Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 29;64(Pt 12):o2487. doi: 10.1107/S1600536808039755

N′-[(E)-1-(5-Bromo-2-hydroxy­phen­yl)ethyl­idene]benzohydrazide

Chang-Zheng Zheng a, Chang-You Ji a,*, Xiu-Li Chang b, Li-qin Zhang a
PMCID: PMC2960030  PMID: 21581451

Abstract

The C=N double bond in the title compound, C15H13BrN2O2, is trans E configured and the dihedral angle between the aromatic ring planes is 22.3 (1)°. The crystal structure is stabilized by intra­molecular O—H⋯O and inter­molecular N—H⋯O hydrogen bonds.

Related literature

For aroylhydrazones and their biological activity, see: Singh et al. (1982); Salem (1998); Carcelli et al. (1995). graphic file with name e-64-o2487-scheme1.jpg

Experimental

Crystal data

  • C15H13BrN2O2

  • M r = 333.18

  • Monoclinic, Inline graphic

  • a = 7.3761 (15) Å

  • b = 28.270 (6) Å

  • c = 8.6089 (13) Å

  • β = 116.928 (12)°

  • V = 1600.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.57 mm−1

  • T = 298 (2) K

  • 0.12 × 0.08 × 0.06 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.748, T max = 0.861

  • 8028 measured reflections

  • 2830 independent reflections

  • 1490 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.188

  • S = 1.01

  • 2830 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039755/bt2814sup1.cif

e-64-o2487-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039755/bt2814Isup2.hkl

e-64-o2487-Isup2.hkl (133.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.522 (6) 138
N2—H2⋯O2i 0.86 2.14 2.889 (6) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

This project was supported by the Postgraduate Foundation of Xi’an Polytechnic University (grant No. Y05–2–09)

supplementary crystallographic information

Comment

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions (Singh et al., 1982; Salem, 1998) and their biological activity (Singh et al., 1982; Carcelli et al., 1995). As an extension of work on the structural characterization of aroylhydrazone derivatives, the title compound was synthesized and its crystal structure is reported here.

The title molecule displays a trans configured C=N double bond (Fig. 1). The crystal structure is stabilized by intramolecular O—H···O and intermolecular N—H···O hydrogen bonds (Table 1. and Fig. 2).

Experimental

Benzoylhydrazine (0.02 mol, 2.72 g) was dissolved in anhydrous ethanol (50 ml), and 1-(5-bromo-2-hydroxyphenyl)ethanone (0.02 mol, 4.30 g) was added. The reaction mixture was refluxed for 6 h with stirring, then the resulting precipitate was collected by filtration, washed several times with ethanol and dried in vacuo (yield 85%). The compound (2.0 mmol, 0.67 g) was dissolved in dimethylformamide (30 ml) and kept at room temperature for 30 d to obtain yellow single crystals suitable for X-ray diffraction.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms,with CH(methyl) = 0.96 Å, C—H(aromatic) = 0.93 Å, O—H = 0.82 Å, and N—H = 0.86 Å and with Uiso(H) =1.5Ueq(Cmethyl,O) and 1.2Ueq(Caromatic,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. Dashed lines show hydrogen bonds.

Crystal data

C15H13BrN2O2 F000 = 672
Mr = 333.18 Dx = 1.383 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1189 reflections
a = 7.3761 (15) Å θ = 2.9–20.7º
b = 28.270 (6) Å µ = 2.57 mm1
c = 8.6089 (13) Å T = 298 (2) K
β = 116.928 (12)º Block, yellow
V = 1600.5 (5) Å3 0.12 × 0.08 × 0.06 mm
Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer 2830 independent reflections
Radiation source: fine-focus sealed tube 1490 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.062
T = 298(2) K θmax = 25.1º
φ and ω scans θmin = 3.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.748, Tmax = 0.861 k = −33→33
8028 measured reflections l = −7→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068 H-atom parameters constrained
wR(F2) = 0.188   w = 1/[σ2(Fo2) + (0.089P)2 + 0.7896P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.002
2830 reflections Δρmax = 0.87 e Å3
183 parameters Δρmin = −0.37 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.81952 (14) 1.00196 (2) 0.69361 (11) 0.0935 (4)
O1 0.6647 (7) 0.79484 (14) 0.7321 (5) 0.0613 (11)
H1 0.6183 0.7820 0.6365 0.092*
O2 0.3297 (6) 0.70963 (13) 0.4419 (5) 0.0602 (11)
N1 0.4384 (6) 0.79657 (14) 0.4079 (5) 0.0391 (10)
N2 0.3180 (6) 0.76994 (15) 0.2660 (5) 0.0416 (10)
H2 0.2720 0.7810 0.1620 0.050*
C1 0.6935 (8) 0.84139 (19) 0.7143 (6) 0.0442 (13)
C2 0.6016 (8) 0.86503 (17) 0.5556 (6) 0.0390 (12)
C3 0.6426 (8) 0.91292 (19) 0.5540 (7) 0.0497 (14)
H3 0.5829 0.9294 0.4491 0.060*
C4 0.7677 (8) 0.9363 (2) 0.7018 (8) 0.0555 (15)
C5 0.8592 (10) 0.9132 (2) 0.8592 (8) 0.0655 (17)
H5 0.9461 0.9293 0.9598 0.079*
C6 0.8202 (9) 0.8661 (2) 0.8654 (8) 0.0658 (18)
H6 0.8789 0.8503 0.9716 0.079*
C7 0.4633 (7) 0.84066 (17) 0.3902 (6) 0.0370 (12)
C8 0.2737 (8) 0.72504 (18) 0.2962 (7) 0.0430 (13)
C9 0.1524 (8) 0.69622 (19) 0.1385 (7) 0.0460 (13)
C10 0.0099 (8) 0.7153 (2) −0.0181 (7) 0.0509 (14)
H10 −0.0132 0.7477 −0.0273 0.061*
C11 −0.0978 (9) 0.6865 (2) −0.1603 (8) 0.0581 (16)
H11 −0.1931 0.6994 −0.2649 0.070*
C12 −0.0621 (10) 0.6383 (2) −0.1449 (9) 0.0641 (17)
H12 −0.1335 0.6186 −0.2400 0.077*
C13 0.0790 (11) 0.6191 (2) 0.0110 (9) 0.0618 (16)
H13 0.1027 0.5866 0.0200 0.074*
C14 0.1832 (9) 0.64743 (19) 0.1507 (7) 0.0496 (14)
H14 0.2760 0.6342 0.2557 0.060*
C15 0.3682 (9) 0.86765 (19) 0.2249 (6) 0.0535 (15)
H15A 0.4673 0.8733 0.1836 0.080*
H15B 0.3186 0.8973 0.2445 0.080*
H15C 0.2571 0.8498 0.1395 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1011 (7) 0.0462 (5) 0.0962 (7) −0.0133 (4) 0.0123 (5) −0.0172 (4)
O1 0.073 (3) 0.058 (3) 0.040 (2) −0.003 (2) 0.014 (2) 0.0092 (19)
O2 0.103 (3) 0.040 (2) 0.041 (2) 0.000 (2) 0.037 (2) 0.0038 (17)
N1 0.051 (3) 0.036 (3) 0.029 (2) 0.002 (2) 0.0173 (19) −0.0012 (19)
N2 0.054 (3) 0.037 (3) 0.032 (2) −0.006 (2) 0.019 (2) −0.0022 (19)
C1 0.043 (3) 0.045 (3) 0.037 (3) −0.003 (2) 0.011 (2) 0.004 (2)
C2 0.034 (3) 0.039 (3) 0.044 (3) 0.002 (2) 0.017 (2) −0.005 (2)
C3 0.047 (3) 0.049 (3) 0.040 (3) 0.008 (3) 0.009 (3) −0.005 (3)
C4 0.047 (3) 0.048 (4) 0.062 (4) 0.001 (3) 0.015 (3) −0.014 (3)
C5 0.064 (4) 0.067 (4) 0.051 (4) −0.005 (3) 0.013 (3) −0.020 (3)
C6 0.062 (4) 0.079 (5) 0.040 (3) 0.002 (3) 0.008 (3) −0.003 (3)
C7 0.044 (3) 0.037 (3) 0.028 (3) 0.004 (2) 0.014 (2) −0.001 (2)
C8 0.064 (4) 0.032 (3) 0.041 (3) 0.006 (3) 0.031 (3) 0.000 (2)
C9 0.057 (3) 0.043 (3) 0.049 (3) −0.009 (3) 0.033 (3) −0.004 (3)
C10 0.057 (3) 0.040 (3) 0.053 (4) −0.006 (3) 0.022 (3) 0.004 (3)
C11 0.058 (4) 0.052 (4) 0.055 (4) −0.013 (3) 0.017 (3) −0.006 (3)
C12 0.070 (4) 0.062 (4) 0.064 (4) −0.024 (3) 0.034 (4) −0.027 (3)
C13 0.082 (4) 0.041 (3) 0.079 (5) −0.009 (3) 0.050 (4) −0.011 (3)
C14 0.066 (4) 0.036 (3) 0.053 (3) −0.004 (3) 0.033 (3) −0.003 (3)
C15 0.071 (4) 0.036 (3) 0.034 (3) 0.001 (3) 0.006 (3) 0.002 (2)

Geometric parameters (Å, °)

Br1—C4 1.902 (6) C6—H6 0.9300
O1—C1 1.353 (6) C7—C15 1.482 (7)
O1—H1 0.8200 C8—C9 1.485 (7)
O2—C8 1.210 (6) C9—C10 1.389 (7)
N1—C7 1.279 (6) C9—C14 1.394 (7)
N1—N2 1.366 (5) C10—C11 1.382 (7)
N2—C8 1.365 (6) C10—H10 0.9300
N2—H2 0.8600 C11—C12 1.384 (8)
C1—C2 1.391 (7) C11—H11 0.9300
C1—C6 1.397 (8) C12—C13 1.383 (9)
C2—C3 1.389 (7) C12—H12 0.9300
C2—C7 1.492 (7) C13—C14 1.358 (8)
C3—C4 1.358 (7) C13—H13 0.9300
C3—H3 0.9300 C14—H14 0.9300
C4—C5 1.376 (8) C15—H15A 0.9600
C5—C6 1.367 (9) C15—H15B 0.9600
C5—H5 0.9300 C15—H15C 0.9600
C1—O1—H1 109.5 O2—C8—C9 122.1 (5)
C7—N1—N2 120.1 (4) N2—C8—C9 115.7 (4)
C8—N2—N1 117.2 (4) C10—C9—C14 118.9 (5)
C8—N2—H2 121.4 C10—C9—C8 123.5 (5)
N1—N2—H2 121.4 C14—C9—C8 117.6 (5)
O1—C1—C2 123.2 (4) C11—C10—C9 120.7 (6)
O1—C1—C6 117.0 (5) C11—C10—H10 119.6
C2—C1—C6 119.8 (5) C9—C10—H10 119.6
C3—C2—C1 117.8 (5) C10—C11—C12 119.1 (6)
C3—C2—C7 119.9 (4) C10—C11—H11 120.4
C1—C2—C7 122.3 (5) C12—C11—H11 120.4
C4—C3—C2 121.6 (5) C13—C12—C11 120.4 (5)
C4—C3—H3 119.2 C13—C12—H12 119.8
C2—C3—H3 119.2 C11—C12—H12 119.8
C3—C4—C5 120.9 (6) C14—C13—C12 120.2 (6)
C3—C4—Br1 120.2 (5) C14—C13—H13 119.9
C5—C4—Br1 118.9 (4) C12—C13—H13 119.9
C6—C5—C4 118.9 (6) C13—C14—C9 120.7 (6)
C6—C5—H5 120.6 C13—C14—H14 119.7
C4—C5—H5 120.6 C9—C14—H14 119.7
C5—C6—C1 121.0 (6) C7—C15—H15A 109.5
C5—C6—H6 119.5 C7—C15—H15B 109.5
C1—C6—H6 119.5 H15A—C15—H15B 109.5
N1—C7—C15 125.8 (4) C7—C15—H15C 109.5
N1—C7—C2 114.2 (4) H15A—C15—H15C 109.5
C15—C7—C2 120.0 (5) H15B—C15—H15C 109.5
O2—C8—N2 122.2 (5)
C7—N1—N2—C8 −170.7 (5) C1—C2—C7—N1 −0.3 (7)
O1—C1—C2—C3 179.8 (5) C3—C2—C7—C15 −0.6 (7)
C6—C1—C2—C3 0.8 (8) C1—C2—C7—C15 179.6 (5)
O1—C1—C2—C7 −0.4 (8) N1—N2—C8—O2 3.3 (7)
C6—C1—C2—C7 −179.4 (5) N1—N2—C8—C9 −176.6 (4)
C1—C2—C3—C4 −0.2 (8) O2—C8—C9—C10 149.0 (5)
C7—C2—C3—C4 −180.0 (5) N2—C8—C9—C10 −31.1 (7)
C2—C3—C4—C5 0.2 (9) O2—C8—C9—C14 −30.3 (8)
C2—C3—C4—Br1 −180.0 (4) N2—C8—C9—C14 149.6 (5)
C3—C4—C5—C6 −0.8 (9) C14—C9—C10—C11 −0.8 (8)
Br1—C4—C5—C6 179.3 (5) C8—C9—C10—C11 179.9 (5)
C4—C5—C6—C1 1.5 (10) C9—C10—C11—C12 0.0 (8)
O1—C1—C6—C5 179.4 (6) C10—C11—C12—C13 0.3 (9)
C2—C1—C6—C5 −1.5 (9) C11—C12—C13—C14 0.3 (9)
N2—N1—C7—C15 1.2 (8) C12—C13—C14—C9 −1.2 (9)
N2—N1—C7—C2 −178.9 (4) C10—C9—C14—C13 1.4 (8)
C3—C2—C7—N1 179.5 (5) C8—C9—C14—C13 −179.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.85 2.522 (6) 138
N2—H2···O2i 0.86 2.14 2.889 (6) 146

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2814).

References

  1. Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem.57, 43–62. [DOI] [PubMed]
  2. Salem, A. A. (1998). Microchem. J.60, 51–66.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  6. Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77–84. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039755/bt2814sup1.cif

e-64-o2487-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039755/bt2814Isup2.hkl

e-64-o2487-Isup2.hkl (133.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES