Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2306. doi: 10.1107/S1600536808036143

4,4′-Bis[2-(3,4-dibutyl-2-thienylethyn­yl)]biphen­yl

Lei Liu a,*, Na Liu b, Wei Xu c, Dao-Ben Zhu b
PMCID: PMC2959992  PMID: 21581283

Abstract

The mol­ecule of the title compound, C40H46S2, reveals C i symmetry. An inversion centre is located at the mid-point of the C—C bond of the biphenyl unit; the asymmetric unit comprises one-half of the mol­ecule. The conjugated backbone is nearly planar, with a mean deviation of 0.041 Å.

Related literature

For general background, see: Brad Wan et al. (2000); Cornil et al. (2001); Grosshenny et al. (1997); Huang & Tour (1998); Tour (1996). For related structures, see: Baudour (1972); Charbonneau & Delugeard (1977); Domenicano et al. (1975); Robertson (1961). For the synthesis, see: Liu et al. (2005).graphic file with name e-64-o2306-scheme1.jpg

Experimental

Crystal data

  • C40H46S2

  • M r = 590.89

  • Triclinic, Inline graphic

  • a = 9.2040 (18) Å

  • b = 9.3640 (19) Å

  • c = 10.582 (2) Å

  • α = 85.69 (3)°

  • β = 85.18 (3)°

  • γ = 69.41 (3)°

  • V = 849.7 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 (2) K

  • 0.62 × 0.40 × 0.07 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: empirical (using intensity measurements) (ABSCOR; Higashi, 1995) T min = 0.805, T max = 0.992

  • 3595 measured reflections

  • 3595 independent reflections

  • 2287 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.241

  • S = 1.07

  • 3595 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks 070712a, I. DOI: 10.1107/S1600536808036143/kp2189sup1.cif

e-64-o2306-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036143/kp2189Isup2.hkl

e-64-o2306-Isup2.hkl (175.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The present research work was financially supported by the National Natural Science Foundation of China (grant No. 20572113), Hebei Natural Science Foundation, and the Hebei University of Science and Technology Project for Young Scientists Fund.

supplementary crystallographic information

Comment

The synthesis and characterization of nanometer-sized conjugated molecules of precise length and constitution are of widespread interest, which is due to their electroconductive, magnetic, and optical properties (Tour, 1996; Huang & Tour, 1998; Grosshenny et al., 1997; Brad Wan et al., 2000). Generally, crystal structure of a molecule is important for better understanding of its properties. Therefore, structures of oligothiophene single crystals have been reported. The field of molecular organic semiconductors is being revolutionized by the availability of ultrahigh purity single crystals that have allowed the demonstration of phenomena long thought to be restricted to inorganic semiconductors (Cornil et al., 2001).

The molecule of the title compound (Fig. 1) is centrosymmetric. An asymmetric unit comprises a half on the molecule. The inversion centre is located in the middle of C3—C3i bond. Conjugated molecular skeleton is nearly planar; mean deviation from the best least-square plane is 0.041 Å. The endocyclic bond angles on the long molecular axis are less than the normal 120° value (they vary from 116.42–117.52°) whereas that situated out of this long molecular axis are greater than 120° (in the range 120.73–122.43°). This result agrees with those obtained for polyphenyls (Robertson, 1961; Baudour, 1972; Domenicano et al., 1975; Charbonneau & Delugeard, 1977). The two thiophene rings, phenyl rings and C≡C are coplanar. The crystal packing is dominated by van der Waals interactions.

Experimental

The synthesis of 4,4'-bis-[2-(3,4-dibutyl-2-thienylethynyl)]biphenyl was performed as previously described (Liu et al., 2005).

Yellow needles were grown from an ethanol/hexane solution by slow evaporation.

Figures

Fig. 1.

Fig. 1.

View of the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability. To generate the molecule symmetry code -x, -y, -z + 2 is applied.

Fig. 2.

Fig. 2.

View of the packing mode along a axis of (I).

Crystal data

C40H46S2 V = 849.7 (3) Å3
Mr = 590.89 Z = 1
Triclinic, P1 F000 = 318
a = 9.2040 (18) Å Dx = 1.155 Mg m3
b = 9.3640 (19) Å Mo Kα radiation λ = 0.71073 Å
c = 10.582 (2) Å µ = 0.18 mm1
α = 85.69 (3)º T = 293 (2) K
β = 85.18 (3)º Neddle, yellow
γ = 69.41 (3)º 0.62 × 0.40 × 0.07 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer 3595 independent reflections
Radiation source: fine-focus sealed tube 2287 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.0000
Detector resolution: 0.76 pixels mm-1 θmax = 27.5º
T = 293(2) K θmin = 2.3º
Oscillation scans h = 0→11
Absorption correction: empirical (using intensity measurements)(ABSCOR; Higashi, 1995) k = −10→12
Tmin = 0.805, Tmax = 0.992 l = −13→13
3595 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.241   w = 1/[σ2(Fo2) + (0.1672P)2 + 0.1626P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3595 reflections Δρmax = 0.44 e Å3
190 parameters Δρmin = −0.42 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.34733 (8) 0.37884 (8) 0.02833 (7) 0.0512 (3)
C1 −0.2000 (4) 0.5223 (4) 0.3588 (3) 0.0657 (9)
H1A −0.1334 0.5778 0.3558 0.079*
C2 −0.3290 (4) 0.5588 (4) 0.4443 (3) 0.0615 (8)
H2A −0.3467 0.6388 0.4973 0.074*
C3 −0.4314 (3) 0.4808 (3) 0.4534 (2) 0.0393 (5)
C4 −0.4016 (4) 0.3655 (4) 0.3702 (4) 0.0750 (12)
H4A −0.4696 0.3116 0.3721 0.090*
C5 −0.2733 (4) 0.3276 (5) 0.2840 (4) 0.0816 (13)
H5A −0.2573 0.2494 0.2295 0.098*
C6 −0.1694 (3) 0.4041 (3) 0.2779 (2) 0.0439 (6)
C7 −0.0335 (3) 0.3631 (3) 0.1922 (3) 0.0476 (6)
C8 0.0798 (3) 0.3289 (3) 0.1211 (2) 0.0440 (6)
C9 0.2138 (3) 0.2853 (3) 0.0369 (2) 0.0415 (6)
C10 0.2565 (3) 0.1695 (3) −0.0473 (2) 0.0387 (5)
C11 0.3994 (3) 0.1568 (3) −0.1180 (2) 0.0419 (6)
C12 0.4587 (3) 0.2635 (3) −0.0862 (3) 0.0497 (7)
H12 0.5507 0.2720 −0.1235 0.060*
C13 0.1620 (3) 0.0701 (3) −0.0634 (3) 0.0463 (6)
H13A 0.0948 0.0719 0.0126 0.056*
H13B 0.2317 −0.0344 −0.0728 0.056*
C14 0.4717 (3) 0.0371 (3) −0.2152 (3) 0.0515 (7)
H14A 0.4910 −0.0630 −0.1731 0.062*
H14B 0.3969 0.0498 −0.2784 0.062*
C15 0.0618 (3) 0.1215 (3) −0.1791 (3) 0.0503 (6)
H15A 0.1267 0.1352 −0.2527 0.060*
H15B 0.0233 0.0412 −0.1960 0.060*
C16 0.6214 (3) 0.0406 (3) −0.2825 (3) 0.0498 (7)
H16A 0.6965 0.0293 −0.2201 0.060*
H16B 0.6025 0.1390 −0.3274 0.060*
C17 −0.0748 (3) 0.2680 (4) −0.1618 (3) 0.0575 (7)
H17A −0.0376 0.3445 −0.1336 0.069*
H17B −0.1465 0.2501 −0.0953 0.069*
C18 0.6894 (3) −0.0855 (4) −0.3767 (3) 0.0604 (8)
H18A 0.7095 −0.1838 −0.3314 0.073*
H18B 0.6131 −0.0752 −0.4380 0.073*
C19 −0.1626 (4) 0.3311 (4) −0.2807 (3) 0.0680 (9)
H19A −0.2477 0.4233 −0.2623 0.102*
H19B −0.2019 0.2571 −0.3085 0.102*
H19C −0.0936 0.3526 −0.3464 0.102*
C20 0.8373 (5) −0.0823 (6) −0.4465 (4) 0.0866 (13)
H20A 0.8747 −0.1641 −0.5037 0.130*
H20B 0.9140 −0.0944 −0.3866 0.130*
H20C 0.8177 0.0135 −0.4937 0.130*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0432 (4) 0.0556 (4) 0.0568 (5) −0.0203 (3) 0.0164 (3) −0.0206 (3)
C1 0.0576 (17) 0.080 (2) 0.070 (2) −0.0398 (16) 0.0352 (15) −0.0323 (17)
C2 0.0596 (17) 0.0696 (18) 0.0622 (18) −0.0334 (15) 0.0336 (14) −0.0329 (15)
C3 0.0314 (11) 0.0457 (12) 0.0341 (11) −0.0071 (9) 0.0110 (9) −0.0058 (9)
C4 0.0615 (18) 0.088 (2) 0.090 (2) −0.0447 (18) 0.0481 (18) −0.055 (2)
C5 0.068 (2) 0.090 (2) 0.097 (3) −0.0424 (19) 0.054 (2) −0.062 (2)
C6 0.0326 (11) 0.0505 (14) 0.0415 (13) −0.0084 (10) 0.0130 (10) −0.0066 (10)
C7 0.0395 (13) 0.0532 (14) 0.0433 (14) −0.0099 (11) 0.0122 (11) −0.0087 (11)
C8 0.0372 (12) 0.0506 (14) 0.0393 (13) −0.0113 (11) 0.0109 (10) −0.0059 (10)
C9 0.0326 (11) 0.0477 (13) 0.0404 (12) −0.0116 (10) 0.0126 (10) −0.0065 (10)
C10 0.0321 (11) 0.0443 (12) 0.0366 (12) −0.0116 (9) 0.0080 (9) −0.0025 (9)
C11 0.0315 (11) 0.0488 (13) 0.0406 (13) −0.0098 (10) 0.0118 (9) −0.0082 (10)
C12 0.0360 (12) 0.0596 (15) 0.0526 (15) −0.0182 (11) 0.0201 (11) −0.0148 (12)
C13 0.0430 (13) 0.0452 (13) 0.0514 (14) −0.0190 (11) 0.0110 (11) −0.0048 (11)
C14 0.0385 (13) 0.0582 (16) 0.0552 (16) −0.0142 (12) 0.0173 (11) −0.0212 (13)
C15 0.0452 (13) 0.0580 (15) 0.0509 (15) −0.0225 (12) 0.0100 (11) −0.0140 (12)
C16 0.0374 (13) 0.0617 (16) 0.0442 (14) −0.0113 (12) 0.0149 (11) −0.0129 (12)
C17 0.0475 (15) 0.0641 (18) 0.0589 (17) −0.0165 (13) 0.0028 (13) −0.0116 (14)
C18 0.0478 (15) 0.077 (2) 0.0428 (15) −0.0039 (14) 0.0070 (12) −0.0187 (14)
C19 0.0546 (18) 0.080 (2) 0.068 (2) −0.0214 (17) −0.0071 (15) −0.0038 (17)
C20 0.063 (2) 0.111 (3) 0.061 (2) −0.003 (2) 0.0313 (17) −0.018 (2)

Geometric parameters (Å, °)

S1—C12 1.702 (3) C13—H13A 0.9700
S1—C9 1.735 (3) C13—H13B 0.9700
C1—C6 1.385 (4) C14—C16 1.507 (3)
C1—C2 1.387 (4) C14—H14A 0.9700
C1—H1A 0.9300 C14—H14B 0.9700
C2—C3 1.375 (4) C15—C17 1.511 (4)
C2—H2A 0.9300 C15—H15A 0.9700
C3—C4 1.382 (4) C15—H15B 0.9700
C3—C3i 1.490 (4) C16—C18 1.527 (4)
C4—C5 1.387 (4) C16—H16A 0.9700
C4—H4A 0.9300 C16—H16B 0.9700
C5—C6 1.377 (4) C17—C19 1.519 (5)
C5—H5A 0.9300 C17—H17A 0.9700
C6—C7 1.435 (3) C17—H17B 0.9700
C7—C8 1.193 (3) C18—C20 1.502 (5)
C8—C9 1.414 (3) C18—H18A 0.9700
C9—C10 1.382 (3) C18—H18B 0.9700
C10—C11 1.428 (3) C19—H19A 0.9600
C10—C13 1.507 (4) C19—H19B 0.9600
C11—C12 1.369 (4) C19—H19C 0.9600
C11—C14 1.514 (3) C20—H20A 0.9600
C12—H12 0.9300 C20—H20B 0.9600
C13—C15 1.539 (4) C20—H20C 0.9600
C12—S1—C9 91.29 (12) C11—C14—H14A 108.5
C6—C1—C2 120.7 (3) C16—C14—H14B 108.5
C6—C1—H1A 119.7 C11—C14—H14B 108.5
C2—C1—H1A 119.7 H14A—C14—H14B 107.5
C3—C2—C1 122.4 (3) C17—C15—C13 113.7 (2)
C3—C2—H2A 118.8 C17—C15—H15A 108.8
C1—C2—H2A 118.8 C13—C15—H15A 108.8
C2—C3—C4 116.4 (2) C17—C15—H15B 108.8
C2—C3—C3i 122.1 (3) C13—C15—H15B 108.8
C4—C3—C3i 121.5 (3) H15A—C15—H15B 107.7
C3—C4—C5 122.0 (3) C14—C16—C18 112.4 (2)
C3—C4—H4A 119.0 C14—C16—H16A 109.1
C5—C4—H4A 119.0 C18—C16—H16A 109.1
C6—C5—C4 121.1 (3) C14—C16—H16B 109.1
C6—C5—H5A 119.5 C18—C16—H16B 109.1
C4—C5—H5A 119.5 H16A—C16—H16B 107.9
C5—C6—C1 117.5 (2) C15—C17—C19 114.3 (3)
C5—C6—C7 121.7 (2) C15—C17—H17A 108.7
C1—C6—C7 120.8 (2) C19—C17—H17A 108.7
C8—C7—C6 179.8 (4) C15—C17—H17B 108.7
C7—C8—C9 178.8 (3) C19—C17—H17B 108.7
C10—C9—C8 126.9 (2) H17A—C17—H17B 107.6
C10—C9—S1 111.52 (17) C20—C18—C16 113.2 (3)
C8—C9—S1 121.6 (2) C20—C18—H18A 108.9
C9—C10—C11 112.0 (2) C16—C18—H18A 108.9
C9—C10—C13 123.8 (2) C20—C18—H18B 108.9
C11—C10—C13 124.2 (2) C16—C18—H18B 108.9
C12—C11—C10 111.9 (2) H18A—C18—H18B 107.7
C12—C11—C14 126.0 (2) C17—C19—H19A 109.5
C10—C11—C14 122.0 (2) C17—C19—H19B 109.5
C11—C12—S1 113.24 (18) H19A—C19—H19B 109.5
C11—C12—H12 123.4 C17—C19—H19C 109.5
S1—C12—H12 123.4 H19A—C19—H19C 109.5
C10—C13—C15 112.8 (2) H19B—C19—H19C 109.5
C10—C13—H13A 109.0 C18—C20—H20A 109.5
C15—C13—H13A 109.0 C18—C20—H20B 109.5
C10—C13—H13B 109.0 H20A—C20—H20B 109.5
C15—C13—H13B 109.0 C18—C20—H20C 109.5
H13A—C13—H13B 107.8 H20A—C20—H20C 109.5
C16—C14—C11 115.3 (2) H20B—C20—H20C 109.5
C16—C14—H14A 108.5
C12—C11—C10—C9 −0.6 (4) C4—C5—C6—C1 −1.5 (1)
C12—S1—C9—C10 0.1 (8) C1—C2—C3—C4 −1.6 (0)
C10—C11—C12—S1 0.5 (1) C5—C4—C3—C2 1.5 (0)
C11—C12—S1—C9 −0.2 (0) C5—C6—C1—C2 1.4 (2)
C11—C10—C9—S1 0.4 (9) C9—C8—C7—C6 93.5 (2)
C11—C10—C9—C8 −179.9 (8) C10—C9—C8—C7 24.6 (9)
C12—S1—C9—C8 −179.7 (4) S1—C9—C8—C7 −155.8 (2)
C7—C6—C5—C4 177.9 (5) C5—C6—C7—C8 −117.5 (4)
C7—C6—C1—C2 −178.0 (5) C1—C6—C7—C8 61.9 (0)
C6—C5—C4—C3 0.0 (4) C4—C3—C3—C4 90.0 (0)
C6—C1—C2—C3 0.1 (5)

Symmetry codes: (i) −x−1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2189).

References

  1. Baudour, J. L. (1972). Acta Cryst. B28, 1649–1656.
  2. Brad Wan, W., Brand, S. C., Park, J. J. & Haley, M. (2000). Chem. Eur. J.6, 2044–2052. [DOI] [PubMed]
  3. Charbonneau, G. P. & Delugeard, Y. (1977). Acta Cryst. B33, 1586–1588.
  4. Cornil, J., Calbert, J. P. & Bredas, J. L. (2001). J. Am. Chem. Soc.123, 1250–1251. [DOI] [PubMed]
  5. Domenicano, A., Vaciago, A. & Coulson, C. A. (1975). Acta Cryst. B31, 221–234.
  6. Grosshenny, V., Romero, F. M. & Ziessel, R. (1997). J. Org. Chem.62, 1491–1500.
  7. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  8. Huang, S. & Tour, J. M. (1998). Polym. Prepr.39, 525–526.
  9. Liu, L., Liu, Z. X., Xu, W., Xu, H., Zhang, D. Q. & Zhu, D. B. (2005). Tetrahedron, 61, 3813–3817.
  10. Rigaku (2001). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  11. Robertson, G. B. (1961). Nature (London), 191, 593–594.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Tour, J. M. (1996). Chem. Rev.96, 537–553. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks 070712a, I. DOI: 10.1107/S1600536808036143/kp2189sup1.cif

e-64-o2306-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036143/kp2189Isup2.hkl

e-64-o2306-Isup2.hkl (175.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES