Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 20;64(Pt 12):o2380. doi: 10.1107/S1600536808037550

Methyl (4-bromo­benzene­sulfonamido)acetate

Muhammad Nadeem Arshad a, M Nawaz Tahir b,*, Islam Ullah Khan a, Ejaz Ahmad a, Muhammad Shafiq a
PMCID: PMC2960029  PMID: 21581352

Abstract

The title compound, C9H10BrNO4S, is an inter­mediate for the formation of benzothia­zines. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules, forming R 2 2(10) ring motifs, which are linked into a two-dimensional polymeric sheet through inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background, see: Arshad et al. (2008); Tahir et al. (2008). For a related structure, see: Bornaghi et al. (2005). For ring motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-o2380-scheme1.jpg

Experimental

Crystal data

  • C9H10BrNO4S

  • M r = 308.15

  • Triclinic, Inline graphic

  • a = 6.0451 (2) Å

  • b = 7.0369 (2) Å

  • c = 13.8695 (5) Å

  • α = 83.866 (2)°

  • β = 81.190 (1)°

  • γ = 87.027 (2)°

  • V = 579.31 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.73 mm−1

  • T = 296 (2) K

  • 0.23 × 0.18 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.449, T max = 0.639

  • 13148 measured reflections

  • 2846 independent reflections

  • 1893 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.116

  • S = 1.04

  • 2846 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037550/hk2573sup1.cif

e-64-o2380-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037550/hk2573Isup2.hkl

e-64-o2380-Isup2.hkl (136.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.41 2.987 (4) 125
C3—H3A⋯O3ii 0.97 2.50 3.410 (4) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MNA gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholar­ship under the Indigenous PhD Programme (PIN 042-120607-PS2-183).

supplementary crystallographic information

Comment

The glycine methyl ester is the simplest among the amino acids and the p-bromobenzenesulfonyl chloride is also comercially available. We have synthesized the title compound, (I), from their condensation. It has been prepared as an intermediate for the formation of benzothiazines, which are of our research interest (Arshad et al., 2008; Tahir et al., 2008).

In the molecule of the title compound, (I), (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges, and are comparable with the corresponding values in N-(2-nitrophenylsulfonyl)glycine methyl ester, (II), (Bornaghi et al., 2005). Ring A (C4-C9) is, of course, planar, and the Br atom lies slightly out of the ring plane [0.069 (3) Å]. The S1-N1 bond is almost perpendicular to the ring plane, with N1-S1-C4-C5 [-83.4 (3)°] and/or N1/S1/C4/C9 [93.7 (3)°] torsion angles. The (O1/O2/C1-C3) moiety is planar, and it is oriented with respect to ring A at a dihedral angle of 87.74 (3)°.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules to form R22(10) ring motifs (Bernstein et al., 1995), in which they are linked to form a two dimensional polymeric sheet through intermolecular C-H···O hydrogen bonds (Table 1, Fig. 2).

Experimental

Glycine methyl ester hydrochloride (0.246 g, 1.95 mmol) was dissolved in water (10 ml) in round bottom flask. The pH of the solution was adjusted to 8–9 using sodium carbonate (1 N), and then 4-bromo benzene sulfonyl chloride (0.5 g, 1.95 mmol) was added. The mixture was stirred for 2 h at room temperature. During the reaction, pH was strictly maintained at 8–9 as HCl produced, which lowers the pH. Colorless solid product obtained was washed, dried and recrystalized from methanol for X-ray analysis (m.p. 393-394 K).

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme.

Fig. 2.

Fig. 2.

A partial packing diagram. Hydrogen bonds are shown as dashed lines.

Crystal data

C9H10BrNO4S Z = 2
Mr = 308.15 F000 = 308
Triclinic, P1 Dx = 1.767 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 6.0451 (2) Å Cell parameters from 2846 reflections
b = 7.0369 (2) Å θ = 1.5–28.3º
c = 13.8695 (5) Å µ = 3.73 mm1
α = 83.866 (2)º T = 296 (2) K
β = 81.190 (1)º Prism, colorless
γ = 87.027 (2)º 0.23 × 0.18 × 0.12 mm
V = 579.31 (3) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 2846 independent reflections
Radiation source: fine-focus sealed tube 1893 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.038
Detector resolution: 7.40 pixels mm-1 θmax = 28.3º
T = 296(2) K θmin = 1.5º
ω scans h = −8→8
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −9→9
Tmin = 0.449, Tmax = 0.639 l = −18→18
13148 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.116   w = 1/[σ2(Fo2) + (0.0448P)2 + 0.5395P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2846 reflections Δρmax = 0.53 e Å3
145 parameters Δρmin = −0.59 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.31108 (8) 0.18201 (7) 0.47759 (3) 0.0859 (2)
S1 −0.15899 (12) 0.80316 (11) 0.19808 (6) 0.0428 (2)
O1 0.4939 (4) 0.7999 (3) −0.06466 (17) 0.0535 (6)
O2 0.2102 (5) 0.6116 (4) −0.06458 (19) 0.0694 (8)
O3 −0.3871 (3) 0.7563 (4) 0.20253 (19) 0.0589 (6)
O4 −0.1032 (4) 0.9893 (3) 0.21559 (19) 0.0602 (6)
N1 −0.0358 (4) 0.7668 (4) 0.08966 (18) 0.0426 (6)
H1 −0.1060 0.7168 0.0497 0.051*
C1 0.6104 (7) 0.7313 (6) −0.1532 (3) 0.0720 (12)
H1A 0.7505 0.7935 −0.1714 0.108*
H1B 0.5207 0.7589 −0.2048 0.108*
H1C 0.6379 0.5957 −0.1425 0.108*
C2 0.2962 (5) 0.7298 (4) −0.0293 (2) 0.0411 (7)
C3 0.1966 (5) 0.8203 (5) 0.0605 (2) 0.0427 (7)
H3A 0.2818 0.7791 0.1133 0.051*
H3B 0.2032 0.9583 0.0477 0.051*
C4 −0.0381 (5) 0.6363 (4) 0.2804 (2) 0.0385 (6)
C5 −0.1158 (6) 0.4529 (5) 0.2982 (2) 0.0482 (8)
H5 −0.2363 0.4206 0.2696 0.058*
C6 −0.0151 (6) 0.3180 (5) 0.3582 (2) 0.0534 (8)
H6 −0.0672 0.1944 0.3709 0.064*
C7 0.1645 (6) 0.3690 (6) 0.3992 (2) 0.0528 (9)
C8 0.2420 (6) 0.5515 (6) 0.3828 (3) 0.0549 (9)
H8 0.3625 0.5834 0.4115 0.066*
C9 0.1398 (5) 0.6868 (5) 0.3233 (2) 0.0484 (8)
H9 0.1898 0.8111 0.3121 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0822 (3) 0.1005 (4) 0.0689 (3) 0.0267 (3) −0.0172 (2) 0.0133 (2)
S1 0.0313 (4) 0.0443 (5) 0.0512 (5) −0.0016 (3) −0.0027 (3) −0.0019 (3)
O1 0.0403 (12) 0.0621 (15) 0.0588 (14) −0.0191 (10) 0.0057 (10) −0.0201 (12)
O2 0.0744 (17) 0.0703 (18) 0.0649 (16) −0.0429 (14) 0.0103 (13) −0.0240 (14)
O3 0.0288 (11) 0.0740 (17) 0.0704 (16) −0.0032 (10) −0.0048 (10) 0.0059 (13)
O4 0.0603 (15) 0.0420 (14) 0.0770 (18) 0.0016 (11) −0.0034 (13) −0.0112 (12)
N1 0.0335 (13) 0.0531 (16) 0.0423 (14) −0.0158 (11) −0.0078 (10) 0.0004 (12)
C1 0.060 (2) 0.078 (3) 0.076 (3) −0.016 (2) 0.020 (2) −0.031 (2)
C2 0.0409 (16) 0.0361 (16) 0.0465 (17) −0.0116 (12) −0.0062 (13) −0.0003 (13)
C3 0.0363 (16) 0.0476 (18) 0.0453 (17) −0.0140 (13) −0.0052 (12) −0.0053 (14)
C4 0.0320 (14) 0.0470 (17) 0.0359 (15) −0.0035 (12) −0.0008 (11) −0.0067 (13)
C5 0.0478 (18) 0.052 (2) 0.0467 (18) −0.0114 (15) −0.0110 (14) −0.0048 (15)
C6 0.061 (2) 0.050 (2) 0.0488 (19) −0.0070 (16) −0.0077 (16) −0.0017 (15)
C7 0.0484 (19) 0.071 (2) 0.0348 (16) 0.0117 (17) 0.0007 (14) −0.0016 (15)
C8 0.0398 (17) 0.076 (3) 0.050 (2) −0.0057 (16) −0.0110 (14) −0.0062 (18)
C9 0.0386 (17) 0.055 (2) 0.0524 (19) −0.0110 (14) −0.0041 (14) −0.0102 (16)

Geometric parameters (Å, °)

Br1—C7 1.889 (3) C3—N1 1.458 (4)
S1—O4 1.424 (2) C3—H3A 0.9700
S1—O3 1.425 (2) C3—H3B 0.9700
S1—N1 1.613 (3) C4—C5 1.381 (4)
S1—C4 1.759 (3) C4—C9 1.385 (4)
O1—C2 1.320 (3) C5—C6 1.374 (5)
O1—C1 1.436 (4) C5—H5 0.9300
O2—C2 1.188 (4) C6—C7 1.381 (5)
N1—H1 0.8600 C6—H6 0.9300
C1—H1A 0.9600 C7—C8 1.374 (5)
C1—H1B 0.9600 C8—C9 1.377 (5)
C1—H1C 0.9600 C8—H8 0.9300
C2—C3 1.489 (4) C9—H9 0.9300
O4—S1—O3 120.49 (15) N1—C3—H3B 109.6
O4—S1—N1 106.96 (14) C2—C3—H3B 109.6
O3—S1—N1 106.53 (14) H3A—C3—H3B 108.1
O4—S1—C4 107.89 (15) C5—C4—C9 120.5 (3)
O3—S1—C4 107.66 (14) C5—C4—S1 119.4 (2)
N1—S1—C4 106.55 (14) C9—C4—S1 120.1 (2)
C2—O1—C1 117.5 (3) C6—C5—C4 120.1 (3)
C3—N1—S1 118.9 (2) C6—C5—H5 120.0
C3—N1—H1 120.6 C4—C5—H5 120.0
S1—N1—H1 120.6 C5—C6—C7 118.9 (3)
O1—C1—H1A 109.5 C5—C6—H6 120.6
O1—C1—H1B 109.5 C7—C6—H6 120.6
H1A—C1—H1B 109.5 C8—C7—C6 121.6 (3)
O1—C1—H1C 109.5 C8—C7—Br1 119.2 (3)
H1A—C1—H1C 109.5 C6—C7—Br1 119.2 (3)
H1B—C1—H1C 109.5 C7—C8—C9 119.4 (3)
O2—C2—O1 124.5 (3) C7—C8—H8 120.3
O2—C2—C3 125.0 (3) C9—C8—H8 120.3
O1—C2—C3 110.4 (2) C8—C9—C4 119.5 (3)
N1—C3—C2 110.1 (2) C8—C9—H9 120.2
N1—C3—H3A 109.6 C4—C9—H9 120.2
C2—C3—H3A 109.6
C1—O1—C2—O2 1.4 (5) C4—C5—C6—C7 −0.4 (5)
C1—O1—C2—C3 −178.3 (3) C5—C6—C7—C8 1.1 (5)
O2—C2—C3—N1 −9.3 (5) C5—C6—C7—Br1 −177.6 (3)
O1—C2—C3—N1 170.5 (3) C6—C7—C8—C9 −0.5 (5)
O4—S1—C4—C5 162.0 (2) Br1—C7—C8—C9 178.1 (2)
O3—S1—C4—C5 30.5 (3) C7—C8—C9—C4 −0.6 (5)
N1—S1—C4—C5 −83.4 (3) C5—C4—C9—C8 1.2 (5)
O4—S1—C4—C9 −20.8 (3) S1—C4—C9—C8 −175.9 (2)
O3—S1—C4—C9 −152.3 (3) C2—C3—N1—S1 165.0 (2)
N1—S1—C4—C9 93.7 (3) O4—S1—N1—C3 44.2 (3)
C9—C4—C5—C6 −0.7 (5) O3—S1—N1—C3 174.3 (2)
S1—C4—C5—C6 176.5 (3) C4—S1—N1—C3 −71.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.86 2.41 2.987 (4) 125
C3—H3A···O3ii 0.97 2.50 3.410 (4) 156

Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2573).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bornaghi, L. F., Poulsen, S.-A., Healy, P. C. & White, A. R. (2005). Acta Cryst. E61, o323–o325.
  5. Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  6. Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  11. Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037550/hk2573sup1.cif

e-64-o2380-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037550/hk2573Isup2.hkl

e-64-o2380-Isup2.hkl (136.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES