Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):o2343. doi: 10.1107/S1600536808036969

Tetra­ethyl­ammonium l-tartarate dihydrate

Mohd Basyaruddin Abdul Rahman a,, Khairulazhar Jumbri a, Kamaliah Sirat a, Reza Kia b, Hoong-Kun Fun b,*
PMCID: PMC2960025  PMID: 21581318

Abstract

In the crystal structure of the title compound, C8H20N+·C4H5O6 ·2H2O, the ions and water mol­ecules are linked via O—H⋯O and C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001).

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Allen et al. (2006); Jiang et al. (2008); Mei et al. (2002).graphic file with name e-64-o2343-scheme1.jpg

Experimental

Crystal data

  • C8H20N+·C4H5O6 ·2H2O

  • M r = 315.36

  • Monoclinic, Inline graphic

  • a = 7.4074 (1) Å

  • b = 13.8989 (2) Å

  • c = 8.0546 (1) Å

  • β = 106.553 (1)°

  • V = 794.89 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100.0 (1) K

  • 0.47 × 0.45 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.861, T max = 0.981

  • 10518 measured reflections

  • 3579 independent reflections

  • 3240 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.092

  • S = 1.05

  • 3579 reflections

  • 218 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036969/ci2709sup1.cif

e-64-o2343-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036969/ci2709Isup2.hkl

e-64-o2343-Isup2.hkl (175.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O5i 1.00 (2) 1.52 (2) 2.5108 (13) 173 (2)
O3—H1O3⋯O1Wii 0.91 (2) 1.85 (2) 2.7191 (14) 162 (2)
O4—H1O4⋯O2Wiii 0.84 (2) 2.18 (2) 2.9780 (16) 160 (2)
O1W—H1W1⋯O2iv 0.82 (2) 2.56 (2) 3.0668 (14) 122 (2)
O1W—H1W1⋯O2Wv 0.82 (2) 2.57 (2) 3.2155 (16) 137 (2)
O1W—H2W1⋯O6iii 0.88 (3) 2.00 (3) 2.8672 (15) 171 (2)
O2W—H2W2⋯O1vi 0.84 (2) 2.40 (2) 3.0082 (14) 129 (2)
C5—H5A⋯O3vii 0.97 2.56 3.4344 (15) 151
C8—H8B⋯O4 0.96 2.38 3.3447 (16) 178
C10—H10B⋯O3vii 0.96 2.47 3.4195 (16) 168
C11—H11A⋯O4 0.97 2.50 3.2693 (15) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

MBAR, KJ and KS thank the Ministry of Higher Education of Malaysia for the research grant 05-10-07-377FR (Fundamental Research Grant Scheme-FRGS). HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship.

supplementary crystallographic information

Comment

The crystal structures of chiral complexes of the plant acid (L-tartaric acid) with tetraethylammonium have been investigated in our laboratory in order to understand the nature of intramolecular and intermolecular interactions. The title compound was obtained by neutralization method at room temperature. Some other related compounds containing the same cation have been previously reported (Jiang et al., 2008; Allen et al., 2006). The crystal structure of bis(tetraethylammonium) tartrate bis(thiourea) dihydrate has also been reported (Mei et al., 2002).

The asymmetric unit of the title compound (Fig. 1) contains a tartarate anion, a tetraethylammonium cation and two water molecules of crystallization. Two intermolecular C—H···O hydrogen bonds involving O4 as a bifurcated acceptor link anion and cation in the asymmetric unit to form a seven-membered ring, with R12(7) ring motif (Bernstein et al., 1995). In the crystal structure, the ionic units and water molecules are linked via O—H···O and C—H···O hydrogen bonds (Table 1) forming a two-dimensional network parallel to the (001) [Fig. 2].

Experimental

L-Tartaric acid (7.504 g, 0.05 mol) was first dissolved in 20 ml of distilled water in a 50 ml beaker. An aqueous solution (20% in water) of tetraethylammonium hydroxide (36.59 ml, 0.05 mol) was added slowly into an aqueous solution of L-tartaric acid and the mixture was stirred with a magnetic stirrer for 2 h at room temperature. A white solid product was obtained after being dried at 343 K under vacuum for 2 d. The product was dissolved in methanol and then covered by aluminium foil to allow slow evaporation at room temperature. Clear crystalline solid was obtained after 3 d. Decomposition temperature range (471.35–472.6 K). Analysis calculated (%): C 51.60, H 9.02, N 5.01%; found: C 50.53, H 9.09, N 3.28%.

Refinement

O-bound H atoms were located in a difference Fourier map and refined freely [O—H = 0.83 (3)–1.01 (3) Å]. C-bound H atoms were positioned geometrically [C—H = 0.93–0.98 Å] and refined as a riding model, with Uiso(H) = 1.2–1.5Ueq(C). A rotating group model was used for the methyl groups. In the absence of significant anomalous dispersion effects, Friedel pairs were merged before the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewd down the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H20N+·C4H5O6·2H2O F000 = 344
Mr = 315.36 Dx = 1.318 Mg m3
Monoclinic, P21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4555 reflections
a = 7.4074 (1) Å θ = 2.6–33.5º
b = 13.8989 (2) Å µ = 0.11 mm1
c = 8.0546 (1) Å T = 100.0 (1) K
β = 106.553 (1)º Block, colourless
V = 794.891 (19) Å3 0.47 × 0.45 × 0.17 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3579 independent reflections
Radiation source: fine-focus sealed tube 3240 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.031
T = 100.0(1) K θmax = 35.0º
φ and ω scans θmin = 2.6º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −9→11
Tmin = 0.861, Tmax = 0.981 k = −22→17
10518 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092   w = 1/[σ2(Fo2) + (0.0494P)2 + 0.0426P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3579 reflections Δρmax = 0.29 e Å3
218 parameters Δρmin = −0.23 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.71436 (14) 0.19227 (7) −0.03566 (13) 0.01818 (18)
O2 1.02013 (14) 0.23261 (7) 0.04449 (14) 0.0201 (2)
O3 0.61932 (14) 0.36818 (7) −0.18764 (12) 0.01677 (18)
O4 0.68458 (16) 0.39108 (7) 0.17930 (13) 0.0190 (2)
C1 0.83853 (18) 0.25107 (9) −0.01824 (15) 0.0138 (2)
C2 0.79871 (18) 0.35668 (9) −0.06869 (15) 0.0134 (2)
H2A 0.8929 0.3785 −0.1246 0.016*
C3 0.81928 (18) 0.41837 (9) 0.09447 (16) 0.0144 (2)
H3A 0.9446 0.4064 0.1739 0.017*
C4 0.80699 (19) 0.52553 (9) 0.04614 (16) 0.0156 (2)
N1 0.61784 (16) 0.13577 (8) 0.44527 (13) 0.01415 (19)
C5 0.68066 (19) 0.05680 (10) 0.34333 (17) 0.0169 (2)
H5A 0.5698 0.0232 0.2745 0.020*
H5B 0.7406 0.0866 0.2638 0.020*
C6 0.8153 (2) −0.01643 (11) 0.4516 (2) 0.0249 (3)
H6A 0.8474 −0.0632 0.3769 0.037*
H6B 0.7563 −0.0481 0.5285 0.037*
H6C 0.9275 0.0156 0.5181 0.037*
C7 0.78506 (19) 0.18803 (10) 0.56438 (16) 0.0174 (2)
H7A 0.7381 0.2382 0.6249 0.021*
H7B 0.8550 0.1428 0.6507 0.021*
C8 0.9195 (2) 0.23319 (12) 0.47596 (19) 0.0227 (3)
H8A 1.0203 0.2644 0.5609 0.034*
H8B 0.8532 0.2797 0.3926 0.034*
H8C 0.9703 0.1841 0.4183 0.034*
C9 0.50734 (19) 0.09482 (11) 0.56176 (16) 0.0186 (2)
H9A 0.5880 0.0505 0.6428 0.022*
H9B 0.4763 0.1471 0.6286 0.022*
C10 0.3270 (2) 0.04279 (11) 0.46895 (19) 0.0218 (3)
H10A 0.2674 0.0194 0.5523 0.033*
H10B 0.3558 −0.0104 0.4047 0.033*
H10C 0.2437 0.0864 0.3910 0.033*
C11 0.49727 (18) 0.20335 (10) 0.31067 (15) 0.0157 (2)
H11A 0.5737 0.2288 0.2411 0.019*
H11B 0.3959 0.1665 0.2344 0.019*
C12 0.4121 (2) 0.28706 (11) 0.38285 (18) 0.0205 (3)
H12A 0.3389 0.3259 0.2891 0.031*
H12B 0.5110 0.3253 0.4562 0.031*
H12C 0.3325 0.2630 0.4489 0.031*
O1W 0.30848 (16) 0.27561 (10) 0.84652 (15) 0.0243 (2)
O2W 0.69834 (18) 0.97603 (9) 0.95574 (16) 0.0252 (2)
O5 0.93673 (14) 0.55475 (7) −0.01728 (15) 0.0218 (2)
O6 0.67739 (15) 0.57466 (8) 0.07043 (14) 0.0226 (2)
H1O2 1.043 (4) 0.161 (2) 0.045 (3) 0.045 (7)*
H1O3 0.534 (3) 0.3304 (19) −0.159 (3) 0.036 (6)*
H1O4 0.590 (3) 0.422 (2) 0.122 (3) 0.033 (6)*
H1W1 0.260 (4) 0.306 (2) 0.911 (4) 0.055 (8)*
H2W1 0.316 (4) 0.216 (2) 0.884 (3) 0.043 (7)*
H1W2 0.818 (4) 0.9985 (19) 0.980 (3) 0.037 (6)*
H2W2 0.630 (4) 1.025 (2) 0.962 (3) 0.039 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0174 (4) 0.0115 (4) 0.0261 (4) −0.0015 (3) 0.0070 (4) 0.0010 (4)
O2 0.0150 (4) 0.0121 (4) 0.0307 (5) 0.0009 (4) 0.0027 (4) −0.0024 (4)
O3 0.0174 (4) 0.0135 (4) 0.0167 (4) −0.0013 (3) 0.0006 (3) 0.0020 (3)
O4 0.0242 (5) 0.0155 (4) 0.0191 (4) 0.0013 (4) 0.0091 (4) 0.0022 (3)
C1 0.0164 (5) 0.0107 (5) 0.0146 (4) 0.0011 (4) 0.0050 (4) −0.0005 (4)
C2 0.0151 (5) 0.0095 (5) 0.0156 (4) −0.0007 (4) 0.0040 (4) 0.0005 (4)
C3 0.0161 (5) 0.0096 (5) 0.0162 (5) 0.0001 (4) 0.0024 (4) −0.0005 (4)
C4 0.0164 (5) 0.0104 (5) 0.0180 (5) −0.0001 (4) 0.0013 (4) −0.0010 (4)
N1 0.0153 (5) 0.0138 (5) 0.0131 (4) −0.0007 (4) 0.0037 (3) 0.0003 (3)
C5 0.0185 (5) 0.0134 (5) 0.0191 (5) −0.0001 (5) 0.0057 (4) −0.0026 (4)
C6 0.0232 (7) 0.0160 (6) 0.0349 (7) 0.0027 (5) 0.0071 (6) 0.0032 (5)
C7 0.0168 (5) 0.0175 (6) 0.0156 (5) −0.0016 (5) 0.0007 (4) −0.0013 (4)
C8 0.0191 (6) 0.0217 (7) 0.0256 (6) −0.0052 (5) 0.0036 (5) 0.0012 (5)
C9 0.0200 (6) 0.0209 (6) 0.0162 (5) −0.0018 (5) 0.0073 (4) 0.0025 (4)
C10 0.0196 (6) 0.0221 (7) 0.0254 (6) −0.0029 (5) 0.0089 (5) 0.0024 (5)
C11 0.0171 (5) 0.0147 (5) 0.0140 (4) 0.0012 (4) 0.0024 (4) 0.0012 (4)
C12 0.0213 (6) 0.0161 (6) 0.0235 (6) 0.0025 (5) 0.0055 (5) −0.0020 (5)
O1W 0.0200 (5) 0.0272 (6) 0.0262 (5) −0.0003 (4) 0.0076 (4) 0.0019 (4)
O2W 0.0250 (6) 0.0191 (5) 0.0321 (5) −0.0048 (4) 0.0094 (4) −0.0044 (4)
O5 0.0187 (4) 0.0118 (4) 0.0361 (5) −0.0022 (4) 0.0096 (4) 0.0006 (4)
O6 0.0245 (5) 0.0164 (5) 0.0286 (5) 0.0071 (4) 0.0102 (4) 0.0021 (4)

Geometric parameters (Å, °)

O1—C1 1.2084 (16) C6—H6C 0.96
O2—C1 1.3203 (15) C7—C8 1.516 (2)
O2—H1O2 1.01 (3) C7—H7A 0.97
O3—C2 1.4085 (16) C7—H7B 0.97
O3—H1O3 0.90 (3) C8—H8A 0.96
O4—C3 1.4124 (17) C8—H8B 0.96
O4—H1O4 0.84 (3) C8—H8C 0.96
C1—C2 1.5292 (17) C9—C10 1.516 (2)
C2—C3 1.5400 (17) C9—H9A 0.97
C2—H2A 0.98 C9—H9B 0.97
C3—C4 1.5356 (18) C10—H10A 0.96
C3—H3A 0.98 C10—H10B 0.96
C4—O6 1.2382 (17) C10—H10C 0.96
C4—O5 1.2763 (17) C11—C12 1.516 (2)
N1—C11 1.5178 (16) C11—H11A 0.97
N1—C7 1.5183 (17) C11—H11B 0.97
N1—C9 1.5205 (16) C12—H12A 0.96
N1—C5 1.5209 (17) C12—H12B 0.96
C5—C6 1.515 (2) C12—H12C 0.96
C5—H5A 0.97 O1W—H1W1 0.83 (3)
C5—H5B 0.97 O1W—H2W1 0.88 (3)
C6—H6A 0.96 O2W—H1W2 0.91 (3)
C6—H6B 0.96 O2W—H2W2 0.85 (3)
C1—O2—H1O2 110.3 (15) C8—C7—N1 115.36 (10)
C2—O3—H1O3 110.7 (16) C8—C7—H7A 108.4
C3—O4—H1O4 101.3 (17) N1—C7—H7A 108.4
O1—C1—O2 124.88 (12) C8—C7—H7B 108.4
O1—C1—C2 122.38 (11) N1—C7—H7B 108.4
O2—C1—C2 112.74 (11) H7A—C7—H7B 107.5
O3—C2—C1 111.28 (10) C7—C8—H8A 109.5
O3—C2—C3 111.23 (10) C7—C8—H8B 109.5
C1—C2—C3 110.06 (10) H8A—C8—H8B 109.5
O3—C2—H2A 108.0 C7—C8—H8C 109.5
C1—C2—H2A 108.0 H8A—C8—H8C 109.5
C3—C2—H2A 108.0 H8B—C8—H8C 109.5
O4—C3—C4 112.59 (11) C10—C9—N1 115.34 (10)
O4—C3—C2 110.58 (10) C10—C9—H9A 108.4
C4—C3—C2 109.84 (10) N1—C9—H9A 108.4
O4—C3—H3A 107.9 C10—C9—H9B 108.4
C4—C3—H3A 107.9 N1—C9—H9B 108.4
C2—C3—H3A 107.9 H9A—C9—H9B 107.5
O6—C4—O5 126.43 (13) C9—C10—H10A 109.5
O6—C4—C3 119.17 (12) C9—C10—H10B 109.5
O5—C4—C3 114.40 (11) H10A—C10—H10B 109.5
C11—N1—C7 111.31 (10) C9—C10—H10C 109.5
C11—N1—C9 111.21 (10) H10A—C10—H10C 109.5
C7—N1—C9 105.96 (9) H10B—C10—H10C 109.5
C11—N1—C5 105.62 (9) C12—C11—N1 115.18 (10)
C7—N1—C5 111.49 (10) C12—C11—H11A 108.5
C9—N1—C5 111.36 (10) N1—C11—H11A 108.5
C6—C5—N1 115.24 (11) C12—C11—H11B 108.5
C6—C5—H5A 108.5 N1—C11—H11B 108.5
N1—C5—H5A 108.5 H11A—C11—H11B 107.5
C6—C5—H5B 108.5 C11—C12—H12A 109.5
N1—C5—H5B 108.5 C11—C12—H12B 109.5
H5A—C5—H5B 107.5 H12A—C12—H12B 109.5
C5—C6—H6A 109.5 C11—C12—H12C 109.5
C5—C6—H6B 109.5 H12A—C12—H12C 109.5
H6A—C6—H6B 109.5 H12B—C12—H12C 109.5
C5—C6—H6C 109.5 H1W1—O1W—H2W1 106 (3)
H6A—C6—H6C 109.5 H1W2—O2W—H2W2 106 (2)
H6B—C6—H6C 109.5
O1—C1—C2—O3 −20.73 (16) C11—N1—C5—C6 175.99 (11)
O2—C1—C2—O3 159.12 (10) C7—N1—C5—C6 54.95 (15)
O1—C1—C2—C3 103.04 (13) C9—N1—C5—C6 −63.16 (15)
O2—C1—C2—C3 −77.11 (13) C11—N1—C7—C8 −60.40 (15)
O3—C2—C3—O4 60.68 (13) C9—N1—C7—C8 178.57 (12)
C1—C2—C3—O4 −63.12 (13) C5—N1—C7—C8 57.25 (15)
O3—C2—C3—C4 −64.19 (13) C11—N1—C9—C10 56.22 (15)
C1—C2—C3—C4 172.01 (10) C7—N1—C9—C10 177.31 (12)
O4—C3—C4—O6 −5.84 (16) C5—N1—C9—C10 −61.29 (15)
C2—C3—C4—O6 117.86 (13) C7—N1—C11—C12 −60.88 (14)
O4—C3—C4—O5 174.27 (11) C9—N1—C11—C12 57.02 (14)
C2—C3—C4—O5 −62.03 (14) C5—N1—C11—C12 177.97 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H1O2···O5i 1.00 (2) 1.52 (2) 2.5108 (13) 173 (2)
O3—H1O3···O1Wii 0.91 (2) 1.85 (2) 2.7191 (14) 162 (2)
O4—H1O4···O2Wiii 0.84 (2) 2.18 (2) 2.9780 (16) 160 (2)
O1W—H1W1···O2iv 0.82 (2) 2.56 (2) 3.0668 (14) 122 (2)
O1W—H1W1···O2Wv 0.82 (2) 2.57 (2) 3.2155 (16) 137 (2)
O1W—H2W1···O6iii 0.88 (3) 2.00 (3) 2.8672 (15) 171 (2)
O2W—H2W2···O1vi 0.84 (2) 2.40 (2) 3.0082 (14) 129 (2)
C5—H5A···O3vii 0.97 2.56 3.4344 (15) 151
C8—H8B···O4 0.96 2.38 3.3447 (16) 178
C10—H10B···O3vii 0.96 2.47 3.4195 (16) 168
C11—H11A···O4 0.97 2.50 3.2693 (15) 136

Symmetry codes: (i) −x+2, y−1/2, −z; (ii) x, y, z−1; (iii) −x+1, y−1/2, −z+1; (iv) x−1, y, z+1; (v) −x+1, y−1/2, −z+2; (vi) x, y+1, z+1; (vii) −x+1, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2709).

References

  1. Allen, C. R., Richard, P. L., van de Ward, A. J., Water, L. G. A., Masters, A. F. & Maschmeyer, T. (2006). Tetrahedron Lett.47, 7367–7370.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Jiang, Y.-Y., Wang, G.-N., Zhou, Z., Wu, Y.-T., Geng, J. & Zhang, Z.-B. (2008). Chem. Commun.8, 505–507. [DOI] [PubMed]
  5. Mei, S., Jin-Nan, Z. & Qi, L. (2002). Acta Chim. Sinica, 60, 1017–1024.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036969/ci2709sup1.cif

e-64-o2343-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036969/ci2709Isup2.hkl

e-64-o2343-Isup2.hkl (175.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES