Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 20;64(Pt 12):m1562. doi: 10.1107/S1600536808037525

Poly[μ-aqua-[μ-1,1′-(butane-1,4-di­yl)diimidazole]bis­(μ4-naphthalene-1,4-dicarboxyl­ato)dicadmium(II)]

Qun Xu a, Wen-Zhi Zhang a,*, Zhi-Qiang Chen a
PMCID: PMC2960000  PMID: 21581169

Abstract

In the title compound, [Cd2(C12H6O4)2(C10H14N4)(H2O)]n, the coordination polyhedron around each CdII ion is a distorted CdNO5 octa­hedron. The water O atom has site symmetry 2 and the complete 1,1′-(butane-1,4-di­yl)diimidazole (L) ligand is generated by inversion. The naphthalene-1,4-dicarboxyl­ate and L ligands bridge the metal centres, forming a three-dimensional framework, which is consolidated by O—H⋯O hydrogen bonds.

Related literature

For background to metal–organic frameworks, see Ma et al. (2003); Yang et al. (2008).graphic file with name e-64-m1562-scheme1.jpg

Experimental

Crystal data

  • [Cd2(C12H6O4)2(C10H14N4)(H2O)]

  • M r = 861.40

  • Monoclinic, Inline graphic

  • a = 18.773 (2) Å

  • b = 14.9118 (19) Å

  • c = 14.2298 (18) Å

  • β = 127.3900 (10)°

  • V = 3165.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 293 (2) K

  • 0.33 × 0.27 × 0.22 mm

Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.691, T max = 0.732

  • 8715 measured reflections

  • 3102 independent reflections

  • 2809 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.056

  • S = 1.06

  • 3102 reflections

  • 226 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037525/hb2837sup1.cif

e-64-m1562-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037525/hb2837Isup2.hkl

e-64-m1562-Isup2.hkl (149.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—N1 2.264 (2)
Cd1—O2 2.2746 (17)
Cd1—O1i 2.2344 (17)
Cd1—O4ii 2.3096 (16)
Cd1—O4iii 2.4847 (15)
Cd1—O1W 2.2995 (14)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—HW11⋯O3iii 0.76 (3) 1.80 (3) 2.549 (2) 169 (3)

Symmetry code: (iii) Inline graphic.

Acknowledgments

The work was supported by the Program for Young Academic Backbone in Heilongjiang Provincial University (grant No. 1152G053)

supplementary crystallographic information

Comment

Currently, metal-organic frameworks are of great interest because of their interesting structures and potential applications. Up to now, some interesting interpenetrated or entangled metal-organic networks with bis(imidazole)-containing ligands have been documented (Yang et al., 2008). However, flexible ligands such as 1,1'-(butane-1,4-diyl)diimidazole (L) has not been well explored to date (Ma et al., 2003). In this work, we selected naphthalene-1,4-dicarboxylic acid (1,4-H2ndc) and L as linkers in combination with a source of cadmium ions, generating a new coordination polymer, [Cd2(1,4-ndc)2(L)(H2O)], (I), which is reported here.

In compound (I) each CdII atom is six-coordinated by one N atom from one L ligand, and five O atoms from four carboxylate oxygen atoms and one water molecule in a distorted octohedral coordination sphere (Fig. 1, Table 1). The water molecule O atom has site symmetry 2 and the L ligand is situated across an inversion centre. The two neighbouring CdII atoms are bridged by the carboxylate and water molecule to form a dimer. The dimers are further linked by the backbone of 1,4-ndc and L ligands to form a three-dimensional framework (Fig. 2). An O—H···O hydrogen bond (Table 2) helps to consolidate the packing.

Experimental

A mixture of 1,4-H2ndc (0.5 mmol), L (0.5 mmol), NaOH (1 mmol) and CdCl2.2.5H2O (0.5 mmol) was suspended in 14 ml of deionized water and sealed in a 20-ml Teflon-lined autoclave. Upon heating at 413 K for three days, the autoclave was slowly cooled to room temperature. The resulting colourless blocks of (I) were collected, washed with deionized water and dried.

Refinement

The C–bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier). The water H atom was located in a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), extended to show the Cd coordination sphere and the complete L ligand. Displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted for clarity. Symmetry code: (i) 1-x, y, 0.5-z; (ii) x+0.5, y+0.5, z; (iii) 0.5-x, 0.5-y, -z; (iv) -x, y, -0.5-z.

Fig. 2.

Fig. 2.

View of the three-dimensional framework of (I).

Crystal data

[Cd2(C12H6O4)2(C10H14N4)(H2O)] F000 = 1712
Mr = 861.40 Dx = 1.808 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3102 reflections
a = 18.773 (2) Å θ = 1.1–26.0º
b = 14.9118 (19) Å µ = 1.41 mm1
c = 14.2298 (18) Å T = 293 (2) K
β = 127.3900 (10)º Block, colorless
V = 3165.0 (7) Å3 0.33 × 0.27 × 0.22 mm
Z = 4

Data collection

Bruker APEX CCD diffractometer 3102 independent reflections
Radiation source: fine-focus sealed tube 2809 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.018
T = 293(2) K θmax = 26.0º
ω scans θmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 1998) h = −16→23
Tmin = 0.691, Tmax = 0.732 k = −18→17
8715 measured reflections l = −16→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056   w = 1/[σ2(Fo2) + (0.0287P)2 + 3.5082P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
3102 reflections Δρmax = 0.47 e Å3
226 parameters Δρmin = −0.30 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.37567 (16) 0.35138 (16) 0.1979 (2) 0.0297 (5)
C2 0.30731 (16) 0.28246 (16) 0.1737 (2) 0.0280 (5)
C3 0.21801 (17) 0.30336 (18) 0.0966 (2) 0.0359 (6)
H3 0.2005 0.3550 0.0509 0.043*
C4 0.15233 (17) 0.24857 (19) 0.0850 (2) 0.0374 (6)
H4 0.0922 0.2646 0.0328 0.045*
C5 0.17624 (16) 0.17188 (17) 0.1500 (2) 0.0305 (5)
C6 0.10956 (17) 0.12334 (17) 0.1573 (2) 0.0333 (6)
C7 0.26737 (17) 0.14297 (16) 0.2231 (2) 0.0300 (5)
C8 0.33359 (16) 0.19901 (16) 0.2353 (2) 0.0288 (5)
C9 0.42311 (18) 0.16783 (19) 0.3048 (2) 0.0422 (6)
H9 0.4676 0.2031 0.3133 0.051*
C10 0.4447 (2) 0.0865 (2) 0.3594 (3) 0.0579 (9)
H10 0.5038 0.0670 0.4048 0.069*
C11 0.3796 (3) 0.0319 (2) 0.3485 (3) 0.0549 (9)
H11 0.3957 −0.0234 0.3864 0.066*
C12 0.2933 (2) 0.05926 (19) 0.2830 (3) 0.0432 (7)
H12 0.2505 0.0229 0.2771 0.052*
C13 0.26154 (18) 0.5557 (2) −0.0295 (3) 0.0433 (7)
H13 0.2482 0.5072 −0.0015 0.052*
C14 0.32799 (18) 0.64237 (19) −0.0731 (2) 0.0404 (6)
H14 0.3701 0.6657 −0.0810 0.048*
C15 0.2503 (2) 0.6826 (2) −0.1106 (3) 0.0471 (7)
H15 0.2295 0.7378 −0.1484 0.056*
C16 0.1209 (2) 0.6416 (3) −0.1088 (3) 0.0654 (10)
H16A 0.1215 0.6989 −0.0761 0.078*
H16B 0.1111 0.5954 −0.0697 0.078*
C17 0.04549 (17) 0.6405 (2) −0.2362 (3) 0.0479 (7)
H17A 0.0508 0.5876 −0.2712 0.057*
H17B 0.0502 0.6926 −0.2729 0.057*
N1 0.33508 (13) 0.56210 (15) −0.02170 (18) 0.0332 (5)
N2 0.20866 (14) 0.62697 (18) −0.0825 (2) 0.0440 (6)
O1 0.43795 (13) 0.36693 (13) 0.30491 (17) 0.0455 (5)
O2 0.36314 (12) 0.38808 (13) 0.11038 (17) 0.0438 (5)
O1W 0.5000 0.55213 (17) 0.2500 0.0267 (5)
O3 0.11724 (18) 0.13705 (18) 0.2487 (2) 0.0756 (9)
O4 0.05171 (10) 0.07264 (11) 0.07468 (14) 0.0285 (4)
Cd1 0.453957 (10) 0.468475 (11) 0.086231 (14) 0.02277 (7)
HW11 0.5363 (19) 0.581 (2) 0.257 (3) 0.047 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0285 (13) 0.0274 (13) 0.0399 (14) −0.0057 (10) 0.0242 (12) −0.0041 (10)
C2 0.0297 (13) 0.0301 (13) 0.0297 (12) −0.0090 (10) 0.0210 (11) −0.0043 (9)
C3 0.0322 (14) 0.0360 (14) 0.0372 (14) −0.0070 (11) 0.0199 (12) 0.0061 (11)
C4 0.0224 (13) 0.0495 (16) 0.0335 (13) −0.0073 (11) 0.0135 (11) 0.0031 (12)
C5 0.0330 (14) 0.0352 (14) 0.0277 (12) −0.0151 (11) 0.0207 (11) −0.0086 (10)
C6 0.0349 (14) 0.0362 (14) 0.0367 (13) −0.0151 (11) 0.0258 (12) −0.0083 (11)
C7 0.0383 (14) 0.0263 (12) 0.0321 (12) −0.0085 (10) 0.0248 (12) −0.0065 (9)
C8 0.0326 (13) 0.0286 (13) 0.0275 (12) −0.0062 (10) 0.0194 (11) −0.0049 (9)
C9 0.0309 (14) 0.0451 (16) 0.0473 (16) −0.0033 (12) 0.0220 (13) −0.0020 (13)
C10 0.0466 (19) 0.055 (2) 0.059 (2) 0.0159 (16) 0.0252 (17) 0.0103 (16)
C11 0.071 (2) 0.0382 (17) 0.057 (2) 0.0114 (15) 0.0393 (19) 0.0134 (14)
C12 0.0588 (19) 0.0316 (14) 0.0473 (16) −0.0070 (13) 0.0363 (16) −0.0002 (12)
C13 0.0273 (14) 0.0576 (18) 0.0448 (16) 0.0071 (13) 0.0219 (13) 0.0155 (14)
C14 0.0337 (15) 0.0472 (17) 0.0424 (15) 0.0055 (12) 0.0242 (13) 0.0125 (12)
C15 0.0421 (17) 0.0460 (17) 0.0500 (17) 0.0172 (13) 0.0264 (14) 0.0216 (13)
C16 0.0298 (16) 0.113 (3) 0.0529 (19) 0.0232 (18) 0.0248 (15) 0.010 (2)
C17 0.0267 (15) 0.0587 (19) 0.0532 (18) −0.0054 (13) 0.0216 (14) −0.0030 (14)
N1 0.0226 (10) 0.0413 (12) 0.0333 (11) 0.0050 (9) 0.0157 (9) 0.0085 (9)
N2 0.0240 (11) 0.0664 (17) 0.0381 (12) 0.0166 (11) 0.0169 (10) 0.0157 (11)
O1 0.0446 (12) 0.0513 (12) 0.0427 (11) −0.0287 (9) 0.0276 (10) −0.0154 (9)
O2 0.0366 (11) 0.0469 (12) 0.0466 (11) −0.0093 (8) 0.0245 (9) 0.0115 (9)
O1W 0.0269 (14) 0.0260 (13) 0.0350 (13) 0.000 0.0227 (12) 0.000
O3 0.0944 (19) 0.103 (2) 0.0678 (15) −0.0748 (16) 0.0690 (15) −0.0539 (14)
O4 0.0261 (9) 0.0332 (9) 0.0295 (8) −0.0109 (7) 0.0185 (7) −0.0068 (7)
Cd1 0.01994 (10) 0.02484 (11) 0.02462 (10) 0.00131 (6) 0.01409 (8) 0.00274 (6)

Geometric parameters (Å, °)

C1—O2 1.245 (3) C13—H13 0.9300
C1—O1 1.256 (3) C14—C15 1.351 (4)
C1—C2 1.511 (3) C14—N1 1.366 (3)
C2—C3 1.370 (3) C14—H14 0.9300
C2—C8 1.427 (3) C15—N2 1.357 (4)
C3—C4 1.403 (3) C15—H15 0.9300
C3—H3 0.9300 C16—N2 1.468 (3)
C4—C5 1.364 (4) C16—C17 1.474 (4)
C4—H4 0.9300 C16—H16A 0.9700
C5—C7 1.426 (4) C16—H16B 0.9700
C5—C6 1.503 (3) C17—C17i 1.502 (5)
C6—O3 1.236 (3) C17—H17A 0.9700
C6—O4 1.258 (3) C17—H17B 0.9700
C7—C8 1.418 (3) O1—Cd1ii 2.2344 (17)
C7—C12 1.421 (4) O1W—Cd1ii 2.2995 (14)
C8—C9 1.414 (4) O1W—HW11 0.76 (3)
C9—C10 1.363 (4) O4—Cd1iii 2.3096 (16)
C9—H9 0.9300 O4—Cd1iv 2.4848 (15)
C10—C11 1.396 (5) Cd1—N1 2.264 (2)
C10—H10 0.9300 Cd1—O2 2.2746 (17)
C11—C12 1.351 (5) Cd1—O1ii 2.2344 (17)
C11—H11 0.9300 Cd1—O4iii 2.3096 (16)
C12—H12 0.9300 Cd1—O4v 2.4847 (15)
C13—N1 1.319 (3) Cd1—O1W 2.2995 (14)
C13—N2 1.332 (4)
O2—C1—O1 127.1 (2) C14—C15—H15 126.6
O2—C1—C2 116.9 (2) N2—C15—H15 126.6
O1—C1—C2 116.1 (2) N2—C16—C17 113.7 (3)
C3—C2—C8 119.3 (2) N2—C16—H16A 108.8
C3—C2—C1 119.0 (2) C17—C16—H16A 108.8
C8—C2—C1 121.6 (2) N2—C16—H16B 108.8
C2—C3—C4 121.5 (2) C17—C16—H16B 108.8
C2—C3—H3 119.3 H16A—C16—H16B 107.7
C4—C3—H3 119.3 C16—C17—C17i 114.3 (3)
C5—C4—C3 120.3 (2) C16—C17—H17A 108.7
C5—C4—H4 119.8 C17i—C17—H17A 108.7
C3—C4—H4 119.8 C16—C17—H17B 108.7
C4—C5—C7 120.2 (2) C17i—C17—H17B 108.7
C4—C5—C6 120.4 (2) H17A—C17—H17B 107.6
C7—C5—C6 119.0 (2) C13—N1—C14 105.2 (2)
O3—C6—O4 124.4 (2) C13—N1—Cd1 124.23 (18)
O3—C6—C5 115.0 (2) C14—N1—Cd1 129.70 (17)
O4—C6—C5 120.5 (2) C13—N2—C15 106.8 (2)
C8—C7—C12 119.2 (2) C13—N2—C16 126.7 (3)
C8—C7—C5 119.0 (2) C15—N2—C16 126.4 (3)
C12—C7—C5 121.7 (2) C1—O1—Cd1ii 138.66 (17)
C9—C8—C7 118.2 (2) C1—O2—Cd1 132.78 (16)
C9—C8—C2 122.5 (2) Cd1—O1W—Cd1ii 114.29 (11)
C7—C8—C2 119.2 (2) Cd1—O1W—HW11 101 (2)
C10—C9—C8 120.5 (3) Cd1ii—O1W—HW11 115 (2)
C10—C9—H9 119.8 C6—O4—Cd1iii 125.42 (15)
C8—C9—H9 119.8 C6—O4—Cd1iv 124.57 (15)
C9—C10—C11 121.3 (3) Cd1iii—O4—Cd1iv 107.96 (6)
C9—C10—H10 119.4 O1ii—Cd1—N1 173.89 (7)
C11—C10—H10 119.4 O1ii—Cd1—O2 89.23 (7)
C12—C11—C10 120.1 (3) N1—Cd1—O2 84.66 (7)
C12—C11—H11 119.9 O1ii—Cd1—O1W 92.34 (7)
C10—C11—H11 119.9 N1—Cd1—O1W 87.83 (7)
C11—C12—C7 120.7 (3) O2—Cd1—O1W 89.30 (6)
C11—C12—H12 119.7 O1ii—Cd1—O4iii 89.03 (6)
C7—C12—H12 119.7 N1—Cd1—O4iii 93.33 (7)
N1—C13—N2 111.8 (3) O2—Cd1—O4iii 114.98 (7)
N1—C13—H13 124.1 O1W—Cd1—O4iii 155.70 (5)
N2—C13—H13 124.1 O1ii—Cd1—O4v 94.20 (7)
C15—C14—N1 109.4 (2) N1—Cd1—O4v 91.89 (7)
C15—C14—H14 125.3 O2—Cd1—O4v 172.29 (6)
N1—C14—H14 125.3 O1W—Cd1—O4v 83.67 (5)
C14—C15—N2 106.8 (2) O4iii—Cd1—O4v 72.04 (6)

Symmetry codes: (i) −x, y, −z−1/2; (ii) −x+1, y, −z+1/2; (iii) −x+1/2, −y+1/2, −z; (iv) x−1/2, y−1/2, z; (v) x+1/2, y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—HW11···O3v 0.76 (3) 1.80 (3) 2.549 (2) 169 (3)

Symmetry codes: (v) x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2837).

References

  1. Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ma, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem.42, 7531–7534. [DOI] [PubMed]
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun pp. 2233–2235. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037525/hb2837sup1.cif

e-64-m1562-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037525/hb2837Isup2.hkl

e-64-m1562-Isup2.hkl (149.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES