Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 8;64(Pt 12):m1518. doi: 10.1107/S1600536808035915

Dichlorido[3-dimethyl­amino-N-(2-pyridylmethyl­ene)propyl­amine-κ3 N,N′,N′′]cadmium(II)

Hong Lin a,*, Xiao-Hong Geng b, Yun-Long Feng b
PMCID: PMC2960001  PMID: 21581136

Abstract

In the title mononuclear Cd(II) complex, [CdCl2(C11H17N3)], the Cd(II) atom is coordinated by two Cl atoms and three N atoms from the tridentate Schiff base ligand in a distorted square-pyramidal environment. The three N atoms and one Cl atom constitute the base of the pyramid, whereas the other Cl atom occupies the apical position.

Related literature

For the properties of transition metal complexes with multidentate Schiff base ligands, see: Mukherjee et al. (2004); Saha et al. (2003). For Schiff base ligands derived from pyridine-2-carboxaldehyde and diamine acting as tridentate (NNN) ligands, see: Dalai et al. (2002); Mukherjee et al. (2001a ,b ). For the synthesis, see: Choudhury et al. (2001).graphic file with name e-64-m1518-scheme1.jpg

Experimental

Crystal data

  • [CdCl2(C11H17N3)]

  • M r = 374.59

  • Triclinic, Inline graphic

  • a = 7.6407 (15) Å

  • b = 9.0312 (18) Å

  • c = 11.860 (2) Å

  • α = 97.81 (3)°

  • β = 103.95 (3)°

  • γ = 111.11 (3)°

  • V = 718.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 293 (2) K

  • 0.27 × 0.20 × 0.16 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.631, T max = 0.753

  • 12281 measured reflections

  • 3251 independent reflections

  • 3149 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018

  • wR(F 2) = 0.050

  • S = 1.14

  • 3251 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808035915/at2652sup1.cif

e-64-m1518-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035915/at2652Isup2.hkl

e-64-m1518-Isup2.hkl (159.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Transition metal complexes with multidentate Schiff base ligands have been extensively studied recently for their various crystallographic features, enzymatic reactions, catalysis, electrochemical and magnetic properties (Mukherjee et al., 2004; Saha et al., 2003). Literatures (Dalai et al., 2002; Mukherjee et al., 2001a,b) revealed that Schiff base ligands derived from pyridine-2-carboxaldehyde and diamine usually act tridentate (NNN) ones. The molecule of the title complex (I) (Fig.1) comprises one cadmium(II) ion, one neutral N-(pyridin-2-yl-methylene)-3-dimethylaminopropylamine ligand and two Cl- ions. The Cd(II) atom is coordinated by two chlorine atoms and three nitrogen atoms from the tridentate ligand in a distorted square pyramidal environment. Four coordinated atoms of N(1), N(2), N(3) and Cl(1) constitute the base of the pyramid, whereas Cl(2) atom occupies the apical position.

Experimental

The tridentate Schiff base, N-(pyridin-2-yl-methylene)-3-dimethylaminopropylamine (C11H17N3), were prepared by reflux of 0.5 mmol of 3-dimethylaminopropylamine and 0.5 mmol of pyridine-2-carboxaldehyde in 10 ml of ethanol for 30 min, according to the literature method (Choudhury, et al., 2001). To 20 ml ethanolic and chloroformic solution (1:1) of the Schiff base (0.5 mmol), CdCl2.2.5H2O (0.5 mmol) in 5 ml water was added, with refluxing for 30 min. This mixture was cooled to room temperature and left to stand undisturbed. After 5 days colourless crystals (I) suitable for X-ray analysis were obtained.

Refinement

The methyl groups were allowed to rotate to fit the electron density [C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C)]; the other H atoms were positioned geometrically [aromatic C—Haromatic 0.93 Å and aliphatic C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Cd(C11H17N3)Cl2] Z = 2
Mr = 374.59 F000 = 372
Triclinic, P1 Dx = 1.732 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.6407 (15) Å Cell parameters from 3284 reflections
b = 9.0312 (18) Å θ = 1.8–27.5º
c = 11.860 (2) Å µ = 1.88 mm1
α = 97.81 (3)º T = 293 (2) K
β = 103.95 (3)º Block, colourless
γ = 111.11 (3)º 0.27 × 0.20 × 0.16 mm
V = 718.2 (3) Å3

Data collection

Bruker APEX-II area-detector diffractometer 3251 independent reflections
Radiation source: fine-focus sealed tube 3149 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.020
T = 293(2) K θmax = 27.5º
ω scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.632, Tmax = 0.754 k = −11→11
12281 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018 H-atom parameters constrained
wR(F2) = 0.050   w = 1/[σ2(Fo2) + (0.0281P)2 + 0.1317P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max = 0.001
3251 reflections Δρmax = 0.33 e Å3
154 parameters Δρmin = −0.72 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.203590 (15) 0.391482 (13) 0.743794 (9) 0.03482 (5)
Cl2 −0.08758 (6) 0.21422 (6) 0.57078 (4) 0.04931 (11)
Cl1 0.15476 (8) 0.61916 (7) 0.85160 (5) 0.05592 (12)
N2 0.4378 (2) 0.28768 (18) 0.72437 (13) 0.0403 (3)
N3 0.1569 (2) 0.2335 (2) 0.88963 (13) 0.0475 (4)
N1 0.4442 (2) 0.57453 (17) 0.67777 (13) 0.0367 (3)
C1 0.5909 (2) 0.5312 (2) 0.66530 (14) 0.0374 (3)
C2 0.7401 (3) 0.6249 (3) 0.62553 (16) 0.0472 (4)
H2A 0.8408 0.5929 0.6189 0.057*
C3 0.7372 (3) 0.7664 (2) 0.59584 (17) 0.0511 (5)
H3A 0.8355 0.8310 0.5684 0.061*
C4 0.5876 (3) 0.8108 (2) 0.60728 (17) 0.0508 (4)
H4A 0.5829 0.9057 0.5873 0.061*
C5 0.4430 (3) 0.7125 (2) 0.64904 (17) 0.0450 (4)
H5A 0.3422 0.7435 0.6573 0.054*
C6 0.5781 (3) 0.3739 (2) 0.69156 (15) 0.0422 (4)
H6A 0.6750 0.3374 0.6838 0.051*
C7 0.4187 (3) 0.1243 (2) 0.7381 (2) 0.0545 (5)
H7A 0.5390 0.1123 0.7357 0.065*
H7B 0.3109 0.0426 0.6712 0.065*
C8 0.3807 (4) 0.0927 (3) 0.8542 (2) 0.0617 (6)
H8A 0.3940 −0.0078 0.8648 0.074*
H8B 0.4817 0.1811 0.9202 0.074*
C9 0.1804 (4) 0.0784 (3) 0.8609 (2) 0.0611 (5)
H9A 0.0825 0.0125 0.7845 0.073*
H9B 0.1505 0.0192 0.9211 0.073*
C10 −0.0528 (3) 0.1931 (3) 0.8813 (2) 0.0671 (6)
H10A −0.0874 0.1289 0.9371 0.101*
H10B −0.1360 0.1317 0.8014 0.101*
H10C −0.0707 0.2924 0.9000 0.101*
C11 0.2795 (4) 0.3281 (3) 1.01250 (18) 0.0676 (6)
H11A 0.2552 0.2592 1.0669 0.101*
H11B 0.2471 0.4192 1.0334 0.101*
H11C 0.4165 0.3676 1.0174 0.101*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.03228 (8) 0.03880 (8) 0.03500 (8) 0.01555 (5) 0.01208 (5) 0.00852 (5)
Cl2 0.0374 (2) 0.0603 (3) 0.0398 (2) 0.01477 (19) 0.00686 (17) 0.00374 (19)
Cl1 0.0643 (3) 0.0572 (3) 0.0562 (3) 0.0338 (2) 0.0266 (2) 0.0059 (2)
N2 0.0416 (7) 0.0423 (7) 0.0395 (7) 0.0232 (6) 0.0094 (6) 0.0068 (6)
N3 0.0484 (8) 0.0496 (8) 0.0342 (7) 0.0104 (7) 0.0097 (6) 0.0114 (6)
N1 0.0354 (7) 0.0394 (7) 0.0366 (7) 0.0163 (6) 0.0137 (5) 0.0070 (6)
C1 0.0317 (7) 0.0468 (9) 0.0297 (7) 0.0156 (7) 0.0076 (6) 0.0024 (6)
C2 0.0326 (8) 0.0654 (12) 0.0386 (9) 0.0165 (8) 0.0120 (7) 0.0057 (8)
C3 0.0444 (9) 0.0539 (11) 0.0396 (9) 0.0032 (8) 0.0164 (8) 0.0050 (8)
C4 0.0613 (11) 0.0404 (9) 0.0455 (10) 0.0133 (8) 0.0205 (9) 0.0087 (7)
C5 0.0500 (10) 0.0421 (9) 0.0476 (9) 0.0212 (8) 0.0205 (8) 0.0101 (7)
C6 0.0379 (8) 0.0535 (10) 0.0401 (8) 0.0269 (8) 0.0111 (7) 0.0062 (7)
C7 0.0593 (12) 0.0429 (10) 0.0631 (12) 0.0289 (9) 0.0131 (10) 0.0075 (9)
C8 0.0744 (14) 0.0457 (10) 0.0634 (13) 0.0297 (10) 0.0078 (11) 0.0193 (9)
C9 0.0699 (14) 0.0435 (10) 0.0601 (12) 0.0121 (10) 0.0175 (11) 0.0188 (9)
C10 0.0568 (12) 0.0839 (16) 0.0576 (12) 0.0151 (11) 0.0277 (10) 0.0289 (12)
C11 0.0787 (16) 0.0705 (14) 0.0348 (10) 0.0200 (12) 0.0046 (10) 0.0076 (9)

Geometric parameters (Å, °)

Cd1—N2 2.3418 (15) C4—C5 1.390 (3)
Cd1—N1 2.3627 (16) C4—H4A 0.9300
Cd1—N3 2.3992 (16) C5—H5A 0.9300
Cd1—Cl2 2.4624 (15) C6—H6A 0.9300
Cd1—Cl1 2.4637 (8) C7—C8 1.517 (3)
N2—C6 1.260 (2) C7—H7A 0.9700
N2—C7 1.465 (2) C7—H7B 0.9700
N3—C11 1.469 (3) C8—C9 1.512 (3)
N3—C9 1.480 (3) C8—H8A 0.9700
N3—C10 1.484 (3) C8—H8B 0.9700
N1—C5 1.338 (2) C9—H9A 0.9700
N1—C1 1.346 (2) C9—H9B 0.9700
C1—C2 1.382 (2) C10—H10A 0.9600
C1—C6 1.470 (3) C10—H10B 0.9600
C2—C3 1.378 (3) C10—H10C 0.9600
C2—H2A 0.9300 C11—H11A 0.9600
C3—C4 1.370 (3) C11—H11B 0.9600
C3—H3A 0.9300 C11—H11C 0.9600
N2—Cd1—N1 70.27 (5) N1—C5—H5A 119.0
N2—Cd1—N3 84.79 (6) C4—C5—H5A 119.0
N1—Cd1—N3 144.00 (6) N2—C6—C1 120.98 (15)
N2—Cd1—Cl2 102.80 (4) N2—C6—H6A 119.5
N1—Cd1—Cl2 109.74 (5) C1—C6—H6A 119.5
N3—Cd1—Cl2 100.64 (5) N2—C7—C8 112.77 (17)
N2—Cd1—Cl1 144.32 (5) N2—C7—H7A 109.0
N1—Cd1—Cl1 91.30 (4) C8—C7—H7A 109.0
N3—Cd1—Cl1 94.73 (5) N2—C7—H7B 109.0
Cl2—Cd1—Cl1 112.28 (3) C8—C7—H7B 109.0
C6—N2—C7 119.48 (16) H7A—C7—H7B 107.8
C6—N2—Cd1 117.01 (12) C9—C8—C7 114.81 (19)
C7—N2—Cd1 123.28 (12) C9—C8—H8A 108.6
C11—N3—C9 110.90 (18) C7—C8—H8A 108.6
C11—N3—C10 107.96 (18) C9—C8—H8B 108.6
C9—N3—C10 108.30 (18) C7—C8—H8B 108.6
C11—N3—Cd1 112.97 (13) H8A—C8—H8B 107.5
C9—N3—Cd1 113.53 (12) N3—C9—C8 116.67 (17)
C10—N3—Cd1 102.61 (13) N3—C9—H9A 108.1
C5—N1—C1 118.26 (15) C8—C9—H9A 108.1
C5—N1—Cd1 125.78 (12) N3—C9—H9B 108.1
C1—N1—Cd1 115.93 (11) C8—C9—H9B 108.1
N1—C1—C2 122.39 (17) H9A—C9—H9B 107.3
N1—C1—C6 115.78 (15) N3—C10—H10A 109.5
C2—C1—C6 121.77 (16) N3—C10—H10B 109.5
C3—C2—C1 118.88 (18) H10A—C10—H10B 109.5
C3—C2—H2A 120.6 N3—C10—H10C 109.5
C1—C2—H2A 120.6 H10A—C10—H10C 109.5
C4—C3—C2 119.15 (17) H10B—C10—H10C 109.5
C4—C3—H3A 120.4 N3—C11—H11A 109.5
C2—C3—H3A 120.4 N3—C11—H11B 109.5
C3—C4—C5 119.26 (19) H11A—C11—H11B 109.5
C3—C4—H4A 120.4 N3—C11—H11C 109.5
C5—C4—H4A 120.4 H11A—C11—H11C 109.5
N1—C5—C4 122.05 (18) H11B—C11—H11C 109.5
N1—Cd1—N2—C6 1.15 (12) N3—Cd1—N1—C1 47.48 (16)
N3—Cd1—N2—C6 −152.45 (14) Cl2—Cd1—N1—C1 −98.36 (11)
Cl2—Cd1—N2—C6 107.80 (13) Cl1—Cd1—N1—C1 147.36 (11)
Cl1—Cd1—N2—C6 −61.59 (16) C5—N1—C1—C2 0.8 (2)
N1—Cd1—N2—C7 −173.34 (15) Cd1—N1—C1—C2 178.90 (13)
N3—Cd1—N2—C7 33.06 (14) C5—N1—C1—C6 −176.60 (15)
Cl2—Cd1—N2—C7 −66.69 (14) Cd1—N1—C1—C6 1.52 (18)
Cl1—Cd1—N2—C7 123.92 (13) N1—C1—C2—C3 −1.0 (3)
N2—Cd1—N3—C11 93.26 (16) C6—C1—C2—C3 176.24 (16)
N1—Cd1—N3—C11 47.9 (2) C1—C2—C3—C4 0.4 (3)
Cl2—Cd1—N3—C11 −164.66 (15) C2—C3—C4—C5 0.3 (3)
Cl1—Cd1—N3—C11 −50.92 (16) C1—N1—C5—C4 0.0 (3)
N2—Cd1—N3—C9 −34.13 (14) Cd1—N1—C5—C4 −177.95 (14)
N1—Cd1—N3—C9 −79.53 (16) C3—C4—C5—N1 −0.5 (3)
Cl2—Cd1—N3—C9 67.95 (14) C7—N2—C6—C1 173.88 (16)
Cl1—Cd1—N3—C9 −178.31 (13) Cd1—N2—C6—C1 −0.8 (2)
N2—Cd1—N3—C10 −150.77 (14) N1—C1—C6—N2 −0.5 (2)
N1—Cd1—N3—C10 163.83 (13) C2—C1—C6—N2 −177.89 (17)
Cl2—Cd1—N3—C10 −48.69 (14) C6—N2—C7—C8 133.5 (2)
Cl1—Cd1—N3—C10 65.05 (14) Cd1—N2—C7—C8 −52.1 (2)
N2—Cd1—N1—C5 176.55 (16) N2—C7—C8—C9 68.8 (2)
N3—Cd1—N1—C5 −134.56 (15) C11—N3—C9—C8 −66.7 (2)
Cl2—Cd1—N1—C5 79.59 (15) C10—N3—C9—C8 175.00 (18)
Cl1—Cd1—N1—C5 −34.69 (14) Cd1—N3—C9—C8 61.7 (2)
N2—Cd1—N1—C1 −1.40 (11) C7—C8—C9—N3 −79.3 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2652).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Choudhury, C. R., Dey, S. K., Mondal, N., Mitra, S., Mahalli, S. O. G. & Malik, K. M. A. (2001). J. Chem. Crystallogr.31, 57–62.
  3. Dalai, S., Mukherjee, S. K., Drew, M. B. G., Lu, T.-H. & Chaudhuri, N. R. (2002). Inorg. Chim. Acta, 335, 85–90.
  4. Mukherjee, S. K., Dalai, S., Mostafa, G., Lu, T.-H., Rentschler, E. & Chaudhuri, N. R. (2001a). New J. Chem.25, 1203–1207.
  5. Mukherjee, S. K., Dalai, S., Zangrando, E., Lloret, F. & Chaudhuri, N. R. (2001b). Chem. Commun. pp. 1444–1445.
  6. Mukherjee, S. K., El Fallah, M. S., Vicente, R., Escuer, A., Solans, X., Font-Bardia, M., Matsushita, T., Gramlich, V. & Mitra, S. (2004). Inorg. Chem.43, 2427–2434. [DOI] [PubMed]
  7. Saha, M. K., Dey, D. K., Samanta, B., Edwards, A. J., Clegg, W. & Mitra, S. (2003). J. Chem. Soc. Dalton Trans. pp. 488–492.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808035915/at2652sup1.cif

e-64-m1518-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035915/at2652Isup2.hkl

e-64-m1518-Isup2.hkl (159.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES