Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 22;64(Pt 12):m1586. doi: 10.1107/S1600536808038154

Tris(2,2′-bipyridine-κ2 N:N′)cobalt(III) trichloride tetra­hydrate

Wen Liu a, Wei Xu a,*, Jian-Li Lin a, Hong-Zhen Xie a
PMCID: PMC2959986  PMID: 21581186

Abstract

The title compound, [Co(C10H8N2)3]Cl3·4H2O, contains discrete [Co(bpy)3]3+ cations (bpy is 2,2′-bipyridine), Cl anions and water mol­ecules. The [Co(bpy)3]3+ complex cation exhibits C 2 symmetry with the twofold axis through the central Co atom and bis­ecting one bpy ligand and one of the Cl anions. The four solvent water mol­ecules and the remaining two Cl anions lie on a mirror plane. Hydrogen-bond inter­actions define a two-dimensional layer structure parallel to (100), which consists of seven-membered [Cl2(H2O)5], eight-membered [Cl4(H2O)4] and ten-membered [Cl2(H2O)8] rings.

Related literature

For general background, see: Liu et al. (1996); Nauta & Miller (2000); Ludwig (2001); Saha & Bernal (2005); Reger et al. (2006); Li et al. (2007); Mir & Vittal (2007). For related structures, see: Hernández-Molina et al. (1998).graphic file with name e-64-m1586-scheme1.jpg

Experimental

Crystal data

  • [Co(C10H8N2)3]Cl3·4H2O

  • M r = 705.90

  • Orthorhombic, Inline graphic

  • a = 20.171 (4) Å

  • b = 23.170 (5) Å

  • c = 13.316 (3) Å

  • V = 6223 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 295 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996) T min = 0.905, T max = 0.929

  • 3430 measured reflections

  • 2824 independent reflections

  • 1980 reflections with I > 2σ(I)

  • R int = 0.049

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.162

  • S = 1.03

  • 2824 reflections

  • 225 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038154/bg2219sup1.cif

e-64-m1586-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038154/bg2219Isup2.hkl

e-64-m1586-Isup2.hkl (138.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W2⋯O2 0.85 (4) 2.04 (5) 2.885 (9) 176 (9)
O1—H1W1⋯Cl1 0.83 (4) 2.30 (4) 3.127 (7) 180 (9)
O2—H2W1⋯Cl1i 0.84 (4) 2.48 (4) 3.317 (7) 175 (6)
O2—H2W2⋯Cl2 0.84 (3) 2.33 (3) 3.165 (5) 173 (7)
O3—H3W1⋯Cl1ii 0.85 (6) 2.33 (6) 3.161 (5) 166 (6)
O3—H3W2⋯Cl2iii 0.84 (4) 2.27 (5) 3.095 (5) 170 (7)
O4—H4W1⋯O1 0.79 (5) 2.06 (5) 2.841 (8) 169 (5)
O4—H4W2⋯O3 0.81 (3) 2.00 (3) 2.795 (8) 168 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University, the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061), and the Newer Training Program Foundation for Talent of the Science and Technology Department of Zhejiang Province (grant No. 2007R40G2070020).

supplementary crystallographic information

Comment

Due to the central role that water plays in biological and chemical processes, research on its structure, properties and functions has attracted the scientist's attention (Liu, et al., 1996; Nauta & Miller, 2000; Ludwig, 2001; Mir & Vittal, 2007). However, there are only a few reports focused on the experimental identificaion and analysis of hydrogen-bond networks between water of crystallization and chloride counterions in crystalline materials. As a few examples we can mention [cis-α-(trine)CoCl2]Cl.3H2O (Saha & Bernal, 2005) where a two-dimensional layered structure containing [Cl2(H2O)4] six-membered rings build up. In the crystal structure of {p-C6H4[CH2OCH2C(pz)3]2[Ru(p-cymene)]2}Cl4.14H2O two-dimensional layers built from four-membered [Cl(H2O)3], five-membered [Cl(H2O)4], six-membered [Cl(H2O)5] and seven-membered [Cl3(H2O)4] rings formed through hydrogen bond self-assembly (Reger, et al., 2006). A hybrid water-chloride structure of 14 water molecules and 4 Cl- anions connected into layers is formed in the crystal structure of an europium complex [Eu3(BDC)3(phen)3Cl(H2O)6]Cl2.4H2O (Li, et al., 2007). The references suggest that a great variety of mixed water-chloride supramolecular self-assemblies is possible. Herein, we describe a structure of a cobalt(III) complex containing discrete tris(2,2'-bipyridine)cobalt(III) cations and infinite layers of water and chloride anions, and where seven-membered (Cl2(H2O)5), eight-membered (Cl4(H2O)4) and ten-membered (Cl2(H2O)8) rings can be found.

The crystal structure of the title compound is composed of [Co(bpy)3]3+ complex cations, Cl- anions and crystal H2O molecules (Fig. 1). Within the trivalent complex cations, the Co atoms are each surrounded by six N atoms of three chelating bpy ligands to complete a distorted octahedral coordination with d(Co—N) = 1,928 (3)–1.939 (3) Å, the cis and trans N—Co—N bond angles in the range 83.50 (19)–93.82 (14) and 175.23 (14)–176.38 (19)°, respectively. Such distances are similar to those found in other related structures (Hernández-Molina, et al., 1998). The complex cation exhibits C2 symmetry with the twofold axis through the central Co atom and bisecting the C5—C5i bond of one bpy ligand (i = -x + 1/2, y, -z + 3/2), as well as one of the Cl- anions (Cl3). Through a C—H···Cl weak hydrogen bond the [Co(phen)3]3+ moieties are interlink into one-dimensional chains along the [001] direction (Fig.2). There are no π-π stacking interactions in the chains.

The most starling feature of the solid-state structure of 1 is the hydrogen-bonding interactions of the four water molecules and the remaining two Cl- anions (Cl1 and Cl2), which lay on a mirror plane. The four crystal water molecules (O1, O2, O3,and O4) locate at the crystallographic 8f position and through intermolecular hydrogen bonds determine a linear water tetramer (H2O)4. The O···O distances span the range 2.795 (8)–2.885 (9) Å. Interestingly, such tetrameric water groups are further hydrogen-bond-interacting with the Cl- anions to complete a two-dimensional water-chloride framework parallel to (100). As Shown in Fig. 3, the two-dimensional layers are composed by seven- (five water molecules and two Cl- anions), eight- (four water molecules and four Cl- anions) and ten-membered (eight water molecules and two Cl- anions) rings through O—H···O and O—H···Cl interactions (Table 1). The O···Cl distances range from 3.095 (5) to 3.317 (7) Å and O—H···Cl angles span the range 166 (6) to 180 (9)°. The water-chloride layer can be viewed as building blocks, which are pillared by [Co(bpy)3]3+ spacers to produce an infinite three-dimensional supramolecular edifice. In this sense, the layer is different from already reported water clusters and other morphologies, which are situated within the host cavities or channels generated by organic and inorganic moieties (Fig. 4).

Experimental

Addition of 10 ml CH3OH containing 0.162 g (1.04 mmol) 2,2'-bipyridine (bpy) to an aqueous solution of 0.238 g (1.00 mmol) CoCl2.6H2O in 10 ml H2O gave a yellow solution, then dropwise added 3 ml 30% H2O2 solution to the mixture, stirred for ca half an hour. The resulting light-yellow solution (PH = 6.48) was allowed to stand at room temperature. After 8 days, a small amount of yellow block crystals had grown.

Refinement

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 40% probability level. [Symmetry code: (i) -x + 1/2, y, -z + 3/2]

Fig. 2.

Fig. 2.

The one-dimensional chain of the [Co(phen)3]3+ cations along with [001] direction.

Fig. 3.

Fig. 3.

The two-dimensional water-chloride framework parallel to (100). [Symmetry codes: (ii) -x, -y + 3/2, z - 1/2; (iii) -x, -y + 3/2, z + 1/2; (iv): x, -y + 1, -z + 1]

Fig. 4.

Fig. 4.

Packing diagram of the supramolecular edifice viewed along the crystallographic c axis.

Crystal data

[Co(C10H8N2)3]Cl3·4H2O F000 = 2912
Mr = 705.90 Dx = 1.507 Mg m3
Orthorhombic, Cmca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2bc 2 Cell parameters from 25 reflections
a = 20.171 (4) Å θ = 5.0–12.5º
b = 23.170 (5) Å µ = 0.86 mm1
c = 13.316 (3) Å T = 295 (2) K
V = 6223 (2) Å3 Block, yellow
Z = 8 0.12 × 0.10 × 0.08 mm

Data collection

Bruker P4 diffractometer Rint = 0.049
Radiation source: fine-focus sealed tube θmax = 25.0º
Monochromator: graphite θmin = 1.8º
T = 295(2) K h = −23→1
θ/2θ scans k = −1→27
Absorption correction: ψ scan(XSCANS; Siemens, 1996) l = −1→15
Tmin = 0.905, Tmax = 0.929 3 standard reflections
3430 measured reflections every 97 reflections
2824 independent reflections intensity decay: none
1980 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162   w = 1/[σ2(Fo2) + (0.1023P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2824 reflections Δρmax = 1.01 e Å3
225 parameters Δρmin = −0.66 e Å3
12 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.2500 0.40805 (3) 0.7500 0.0230 (2)
Cl1 0.0000 0.80958 (8) 0.57842 (16) 0.0580 (5)
Cl2 0.0000 0.52160 (8) 0.83302 (13) 0.0487 (5)
Cl3 0.2500 0.71245 (7) 0.7500 0.0508 (5)
N1 0.19627 (15) 0.47048 (14) 0.6973 (2) 0.0254 (7)
N2 0.19583 (15) 0.34934 (14) 0.6871 (3) 0.0278 (8)
N3 0.29820 (15) 0.40542 (14) 0.6251 (2) 0.0267 (8)
C1 0.13885 (18) 0.46643 (19) 0.6478 (3) 0.0328 (10)
H1A 0.1227 0.4300 0.6316 0.039*
C2 0.1025 (2) 0.51433 (19) 0.6198 (3) 0.0367 (11)
H2A 0.0628 0.5100 0.5852 0.044*
C3 0.1256 (2) 0.5687 (2) 0.6436 (3) 0.0382 (11)
H3A 0.1016 0.6014 0.6257 0.046*
C4 0.1849 (2) 0.57363 (18) 0.6944 (3) 0.0370 (11)
H4A 0.2019 0.6098 0.7102 0.044*
C5 0.21896 (19) 0.52388 (17) 0.7216 (3) 0.0267 (9)
C6 0.1430 (2) 0.32196 (18) 0.7267 (4) 0.0368 (11)
H6A 0.1316 0.3286 0.7934 0.044*
C7 0.1052 (2) 0.28387 (19) 0.6695 (4) 0.0453 (12)
H7A 0.0695 0.2646 0.6983 0.054*
C8 0.1204 (2) 0.27501 (19) 0.5722 (4) 0.0486 (13)
H8A 0.0939 0.2512 0.5330 0.058*
C9 0.1750 (2) 0.30103 (18) 0.5309 (4) 0.0407 (11)
H9A 0.1867 0.2940 0.4645 0.049*
C10 0.2128 (2) 0.33844 (17) 0.5904 (3) 0.0300 (9)
C11 0.27255 (19) 0.36858 (17) 0.5557 (3) 0.0284 (9)
C12 0.3015 (2) 0.3604 (2) 0.4646 (3) 0.0410 (11)
H12A 0.2824 0.3358 0.4176 0.049*
C13 0.3601 (2) 0.3892 (2) 0.4427 (4) 0.0452 (12)
H13A 0.3813 0.3835 0.3815 0.054*
C14 0.3861 (2) 0.4261 (2) 0.5121 (3) 0.0397 (11)
H14A 0.4251 0.4459 0.4984 0.048*
C15 0.3545 (2) 0.43360 (18) 0.6017 (3) 0.0329 (10)
H15A 0.3725 0.4591 0.6482 0.039*
O1 0.0000 0.6769 (3) 0.6215 (5) 0.092 (2)
H1W1 0.0000 0.7122 (17) 0.610 (8) 0.138*
H1W2 0.0000 0.673 (5) 0.685 (3) 0.138*
O2 0.0000 0.6582 (2) 0.8357 (5) 0.0643 (15)
H2W1 0.0000 0.664 (3) 0.898 (3) 0.096*
H2W2 0.0000 0.6220 (14) 0.829 (6) 0.096*
O3 0.0000 0.6013 (2) 0.2581 (4) 0.0701 (17)
H3W1 0.0000 0.620 (3) 0.203 (4) 0.105*
H3W2 0.0000 0.5664 (14) 0.241 (6) 0.105*
O4 0.0000 0.5921 (2) 0.4674 (4) 0.0566 (13)
H4W1 0.0000 0.619 (2) 0.504 (4) 0.085*
H4W2 0.0000 0.600 (3) 0.408 (2) 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0243 (4) 0.0150 (4) 0.0297 (4) 0.000 −0.0016 (3) 0.000
Cl1 0.0727 (12) 0.0362 (10) 0.0651 (12) 0.000 0.000 −0.0075 (9)
Cl2 0.0512 (9) 0.0463 (10) 0.0486 (10) 0.000 0.000 −0.0087 (8)
Cl3 0.0791 (12) 0.0197 (8) 0.0537 (10) 0.000 0.0244 (9) 0.000
N1 0.0284 (17) 0.0208 (17) 0.0269 (17) −0.0004 (14) 0.0009 (14) 0.0003 (15)
N2 0.0262 (17) 0.0184 (17) 0.039 (2) −0.0013 (14) −0.0021 (14) 0.0005 (15)
N3 0.0277 (17) 0.0194 (16) 0.0331 (18) 0.0035 (14) 0.0010 (14) 0.0009 (15)
C1 0.026 (2) 0.030 (2) 0.042 (2) 0.0006 (18) −0.0036 (19) −0.002 (2)
C2 0.031 (2) 0.043 (3) 0.037 (2) 0.0062 (19) −0.0053 (19) 0.007 (2)
C3 0.037 (2) 0.032 (2) 0.046 (3) 0.0104 (19) −0.002 (2) 0.007 (2)
C4 0.043 (3) 0.016 (2) 0.052 (3) 0.0019 (18) 0.000 (2) 0.003 (2)
C5 0.0297 (19) 0.022 (2) 0.028 (2) −0.0002 (18) 0.0029 (17) 0.0022 (17)
C6 0.034 (2) 0.022 (2) 0.054 (3) −0.0020 (19) −0.001 (2) 0.001 (2)
C7 0.034 (2) 0.026 (2) 0.076 (4) −0.0095 (19) −0.005 (2) −0.002 (2)
C8 0.045 (3) 0.029 (3) 0.072 (4) −0.005 (2) −0.018 (3) −0.015 (3)
C9 0.044 (3) 0.028 (2) 0.051 (3) 0.000 (2) −0.008 (2) −0.012 (2)
C10 0.031 (2) 0.022 (2) 0.038 (2) 0.0031 (17) −0.0054 (19) −0.0041 (19)
C11 0.034 (2) 0.021 (2) 0.030 (2) 0.0027 (17) −0.0067 (18) −0.0040 (18)
C12 0.049 (3) 0.037 (2) 0.037 (3) 0.007 (2) −0.005 (2) −0.006 (2)
C13 0.044 (3) 0.056 (3) 0.036 (3) 0.014 (2) 0.008 (2) 0.003 (2)
C14 0.038 (2) 0.037 (2) 0.044 (3) 0.000 (2) 0.006 (2) 0.007 (2)
C15 0.033 (2) 0.027 (2) 0.040 (3) −0.0023 (18) 0.0043 (19) 0.000 (2)
O1 0.168 (7) 0.043 (3) 0.064 (4) 0.000 0.000 0.000 (3)
O2 0.069 (3) 0.053 (3) 0.071 (4) 0.000 0.000 0.016 (3)
O3 0.112 (5) 0.038 (3) 0.060 (4) 0.000 0.000 0.004 (3)
O4 0.078 (3) 0.043 (3) 0.048 (3) 0.000 0.000 −0.006 (3)

Geometric parameters (Å, °)

Co1—N3i 1.928 (3) C7—C8 1.347 (7)
Co1—N3 1.928 (3) C7—H7A 0.9300
Co1—N2i 1.935 (3) C8—C9 1.370 (7)
Co1—N2 1.935 (3) C8—H8A 0.9300
Co1—N1 1.939 (3) C9—C10 1.401 (6)
Co1—N1i 1.939 (3) C9—H9A 0.9300
N1—C1 1.336 (5) C10—C11 1.467 (6)
N1—C5 1.358 (5) C11—C12 1.360 (6)
N2—C6 1.348 (5) C12—C13 1.388 (7)
N2—C10 1.355 (5) C12—H12A 0.9300
N3—C15 1.347 (5) C13—C14 1.363 (7)
N3—C11 1.360 (5) C13—H13A 0.9300
C1—C2 1.381 (6) C14—C15 1.363 (6)
C1—H1A 0.9300 C14—H14A 0.9300
C2—C3 1.379 (6) C15—H15A 0.9300
C2—H2A 0.9300 O1—H1W1 0.83 (3)
C3—C4 1.379 (6) O1—H1W2 0.85 (3)
C3—H3A 0.9300 O2—H2W1 0.85 (3)
C4—C5 1.390 (6) O2—H2W2 0.84 (3)
C4—H4A 0.9300 O3—H3W1 0.85 (3)
C5—C5i 1.462 (8) O3—H3W2 0.84 (3)
C6—C7 1.394 (6) O4—H4W1 0.80 (3)
C6—H6A 0.9300 O4—H4W2 0.81 (3)
N3i—Co1—N3 176.38 (19) N1—C5—C5i 114.3 (2)
N3i—Co1—N2i 83.63 (14) C4—C5—C5i 123.9 (3)
N3—Co1—N2i 93.82 (14) N2—C6—C7 121.1 (4)
N3i—Co1—N2 93.82 (14) N2—C6—H6A 119.4
N3—Co1—N2 83.63 (14) C7—C6—H6A 119.4
N2i—Co1—N2 90.69 (19) C8—C7—C6 119.8 (4)
N3i—Co1—N1 93.09 (13) C8—C7—H7A 120.1
N3—Co1—N1 89.61 (13) C6—C7—H7A 120.1
N2i—Co1—N1 175.23 (14) C7—C8—C9 120.2 (4)
N2—Co1—N1 92.99 (13) C7—C8—H8A 119.9
N3i—Co1—N1i 89.61 (13) C9—C8—H8A 119.9
N3—Co1—N1i 93.09 (13) C8—C9—C10 118.9 (5)
N2i—Co1—N1i 92.99 (13) C8—C9—H9A 120.6
N2—Co1—N1i 175.23 (14) C10—C9—H9A 120.6
N1—Co1—N1i 83.50 (19) N2—C10—C9 121.0 (4)
C1—N1—C5 118.3 (3) N2—C10—C11 114.7 (3)
C1—N1—Co1 127.6 (3) C9—C10—C11 124.3 (4)
C5—N1—Co1 113.9 (2) N3—C11—C12 122.0 (4)
C6—N2—C10 119.0 (4) N3—C11—C10 113.4 (3)
C6—N2—Co1 127.4 (3) C12—C11—C10 124.6 (4)
C10—N2—Co1 113.5 (3) C11—C12—C13 119.1 (4)
C15—N3—C11 117.9 (4) C11—C12—H12A 120.5
C15—N3—Co1 127.6 (3) C13—C12—H12A 120.5
C11—N3—Co1 114.5 (3) C14—C13—C12 119.1 (4)
N1—C1—C2 122.5 (4) C14—C13—H13A 120.5
N1—C1—H1A 118.8 C12—C13—H13A 120.5
C2—C1—H1A 118.8 C13—C14—C15 119.6 (4)
C3—C2—C1 119.5 (4) C13—C14—H14A 120.2
C3—C2—H2A 120.3 C15—C14—H14A 120.2
C1—C2—H2A 120.3 N3—C15—C14 122.3 (4)
C2—C3—C4 118.8 (4) N3—C15—H15A 118.9
C2—C3—H3A 120.6 C14—C15—H15A 118.9
C4—C3—H3A 120.6 H1W1—O1—H1W2 107 (7)
C3—C4—C5 119.2 (4) H2W1—O2—H2W2 106 (5)
C3—C4—H4A 120.4 H3W1—O3—H3W2 106 (5)
C5—C4—H4A 120.4 H4W1—O4—H4W2 114 (5)
N1—C5—C4 121.8 (4)

Symmetry codes: (i) −x+1/2, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1W2···O2 0.85 (4) 2.04 (5) 2.885 (9) 176 (9)
O1—H1W1···Cl1 0.83 (4) 2.30 (4) 3.127 (7) 180 (9)
O2—H2W1···Cl1ii 0.84 (4) 2.48 (4) 3.317 (7) 175 (6)
O2—H2W2···Cl2 0.84 (3) 2.33 (3) 3.165 (5) 173 (7)
O3—H3W1···Cl1iii 0.85 (6) 2.33 (6) 3.161 (5) 166 (6)
O3—H3W2···Cl2iv 0.84 (4) 2.27 (5) 3.095 (5) 170 (7)
O4—H4W1···O1 0.79 (5) 2.06 (5) 2.841 (8) 169 (5)
O4—H4W2···O3 0.81 (3) 2.00 (3) 2.795 (8) 168 (7)
C1—H1A···N2 0.93 2.49 2.993 (5) 114
C4—H4A···Cl3 0.93 2.62 3.552 (4) 179
C6—H6A···N3i 0.93 2.52 3.007 (6) 113
C8—H8A···Cl1iv 0.93 2.79 3.710 (5) 172
C12—H12A···Cl3v 0.93 2.58 3.477 (4) 162
C14—H14A···Cl2v 0.93 2.77 3.526 (4) 139
C15—H15A···N1i 0.93 2.49 2.991 (5) 114

Symmetry codes: (ii) −x, −y+3/2, z+1/2; (iii) −x, −y+3/2, z−1/2; (iv) x, −y+1, −z+1; (i) −x+1/2, y, −z+3/2; (v) −x+1/2, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2219).

References

  1. Hernández-Molina, M., Lloret, F., Ruiz-Pérez, C. & Julve, M. (1998). Inorg. Chem.37, 4131–4135. [DOI] [PubMed]
  2. Li, P., Qiu, Y. C., Liu, J. Q., Ling, Y., Cai, Y. P. & Yue, S. T. (2007). Inorg. Chem. Commun.10, 705–708.
  3. Liu, K., Brown, M. G., Carter, C., Saykally, R. J., Gregory, J. K. & Clary, D. C. (1996). Nature (London), 381, 501–503.
  4. Ludwig, R. (2001). Angew. Chem. Int. Ed.40, 1808–1827.
  5. Mir, M. H. & Vittal, J. J. (2007). Angew. Chem. Int. Ed.46, 5925–5928. [DOI] [PubMed]
  6. Nauta, K. & Miller, R. E. (2000). Science, 287, 293–295. [DOI] [PubMed]
  7. Reger, D. L., Semeniuc, R. F., Pettinari, C., Luna-Giles, F. & Smith, M. D. (2006). Cryst. Growth Des.6, 1068–1070.
  8. Saha, M. K. & Bernal, I. (2005). Inorg. Chem. Commun.8, 871–873.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038154/bg2219sup1.cif

e-64-m1586-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038154/bg2219Isup2.hkl

e-64-m1586-Isup2.hkl (138.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES