 (14) 0.0136 (12) 0.0125 (12) 0.0076 (11) 0.0022 (11) 0.0018 (10)
O3 0.0168 (13) 0.0148 (12) 0.0128 (14) 0.0075 (10) −0.0020 (11) 0.0041 (10)
O4 0.0158 (12) 0.0161 (12) 0.0214 (14) 0.0081 (11) 0.0002 (11) −0.0001 (11)
O5 0.0188 (13) 0.0134 (12) 0.0129 (12) 0.0078 (10) 0.0019 (11) 0.0022 (10)
O6 0.0211 (13) 0.0129 (12) 0.0184 (15) 0.0074 (11) 0.0021 (12) 0.0014 (11)
O7 0.0179 (14) 0.0180 (13) 0.0150 (15) 0.0061 (11) −0.0019 (12) 0.0034 (11)
O8 0.0124 (11) 0.0162 (12) 0.0229 (14) 0.0064 (10) 0.0007 (11) −0.0036 (11)
O9 0.0159 (12) 0.0160 (12) 0.0086 (12) 0.0053 (10) 0.0001 (11) −0.0001 (11)
O10 0.0151 (8) 0.0132 (8) 0.0117 (8) 0.0074 (7) −0.0023 (13) −0.0018 (13)
O11 0.0146 (12) 0.0156 (12) 0.0142 (14) 0.0055 (10) −0.0013 (11) −0.0007 (11)
O12 0.0143 (10) 0.0297 (12) 0.0193 (13) 0.0055 (9) −0.0020 (14) 0.0008 (15)
Na1 0.0289 (7) 0.0381 (7) 0.0212 (7) 0.0215 (6) −0.0001 (10) −0.0012 (11)
Na2 0.0238 (8) 0.0238 (8) 0.0278 (15) 0.0119 (4) 0.000 0.000
N 0.0161 (12) 0.0161 (12) 0.041 (3) 0.0081 (6) 0.000 0.000
Na3 0.0241 (8) 0.0241 (8) 0.0261 (14) 0.0121 (4) 0.000 0.000

Geometric parameters (Å, °)

Mn2—O8 2.118 (3) O5—B1ix 1.475 (5)
Mn2—O1i 2.126 (3) O5—Na1iv 2.584 (3)
Mn2—O6 2.127 (3) O6—Na1iv 2.434 (4)
Mn2—O4ii 2.162 (3) O7—P2vii 1.562 (3)
Mn2—O9 2.303 (3) O8—P2x 1.505 (3)
Mn2—O11i 2.326 (4) O8—Na3i 2.376 (3)
Mn2—Na3i 3.6069 (13) O9—B3iv 1.354 (6)
Mn2—Na2i 3.6582 (12) O9—B1iv 1.493 (5)
P1—O1i 1.513 (3) O10—Na1iii 2.360 (2)
P1—O4 1.514 (3) O11—Mn2vii 2.326 (4)
P1—O2i 1.550 (3) O12—Na1 2.656 (3)
P1—O3 1.555 (3) O12—Na3 2.768 (4)
P1—Na2i 3.0544 (12) O12—H1 0.86 (8)
P1—Na1i 3.094 (3) Na1—O10x 2.360 (2)
P2—O6 1.500 (3) Na1—O6vi 2.434 (4)
P2—O8iii 1.505 (3) Na1—O5vi 2.584 (3)
P2—O5 1.562 (3) Na1—P1vii 3.094 (3)
P2—O7i 1.562 (3) Na1—P2vi 3.118 (3)
P2—Na1iv 3.118 (3) Na1—H1 2.66 (8)
P2—Na3i 3.4270 (19) Na2—O14 2.232 (11)
B1—O10 1.430 (5) Na2—O4xi 2.370 (3)
B1—O5v 1.475 (5) Na2—O4vii 2.370 (3)
B1—O3vi 1.491 (5) Na2—O4xii 2.370 (3)
B1—O9vi 1.493 (5) Na2—O1viii 2.817 (3)
B2—O10 1.416 (6) Na2—O1ii 2.817 (3)
B2—O7 1.466 (6) Na2—P1xi 3.0544 (12)
B2—O2ii 1.494 (5) Na2—P1vii 3.0544 (12)
B2—O11 1.509 (5) Na2—P1xii 3.0544 (12)
B3—O9vi 1.354 (6) Na2—Mn2xi 3.6582 (12)
B3—O11 1.371 (6) Na2—Mn2xii 3.6582 (12)
B3—O12 1.386 (4) Na3—O8xiii 2.376 (3)
O1—P1vii 1.513 (3) Na3—O8xiv 2.376 (3)
O1—Mn2vii 2.126 (3) Na3—O8vii 2.376 (3)
O1—Na1 2.407 (4) Na3—O12iii 2.768 (4)
O1—Na2 2.817 (3) Na3—O12x 2.768 (4)
O2—B2viii 1.494 (5) Na3—P2xiv 3.4270 (19)
O2—P1vii 1.550 (3) Na3—P2xiii 3.4270 (19)
O2—Na1 2.614 (4) Na3—P2vii 3.4270 (19)
O3—B1iv 1.491 (5) Na3—Mn2xiii 3.6069 (13)
O4—Mn2viii 2.162 (3) Na3—Mn2xiv 3.6069 (13)
O4—Na2i 2.370 (3) Na3—Mn2vii 3.6069 (13)
O8—Mn2—O1i 95.34 (12) B3iv—O9—Mn2 120.6 (2)
O8—Mn2—O6 89.88 (12) B1iv—O9—Mn2 118.7 (2)
O1i—Mn2—O6 174.49 (15) B2—O10—B1 118.2 (2)
O8—Mn2—O4ii 174.93 (18) B2—O10—Na1iii 115.7 (3)
O1i—Mn2—O4ii 88.22 (11) B1—O10—Na1iii 119.3 (3)
O6—Mn2—O4ii 86.46 (12) B3—O11—B2 117.6 (3)
O8—Mn2—O9 86.00 (12) B3—O11—Mn2vii 122.7 (2)
O1i—Mn2—O9 82.24 (11) B2—O11—Mn2vii 116.6 (3)
O6—Mn2—O9 96.39 (14) B3—O12—Na1 115.5 (2)
O4ii—Mn2—O9 90.91 (12) B3—O12—Na3 94.0 (3)
O8—Mn2—O11i 93.89 (12) Na1—O12—Na3 125.72 (15)
O1i—Mn2—O11i 97.79 (14) B3—O12—H1 106 (5)
O6—Mn2—O11i 83.59 (12) Na1—O12—H1 81 (5)
O4ii—Mn2—O11i 89.20 (12) Na3—O12—H1 135 (5)
O9—Mn2—O11i 179.89 (14) O10x—Na1—O1 125.56 (16)
O1i—P1—O4 113.43 (17) O10x—Na1—O6vi 120.09 (16)
O1i—P1—O2i 105.09 (17) O1—Na1—O6vi 108.15 (9)
O4—P1—O2i 112.12 (18) O10x—Na1—O5vi 114.43 (12)
O1i—P1—O3 111.51 (18) O1—Na1—O5vi 111.70 (11)
O4—P1—O3 109.4 (2) O6vi—Na1—O5vi 57.80 (11)
O2i—P1—O3 104.87 (18) O10x—Na1—O2 117.98 (12)
O6—P2—O8iii 114.34 (17) O1—Na1—O2 57.76 (11)
O6—P2—O5 104.92 (18) O6vi—Na1—O2 111.69 (11)
O8iii—P2—O5 112.87 (17) O5vi—Na1—O2 67.76 (7)
O6—P2—O7i 110.57 (19) O10x—Na1—O12 80.64 (8)
O8iii—P2—O7i 109.5 (2) O1—Na1—O12 85.06 (12)
O5—P2—O7i 104.11 (17) O6vi—Na1—O12 79.46 (12)
O10—B1—O5v 109.7 (3) O5vi—Na1—O12 136.89 (14)
O10—B1—O3vi 108.1 (3) O2—Na1—O12 142.78 (14)
O5v—B1—O3vi 108.4 (3) O14—Na2—O4xi 120.17 (10)
O10—B1—O9vi 110.9 (3) O14—Na2—O4vii 120.17 (10)
O5v—B1—O9vi 110.6 (3) O4xi—Na2—O4vii 96.95 (13)
O3vi—B1—O9vi 109.0 (3) O14—Na2—O4xii 120.17 (10)
O10—B2—O7 109.1 (4) O4xi—Na2—O4xii 96.95 (13)
O10—B2—O2ii 109.2 (3) O4vii—Na2—O4xii 96.95 (13)
O7—B2—O2ii 107.9 (3) O14—Na2—O1viii 91.45 (9)
O10—B2—O11 111.2 (3) O4xi—Na2—O1viii 57.64 (10)
O7—B2—O11 110.1 (4) O4vii—Na2—O1viii 69.66 (9)
O2ii—B2—O11 109.2 (4) O4xii—Na2—O1viii 147.64 (16)
O9vi—B3—O11 123.0 (3) O14—Na2—O1ii 91.45 (9)
O9vi—B3—O12 120.0 (5) O4xi—Na2—O1ii 69.66 (10)
O11—B3—O12 117.0 (5) O4vii—Na2—O1ii 147.64 (16)
P1vii—O1—Mn2vii 126.55 (19) O4xii—Na2—O1ii 57.64 (10)
P1vii—O1—Na1 101.82 (16) O1viii—Na2—O1ii 119.937 (9)
Mn2vii—O1—Na1 121.96 (15) O14—Na2—O1 91.45 (9)
P1vii—O1—Na2 83.98 (13) O4xi—Na2—O1 147.64 (16)
Mn2vii—O1—Na2 94.45 (11) O4vii—Na2—O1 57.64 (10)
Na1—O1—Na2 123.48 (15) O4xii—Na2—O1 69.66 (9)
B2viii—O2—P1vii 135.3 (3) O1viii—Na2—O1 119.937 (9)
B2viii—O2—Na1 132.2 (3) O1ii—Na2—O1 119.937 (8)
P1vii—O2—Na1 92.40 (14) O8xiii—Na3—O8xiv 93.15 (13)
B1iv—O3—P1 127.0 (3) O8xiii—Na3—O8vii 93.15 (13)
P1—O4—Mn2viii 127.87 (17) O8xiv—Na3—O8vii 93.15 (13)
P1—O4—Na2i 101.43 (16) O8xiii—Na3—O12iii 120.52 (9)
Mn2viii—O4—Na2i 107.56 (13) O8xiv—Na3—O12iii 78.10 (11)
B1ix—O5—P2 131.9 (3) O8vii—Na3—O12iii 145.34 (9)
B1ix—O5—Na1iv 133.0 (2) O8xiii—Na3—O12x 78.10 (10)
P2—O5—Na1iv 94.29 (14) O8xiv—Na3—O12x 145.34 (9)
P2—O6—Mn2 125.0 (2) O8vii—Na3—O12x 120.52 (9)
P2—O6—Na1iv 102.20 (17) O12iii—Na3—O12x 77.89 (13)
Mn2—O6—Na1iv 128.53 (15) O8xiii—Na3—O12 145.34 (9)
B2—O7—P2vii 127.6 (3) O8xiv—Na3—O12 120.52 (9)
P2x—O8—Mn2 128.59 (17) O8vii—Na3—O12 78.10 (10)
P2x—O8—Na3i 122.40 (16) O12iii—Na3—O12 77.89 (13)
Mn2—O8—Na3i 106.59 (13) O12x—Na3—O12 77.89 (13)
B3iv—O9—B1iv 119.0 (3)

Symmetry codes: (i) x, y, z−1; (ii) −x+y, −x+1, z; (iii) −y+1, xy, z; (iv) −x+1, −y+1, z−1/2; (v) xy, x, z+1/2; (vi) −x+1, −y+1, z+1/2; (vii) x, y, z+1; (viii) −y+1, xy+1, z; (ix) y, −x+y, z−1/2; (x) −x+y+1, −x+1, z; (xi) −y+1, xy+1, z+1; (xii) −x+y, −x+1, z+1; (xiii) −x+y+1, −x+1, z+1; (xiv) −y+1, xy, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O12—H1···O4xv 0.86 (7) 2.11 (7) 2.959 (3) 167 (3)
O13—···.O10xvi . . 2.8035 (11) .
O13—···.Nxvii . . 3.077 (16) .
O14—···.O8v . . 3.284 (5) .
O14—···.O6v . . 3.333 (3) .
N—···.O13i . . 2.988 (16) .
N—···.O3xviii . . 2.991 (3) .
N—···.O7i . . 3.047 (3) .

Symmetry codes: (xv) xy+1, x, z+1/2; (xvi) −x+y, −x, z; (xvii) −x, −y, z+1/2; (v) xy, x, z+1/2; (i) x, y, z−1; (xviii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2204).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Brandenburg, K. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem.633, 1517–1540.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Kniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater.10, 2930–2934.
  6. Liu, W., Huang, Y.-X., Cardoso, R., Schnelle, W. & Kniep, R. (2006). Z. Anorg. Allg. Chem.632, 2413.
  7. Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Yang, T., Li, G., Ju, J., Liao, F., Xiong, M. & Lin, J. (2006). J. Solid State Chem.179, 2534–2540.
  10. Yang, M., Yu, J., Di, J., Li, J., Chen, P., Fang, Q., Chen, Y. & Xu, R. (2006). Inorg. Chem.45, 3588–3593. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, ZSL_079. DOI: 10.1107/S1600536808037884/wm2204sup1.cif

e-64-00i82-sup1.cif (21.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037884/wm2204Isup2.hkl

e-64-00i82-Isup2.hkl (586.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES