Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 8;64(Pt 12):m1501–m1502. doi: 10.1107/S1600536808035484

catena-Poly[[(2,2′-bipyridine)copper(II)]-μ-5-tert-butyl­isophthalato]

Xiao-Ling Li a,*, Miao-Ling Huang b
PMCID: PMC2960003  PMID: 21581122

Abstract

In the crystal structure of the title polymeric compound, [Cu(C12H12O4)(C10H8N2)]n, the asymmetric unit consists of one CuII ion, one 5-tert-butyl­isophthalate (tbip) and one 2,2′-bipyridine (bpy) ligand. The copper(II) ion is four-coordin­ated by two N atoms from bipy and two O atoms from two tbip ligands, leading to a distorted tetrahedral coordination. Each tbip ligand adopts a bis-monodentate coordination mode to connect two symmetry-related copper(II) ions, so forming a zigzag polymer chain parallel to [001]. The tert-butyl methyl groups are disordered over two positions with occupancies of 0.506 (6)/0.494 (6)

Related literature

For related literature on the synthesis of flexible organic ligands, see: Chang et al. (2005); Ma, Chen et al. (2008); Xu et al. (2006). For related literature on coordination polymers, see: Ma, Wang, Huo et al. (2008); Ma, Wang, Wang et al. (2008); Pan et al. (2006); Yang et al. (2002). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-m1501-scheme1.jpg

Experimental

Crystal data

  • [Cu(C12H12O4)(C10H8N2)]

  • M r = 439.94

  • Monoclinic, Inline graphic

  • a = 8.905 (2) Å

  • b = 20.875 (5) Å

  • c = 11.564 (3) Å

  • β = 98.188 (3)°

  • V = 2127.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 296 (2) K

  • 0.29 × 0.22 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.716, T max = 0.845

  • 15716 measured reflections

  • 3949 independent reflections

  • 3021 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.130

  • S = 1.05

  • 3949 reflections

  • 260 parameters

  • 91 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035484/su2072sup1.cif

e-64-m1501-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035484/su2072Isup2.hkl

e-64-m1501-Isup2.hkl (193.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—O1 1.933 (2)
Cu1—O3i 1.956 (2)
Cu1—N1 1.985 (3)
Cu1—N2 1.983 (3)
O1—Cu1—O3i 88.17 (11)
O1—Cu1—N1 94.83 (11)
O3i—Cu1—N1 172.79 (11)
O1—Cu1—N2 173.34 (11)
O3i—Cu1—N2 96.69 (11)
N1—Cu1—N2 80.88 (11)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Luo Yang Normal University for supporting this work.

supplementary crystallographic information

Comment

It is well known that organic ligands play a crucial role in the design and construction of desirable frameworks. The changes in flexibility, length and symmetry of organic ligands can result in a remarkable class of materials bearing diverse architectures and functions. Thus, the construction of target molecules is a challenge for synthetic chemists (Ma et al., 2008; Chang et al., 2005; Xu et al., 2006). Benzene-1,3-dicarboxylic acid (isophthalic acid, H2isop) and its derivatives, with special conformations such as, an angle of 120° between two carboxylic groups, present versatile coordination modes that can yield predetermined networks. Such ligands have been widely used to construct coordination polymers (Pan et al., 2006; Yang et al., 2002; Ma et al., 2008).

The title compound, (I), was prepared by hydrothermal synthesis using 5-tert-butyl isophthalic acid, 2,2'-bipyridine and copper(II) actate. The asymmetric unit of (I) consists of one copper(II) ion, one tbip and one bipy ligand molecules (Fig. 1). Each copper(II) ion is four-coordinated by two nitrogen atoms from one bipy molecule and two oxygen atoms from two tbip ligands (Table 1). The coordination geometry of the copper(II) ion is distorted tetrahedral. The Cu—O bond lengths [1.933 (2)–1.965 (2) Å] are within the range reported for tetrahedral environments, and the Cu—N bond lengths [1.983 (3)–1.985 (3) Å] are also similar to those found in other tetrahedral copper complexes of bipy (Allen et al., 1987). Each tbip ligand adopts the bis-monodentated coordination mode to connect two symmetry related copper(II) ions so forming a zigzag polymer chain (Fig. 2).

Experimental

A mixture of 5-tert-butyl isophthalic acid (0.1 mmol, 23.1 mg), 2,2'-bipyridine (0.1 mmol, 15.8 mg), Cu(OAc).2.4H2O (0.05 mmol, 11.5 mg), NaOH (0.1 mmol, 4.0 mg) and H2O (15 ml) was placed in a Teflon-lined stainless steel vessel, and heated to 160 °C for 4 days. It was then cooled to room temperature over a period of 24 h. Blue block-like crystals of compound (I) were obtained.

Refinement

The tertiary butyl methyl groups are disordered over two almost equally occupied positions: 0.506 (6)/0.494 (6). The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.96 Å with Uiso(H) = 1.2 or 1.5Ueq(parent C-atom).

Figures

Fig. 1.

Fig. 1.

A view of the asymmetric unit of compound (I), with thermal ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Atoms with label A are related to those without by symmetry operation (x, -y+1.5, z+0.5).

Fig. 2.

Fig. 2.

A partial view, along the a axis, of the crystal packing of compound (I) showing the zigzag polymer chain. H atoms have been omitted for clarity.

Crystal data

[Cu(C12H12O4)(C10H8N2)] F000 = 908
Mr = 439.94 Dx = 1.373 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3455 reflections
a = 8.905 (2) Å θ = 2.5–22.5º
b = 20.875 (5) Å µ = 1.06 mm1
c = 11.564 (3) Å T = 296 (2) K
β = 98.188 (3)º Block, blue
V = 2127.8 (9) Å3 0.29 × 0.22 × 0.16 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 3949 independent reflections
Radiation source: fine-focus sealed tube 3021 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.040
T = 296(2) K θmax = 25.5º
φ and ω scans θmin = 2.5º
Absorption correction: multi-scan(SADABS; Bruker, 1997) h = −10→10
Tmin = 0.716, Tmax = 0.845 k = −25→25
15716 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.130   w = 1/[σ2(Fo2) + (0.065P)2 + 1.7017P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3949 reflections Δρmax = 0.64 e Å3
260 parameters Δρmin = −0.54 e Å3
91 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C10 −0.2988 (8) 0.7849 (4) 0.0801 (8) 0.0991 (17) 0.50
H10A −0.3808 0.7876 0.1255 0.149* 0.50
H10B −0.2580 0.7422 0.0851 0.149* 0.50
H10C −0.3355 0.7948 0.0000 0.149* 0.50
C11 −0.1382 (9) 0.8222 (4) 0.2581 (6) 0.1033 (17) 0.50
H11A −0.0577 0.8506 0.2893 0.155* 0.50
H11B −0.1070 0.7786 0.2736 0.155* 0.50
H11C −0.2266 0.8310 0.2943 0.155* 0.50
C12 −0.2268 (8) 0.9003 (3) 0.1063 (7) 0.1019 (19) 0.50
H12A −0.3113 0.9085 0.1473 0.153* 0.50
H12B −0.2570 0.9071 0.0242 0.153* 0.50
H12C −0.1450 0.9288 0.1341 0.153* 0.50
C10' −0.2432 (9) 0.7777 (3) 0.1868 (8) 0.0991 (17) 0.50
H10D −0.2073 0.7791 0.2691 0.149* 0.50
H10E −0.2138 0.7378 0.1553 0.149* 0.50
H10F −0.3518 0.7813 0.1743 0.149* 0.50
C11' −0.1082 (9) 0.8784 (4) 0.2317 (7) 0.1033 (17) 0.50
H11D −0.0967 0.9208 0.2021 0.155* 0.50
H11E −0.0112 0.8626 0.2671 0.155* 0.50
H11F −0.1764 0.8796 0.2890 0.155* 0.50
C12' −0.2878 (8) 0.8749 (4) 0.0548 (7) 0.1019 (19) 0.50
H12D −0.3658 0.8871 0.0998 0.153* 0.50
H12E −0.3324 0.8523 −0.0138 0.153* 0.50
H12F −0.2371 0.9125 0.0323 0.153* 0.50
Cu1 0.30126 (5) 0.570966 (18) 0.17572 (3) 0.03784 (16)
O1 0.1606 (3) 0.63474 (11) 0.1038 (2) 0.0497 (6)
O2 0.3724 (3) 0.67027 (13) 0.0490 (3) 0.0598 (7)
O3 0.3259 (3) 0.87708 (12) −0.1821 (2) 0.0507 (6)
O4 0.1347 (3) 0.94173 (12) −0.1635 (2) 0.0542 (7)
N1 0.2646 (3) 0.50997 (13) 0.0430 (2) 0.0368 (6)
N2 0.4556 (3) 0.50539 (13) 0.2322 (2) 0.0371 (6)
C1 0.2394 (5) 0.67826 (18) 0.0641 (3) 0.0510 (8)
C2 0.1631 (4) 0.74186 (15) 0.0367 (3) 0.0397 (8)
C3 0.2214 (4) 0.78533 (16) −0.0351 (3) 0.0394 (8)
H3 0.3084 0.7756 −0.0676 0.047*
C4 0.1487 (4) 0.84380 (15) −0.0584 (3) 0.0378 (8)
C5 0.0213 (4) 0.85804 (16) −0.0065 (3) 0.0430 (8)
H5 −0.0261 0.8974 −0.0220 0.052*
C6 −0.0377 (4) 0.81567 (17) 0.0678 (3) 0.0460 (9)
C7 0.0343 (4) 0.75671 (16) 0.0860 (3) 0.0448 (9)
H7 −0.0050 0.7264 0.1325 0.054*
C8 0.2057 (4) 0.89150 (16) −0.1391 (3) 0.0422 (8)
C9 −0.1753 (6) 0.8323 (2) 0.1271 (5) 0.0809 (12)
C13 0.1605 (4) 0.51736 (18) −0.0526 (3) 0.0469 (9)
H13 0.1031 0.5547 −0.0608 0.056*
C14 0.1365 (4) 0.4717 (2) −0.1382 (3) 0.0541 (10)
H14 0.0625 0.4775 −0.2026 0.065*
C15 0.2233 (5) 0.4176 (2) −0.1271 (4) 0.0575 (11)
H15 0.2087 0.3860 −0.1842 0.069*
C16 0.3328 (4) 0.40997 (18) −0.0308 (3) 0.0485 (9)
H16 0.3938 0.3736 −0.0230 0.058*
C17 0.3503 (4) 0.45690 (16) 0.0533 (3) 0.0352 (7)
C18 0.4614 (4) 0.45458 (16) 0.1610 (3) 0.0353 (7)
C19 0.5640 (4) 0.40508 (18) 0.1901 (3) 0.0478 (9)
H19 0.5675 0.3703 0.1402 0.057*
C20 0.6603 (5) 0.4085 (2) 0.2941 (4) 0.0556 (10)
H20 0.7289 0.3755 0.3156 0.067*
C21 0.6549 (5) 0.4606 (2) 0.3664 (3) 0.0548 (10)
H21 0.7203 0.4638 0.4364 0.066*
C22 0.5505 (4) 0.50766 (18) 0.3323 (3) 0.0475 (9)
H22 0.5457 0.5428 0.3811 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C10 0.081 (4) 0.096 (3) 0.134 (4) 0.009 (3) 0.061 (3) 0.009 (3)
C11 0.101 (4) 0.102 (4) 0.118 (4) 0.020 (3) 0.058 (3) −0.004 (3)
C12 0.087 (4) 0.084 (3) 0.144 (5) 0.035 (3) 0.048 (3) 0.007 (3)
C10' 0.081 (4) 0.096 (3) 0.134 (4) 0.009 (3) 0.061 (3) 0.009 (3)
C11' 0.101 (4) 0.102 (4) 0.118 (4) 0.020 (3) 0.058 (3) −0.004 (3)
C12' 0.087 (4) 0.084 (3) 0.144 (5) 0.035 (3) 0.048 (3) 0.007 (3)
Cu1 0.0495 (3) 0.0268 (2) 0.0376 (3) 0.00568 (18) 0.00751 (18) 0.00124 (16)
O1 0.0618 (16) 0.0312 (13) 0.0578 (16) 0.0093 (12) 0.0143 (13) 0.0113 (11)
O2 0.0639 (14) 0.0477 (13) 0.0722 (16) 0.0222 (12) 0.0247 (13) 0.0112 (12)
O3 0.0599 (17) 0.0424 (14) 0.0514 (16) −0.0017 (12) 0.0132 (13) 0.0113 (12)
O4 0.0725 (18) 0.0373 (14) 0.0517 (16) 0.0066 (13) 0.0042 (13) 0.0124 (12)
N1 0.0414 (16) 0.0347 (15) 0.0340 (15) 0.0035 (12) 0.0042 (12) 0.0052 (12)
N2 0.0448 (16) 0.0336 (15) 0.0322 (14) −0.0010 (12) 0.0029 (12) 0.0018 (12)
C1 0.0611 (16) 0.0381 (16) 0.0573 (18) 0.0190 (15) 0.0207 (15) 0.0079 (14)
C2 0.051 (2) 0.0288 (17) 0.0407 (19) 0.0085 (15) 0.0102 (16) 0.0041 (14)
C3 0.046 (2) 0.0351 (18) 0.0373 (18) 0.0047 (15) 0.0085 (15) 0.0008 (15)
C4 0.046 (2) 0.0293 (16) 0.0363 (18) 0.0006 (14) 0.0008 (15) 0.0015 (14)
C5 0.046 (2) 0.0299 (18) 0.051 (2) 0.0079 (15) −0.0001 (16) 0.0030 (15)
C6 0.047 (2) 0.0335 (18) 0.059 (2) 0.0083 (16) 0.0106 (17) 0.0025 (17)
C7 0.051 (2) 0.0324 (18) 0.055 (2) 0.0062 (16) 0.0187 (17) 0.0105 (16)
C8 0.058 (2) 0.0337 (18) 0.0317 (17) −0.0047 (17) −0.0048 (16) 0.0022 (14)
C9 0.075 (3) 0.062 (2) 0.118 (3) 0.021 (2) 0.054 (3) 0.011 (2)
C13 0.047 (2) 0.049 (2) 0.043 (2) 0.0062 (17) 0.0025 (16) 0.0034 (17)
C14 0.047 (2) 0.070 (3) 0.043 (2) −0.009 (2) −0.0010 (17) −0.0015 (19)
C15 0.062 (3) 0.060 (3) 0.049 (2) −0.009 (2) 0.0051 (19) −0.020 (2)
C16 0.052 (2) 0.042 (2) 0.052 (2) 0.0024 (17) 0.0075 (18) −0.0099 (17)
C17 0.0374 (18) 0.0351 (17) 0.0343 (17) −0.0003 (14) 0.0090 (14) 0.0010 (14)
C18 0.0388 (18) 0.0322 (17) 0.0367 (18) 0.0022 (14) 0.0112 (14) 0.0039 (14)
C19 0.053 (2) 0.043 (2) 0.048 (2) 0.0117 (18) 0.0132 (17) 0.0019 (17)
C20 0.055 (2) 0.058 (2) 0.053 (2) 0.020 (2) 0.0061 (19) 0.012 (2)
C21 0.057 (2) 0.061 (3) 0.044 (2) 0.004 (2) −0.0044 (18) 0.0116 (19)
C22 0.057 (2) 0.043 (2) 0.041 (2) −0.0016 (18) 0.0012 (17) 0.0005 (16)

Geometric parameters (Å, °)

C10—C9 1.521 (9) N1—C17 1.341 (4)
C10—H10A 0.9600 N1—C13 1.347 (4)
C10—H10B 0.9600 N2—C22 1.333 (4)
C10—H10C 0.9600 N2—C18 1.348 (4)
C11—C9 1.519 (9) C1—C2 1.505 (5)
C11—H11A 0.9600 C2—C3 1.381 (5)
C11—H11B 0.9600 C2—C7 1.386 (5)
C11—H11C 0.9600 C3—C4 1.390 (5)
C12—C9 1.501 (7) C3—H3 0.9300
C12—H12A 0.9600 C4—C5 1.389 (5)
C12—H12B 0.9600 C4—C8 1.502 (5)
C12—H12C 0.9600 C5—C6 1.387 (5)
C10'—C9 1.504 (8) C5—H5 0.9300
C10'—H10D 0.9600 C6—C7 1.390 (5)
C10'—H10E 0.9600 C6—C9 1.527 (6)
C10'—H10F 0.9600 C7—H7 0.9300
C11'—C9 1.595 (9) C8—Cu1ii 2.538 (4)
C11'—H11D 0.9600 C13—C14 1.368 (5)
C11'—H11E 0.9600 C13—H13 0.9300
C11'—H11F 0.9600 C14—C15 1.365 (6)
C12'—C9 1.502 (8) C14—H14 0.9300
C12'—H12D 0.9600 C15—C16 1.382 (6)
C12'—H12E 0.9600 C15—H15 0.9300
C12'—H12F 0.9600 C16—C17 1.373 (5)
Cu1—O1 1.933 (2) C16—H16 0.9300
Cu1—O3i 1.956 (2) C17—C18 1.477 (5)
Cu1—N1 1.985 (3) C18—C19 1.388 (5)
Cu1—N2 1.983 (3) C19—C20 1.376 (5)
Cu1—C8i 2.538 (4) C19—H19 0.9300
O1—C1 1.273 (4) C20—C21 1.377 (6)
O2—C1 1.233 (5) C20—H20 0.9300
O3—C8 1.279 (5) C21—C22 1.372 (5)
O3—Cu1ii 1.956 (2) C21—H21 0.9300
O4—C8 1.236 (4) C22—H22 0.9300
C9—C10—H10A 109.5 C6—C5—C4 122.4 (3)
C9—C10—H10B 109.5 C6—C5—H5 118.8
H10A—C10—H10B 109.5 C4—C5—H5 118.8
C9—C10—H10C 109.5 C5—C6—C7 116.8 (3)
H10A—C10—H10C 109.5 C5—C6—C9 122.1 (3)
H10B—C10—H10C 109.5 C7—C6—C9 121.0 (4)
C9—C11—H11A 109.5 C2—C7—C6 121.8 (3)
C9—C11—H11B 109.5 C2—C7—H7 119.1
H11A—C11—H11B 109.5 C6—C7—H7 119.1
C9—C11—H11C 109.5 O4—C8—O3 122.7 (3)
H11A—C11—H11C 109.5 O4—C8—C4 119.8 (4)
H11B—C11—H11C 109.5 O3—C8—C4 117.5 (3)
C9—C12—H12A 109.5 O4—C8—Cu1ii 76.6 (2)
C9—C12—H12B 109.5 O3—C8—Cu1ii 49.07 (17)
H12A—C12—H12B 109.5 C4—C8—Cu1ii 155.9 (2)
C9—C12—H12C 109.5 C12—C9—C10' 131.1 (4)
H12A—C12—H12C 109.5 C12'—C9—C10' 115.1 (5)
H12B—C12—H12C 109.5 C12—C9—C11 108.0 (5)
C9—C10'—H10D 109.5 C12'—C9—C11 132.1 (5)
C9—C10'—H10E 109.5 C10'—C9—C11 58.7 (3)
H10D—C10'—H10E 109.5 C12—C9—C10 111.7 (5)
C9—C10'—H10F 109.5 C12'—C9—C10 78.2 (4)
H10D—C10'—H10F 109.5 C10'—C9—C10 49.7 (2)
H10E—C10'—H10F 109.5 C11—C9—C10 108.0 (4)
C9—C11'—H11D 109.5 C12—C9—C6 112.9 (4)
C9—C11'—H11E 109.5 C12'—C9—C6 113.5 (5)
H11D—C11'—H11E 109.5 C10'—C9—C6 115.8 (4)
C9—C11'—H11F 109.5 C11—C9—C6 110.0 (5)
H11D—C11'—H11F 109.5 C10—C9—C6 106.1 (5)
H11E—C11'—H11F 109.5 C12—C9—C11' 67.9 (3)
C9—C12'—H12D 109.5 C12'—C9—C11' 102.3 (4)
C9—C12'—H12E 109.5 C10'—C9—C11' 103.9 (5)
H12D—C12'—H12E 109.5 C11—C9—C11' 47.3 (2)
C9—C12'—H12F 109.5 C10—C9—C11' 146.9 (5)
H12D—C12'—H12F 109.5 C6—C9—C11' 103.9 (5)
H12E—C12'—H12F 109.5 N1—C13—C14 122.2 (4)
O1—Cu1—O3i 88.17 (11) N1—C13—H13 118.9
O1—Cu1—N1 94.83 (11) C14—C13—H13 118.9
O3i—Cu1—N1 172.79 (11) C15—C14—C13 118.7 (4)
O1—Cu1—N2 173.34 (11) C15—C14—H14 120.6
O3i—Cu1—N2 96.69 (11) C13—C14—H14 120.6
N1—Cu1—N2 80.88 (11) C14—C15—C16 119.8 (4)
O1—Cu1—C8i 82.87 (11) C14—C15—H15 120.1
O3i—Cu1—C8i 29.60 (11) C16—C15—H15 120.1
N2—Cu1—C8i 103.60 (11) C17—C16—C15 119.0 (4)
N1—Cu1—C8i 144.33 (12) C17—C16—H16 120.5
C1—O1—Cu1 106.8 (2) C15—C16—H16 120.5
C8—O3—Cu1ii 101.3 (2) N1—C17—C16 121.4 (3)
C17—N1—C13 118.9 (3) N1—C17—C18 114.0 (3)
C17—N1—Cu1 115.6 (2) C16—C17—C18 124.6 (3)
C13—N1—Cu1 125.4 (2) N2—C18—C19 121.3 (3)
C22—N2—C18 118.9 (3) N2—C18—C17 114.2 (3)
C22—N2—Cu1 125.8 (2) C19—C18—C17 124.5 (3)
C18—N2—Cu1 115.3 (2) C20—C19—C18 118.7 (4)
O2—C1—O1 123.0 (3) C20—C19—H19 120.7
O2—C1—C2 120.3 (3) C18—C19—H19 120.7
O1—C1—C2 116.7 (3) C19—C20—C21 120.0 (4)
C3—C2—C7 120.3 (3) C19—C20—H20 120.0
C3—C2—C1 120.6 (3) C21—C20—H20 120.0
C7—C2—C1 119.1 (3) C22—C21—C20 118.2 (4)
C2—C3—C4 119.3 (3) C22—C21—H21 120.9
C2—C3—H3 120.4 C20—C21—H21 120.9
C4—C3—H3 120.4 N2—C22—C21 123.0 (4)
C5—C4—C3 119.4 (3) N2—C22—H22 118.5
C5—C4—C8 119.7 (3) C21—C22—H22 118.5
C3—C4—C8 120.9 (3)
O3i—Cu1—O1—C1 84.9 (3) C3—C4—C8—Cu1ii 47.6 (8)
N1—Cu1—O1—C1 −101.7 (3) C5—C6—C9—C12 −6.0 (7)
C8i—Cu1—O1—C1 114.1 (3) C7—C6—C9—C12 174.1 (5)
O1—Cu1—N1—C17 176.4 (2) C5—C6—C9—C12' 32.7 (7)
N2—Cu1—N1—C17 1.5 (2) C7—C6—C9—C12' −147.2 (5)
C8i—Cu1—N1—C17 −99.1 (3) C5—C6—C9—C10' 169.2 (6)
N2—Cu1—N1—C13 −180.0 (3) C7—C6—C9—C10' −10.7 (8)
C8i—Cu1—N1—C13 79.4 (3) C5—C6—C9—C11 −126.8 (5)
O3i—Cu1—N2—C22 −7.2 (3) C7—C6—C9—C11 53.3 (7)
N1—Cu1—N2—C22 179.6 (3) C5—C6—C9—C10 116.6 (5)
C8i—Cu1—N2—C22 −36.5 (3) C7—C6—C9—C10 −63.3 (6)
O3i—Cu1—N2—C18 172.5 (2) C5—C6—C9—C11' −77.6 (6)
N1—Cu1—N2—C18 −0.6 (2) C7—C6—C9—C11' 102.6 (5)
C8i—Cu1—N2—C18 143.3 (2) C17—N1—C13—C14 1.8 (5)
Cu1—O1—C1—O2 17.2 (5) Cu1—N1—C13—C14 −176.7 (3)
Cu1—O1—C1—C2 −162.2 (3) N1—C13—C14—C15 −1.4 (6)
O2—C1—C2—C3 18.7 (6) C13—C14—C15—C16 −0.1 (6)
O1—C1—C2—C3 −162.0 (3) C14—C15—C16—C17 1.1 (6)
O2—C1—C2—C7 −160.4 (4) C13—N1—C17—C16 −0.7 (5)
O1—C1—C2—C7 19.0 (5) Cu1—N1—C17—C16 178.0 (3)
C7—C2—C3—C4 −0.7 (5) C13—N1—C17—C18 179.3 (3)
C1—C2—C3—C4 −179.7 (3) Cu1—N1—C17—C18 −2.1 (4)
C2—C3—C4—C5 1.7 (5) C15—C16—C17—N1 −0.7 (6)
C2—C3—C4—C8 −178.1 (3) C15—C16—C17—C18 179.3 (3)
C3—C4—C5—C6 −0.5 (5) C22—N2—C18—C19 −0.1 (5)
C8—C4—C5—C6 179.3 (3) Cu1—N2—C18—C19 −179.8 (3)
C4—C5—C6—C7 −1.7 (6) C22—N2—C18—C17 179.5 (3)
C4—C5—C6—C9 178.4 (4) Cu1—N2—C18—C17 −0.3 (4)
C3—C2—C7—C6 −1.7 (6) N1—C17—C18—N2 1.5 (4)
C1—C2—C7—C6 177.4 (4) C16—C17—C18—N2 −178.5 (3)
C5—C6—C7—C2 2.8 (6) N1—C17—C18—C19 −178.9 (3)
C9—C6—C7—C2 −177.3 (4) C16—C17—C18—C19 1.1 (5)
Cu1ii—O3—C8—O4 −22.7 (4) N2—C18—C19—C20 0.4 (5)
Cu1ii—O3—C8—C4 155.6 (2) C17—C18—C19—C20 −179.2 (3)
C5—C4—C8—O4 −3.7 (5) C18—C19—C20—C21 −0.8 (6)
C3—C4—C8—O4 176.1 (3) C19—C20—C21—C22 0.9 (6)
C5—C4—C8—O3 178.0 (3) C18—N2—C22—C21 0.2 (5)
C3—C4—C8—O3 −2.2 (5) Cu1—N2—C22—C21 180.0 (3)
C5—C4—C8—Cu1ii −132.2 (6) C20—C21—C22—N2 −0.6 (6)

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2072).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chang, F., Wang, Z.-M., Sun, H.-L., Wen, G.-H. & Zhang, X.-X. (2005). Dalton Trans. pp. 2976–2978. [DOI] [PubMed]
  4. Ma, C.-B., Chen, C.-N., Liu, Q.-T., Liao, D.-Z. & Li, L.-C. (2008). Eur. J. Inorg. Chem. pp. 1865–1870.
  5. Ma, L.-F., Wang, L.-Y., Huo, X.-K., Wang, Y.-Y., Fan, Y.-T., Wang, J.-G. & Chen, S. H. (2008). Cryst. Growth Des.8, 620–628.
  6. Ma, L.-F., Wang, Y.-Y., Wang, L.-Y., Liu, J.-Q., Wu, Y.-P., Wang, J.-G., Shi, Q.-Z. & Peng, S. M. (2008). Eur. J. Inorg. Chem. pp. 693–703.
  7. Pan, L., Parker, B., Huang, X. Y., Oison, D. H., Lee, J. Y. & Li, J. (2006). J. Am. Chem. Soc.128, 4180–4181. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Xu, Y.-Q., Yuan, D.-Q., Wu, B.-L., Han, L., Wu, M.-Y., Jiang, F.-L. & Hong, M.-C. (2006). Cryst. Growth Des.6, 1168–1174.
  10. Yang, S.-Y., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2002). Chem. Commun. pp. 472–473. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035484/su2072sup1.cif

e-64-m1501-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035484/su2072Isup2.hkl

e-64-m1501-Isup2.hkl (193.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES