Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):m1553. doi: 10.1107/S1600536808037264

[Bis(3,5-dimethyl­pyrazol-1-yl)methane]{N-[1-(2-oxidophen­yl)ethyl­idene]-dl-alaninato}copper(II) monohydrate

Gan-Qing Zhao a,*, Ling-Wei Xue a, Cheng-Jun Hao a, Li-Hua Chen a, Hua-Tao Wu a
PMCID: PMC2960032  PMID: 21581163

Abstract

In the title compound, [Cu(C11H11NO3)(C11H16N4)]·H2O, the CuII atom is five-coordinate in a distorted square-pyramidal geometry. The basal positions are occupied by three donor atoms from the tridentate Schiff base ligand and by one N atom from a bis­(3,5-dimethyl­prazol-l-yl)methane ligand. The apical position is occupied by the N atom of the other ligand of this type. There are only van der Waals contacts in the crystal structure.

Related literature

For background to transition metal complexes with Schiff base ligands, see: Casella & Guillotti (1983); Ganguly et al. (2008); Vigato & Tamburini (2004). For structural studies of Schiff base complexes derived from 2-hydroxy­acetophenone and animo acids, see: Baul et al. (2007); Parekh et al. (2006); Usman et al. (2003). For related literature, see: Plesch et al. (1997).graphic file with name e-64-m1553-scheme1.jpg

Experimental

Crystal data

  • [Cu(C11H11NO3)(C11H16N4)]·H2O

  • M r = 491.04

  • Monoclinic, Inline graphic

  • a = 13.365 (3) Å

  • b = 7.8602 (15) Å

  • c = 23.404 (4) Å

  • β = 102.315 (2)°

  • V = 2402.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 (2) K

  • 0.36 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.727, T max = 0.833

  • 14432 measured reflections

  • 5500 independent reflections

  • 3724 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.150

  • S = 1.02

  • 5500 reflections

  • 296 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037264/bq2096sup1.cif

e-64-m1553-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037264/bq2096Isup2.hkl

e-64-m1553-Isup2.hkl (269.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—O1 1.879 (2)
Cu1—O2 1.961 (2)
Cu1—N1 1.974 (2)
Cu1—N4 2.062 (2)
Cu1—N2 2.315 (3)

Acknowledgments

This research was supported by the National Sciences Foundation of China (grant Nos. 20676057 and 20877036).

supplementary crystallographic information

Comment

In the past decades, significant progress has been achieved in understanding the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids (Vigato & Tamburini, 2004; Ganguly et al., 2008; Casella & Guillotti, 1983). A few stuctural studies have been performed on Schiff base complexes derived from 2-Hydroxyacetophenone and animo acids (Usman et al., 2003; Baul et al., 2007; Parekh et al., 2006). We report here the crystal structure of the title CuII complex, (I).

The structure consists of discrete monomeric square-pyramidal CuII complex (Fig. 1 and Table 1). The basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an ONO donor set, with the fourth position occupied by one N atom from the 1,1-bis(3,5-dimethylprazol-l-yl)methane ligand. The apical position is occupied by the other N atom of this ligand.

The two nitrogen heterocycles are planar and lie at angles of 95.5° and 30.9° to the plane of the C1—C6 ring. The two nitrogen heterocycles form a dihedral angle of 66.2° with each other.

The van der Waals contacts are major factors in the crystal packing. The H atoms of water could not be fixed because of the high disorder of O4. So, no comment can be given about the probable O—H···O type hydrogen bonds which should be formed through the solvent water molecule with neighboring carboxylate oxygen O3.

Experimental

The title compound was synthesized as described in the literature (Plesch et al., 1997). To L-valine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol was added 2-Hydroxyacetophenone (1.00 mmol in 10 ml of methanol) dropwise. The yellow solution was stirred for 2.0 h at 333 K. The resultant mixture was added dropwise to copper (II) acetate monohydrate (1.00 mmol) and 1,1-bis(3,5-dimethylprazol-l-yl)methane (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 v/v), and heated with stirring for 2.0 h at 333 K. The dark blue solution was filtered and left for several days, dark blue crystals had formed that were filtered off, washed with water, and dried under vacuum.

Refinement

In (I), All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) or 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C), with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C). The oxygen (O4) of the water molecule is extremely disorder. So, no H-atom could be attached.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Cu(C11H11NO3)(C11H16N4)]·H2O1 F000 = 1028
Mr = 491.04 Dx = 1.358 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3344 reflections
a = 13.365 (3) Å θ = 2.6–23.9º
b = 7.8602 (15) Å µ = 0.95 mm1
c = 23.404 (4) Å T = 293 (2) K
β = 102.315 (2)º Block, dark blue
V = 2402.1 (8) Å3 0.36 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 5500 independent reflections
Radiation source: fine-focus sealed tube 3724 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.054
T = 293(2) K θmax = 27.6º
φ and ω scans θmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −12→17
Tmin = 0.727, Tmax = 0.833 k = −10→10
14432 measured reflections l = −30→27

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.150   w = 1/[σ2(Fo2) + (0.0715P)2 + 0.4661P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
5500 reflections Δρmax = 0.79 e Å3
296 parameters Δρmin = −0.53 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8201 (2) 0.6577 (4) 0.77226 (13) 0.0495 (8)
C2 0.8236 (3) 0.6612 (6) 0.83301 (14) 0.0657 (10)
H2 0.7623 0.6597 0.8457 0.079*
C3 0.9132 (3) 0.6666 (6) 0.87380 (16) 0.0758 (12)
H3 0.9122 0.6682 0.9134 0.091*
C4 1.0060 (3) 0.6697 (6) 0.85614 (16) 0.0777 (12)
H4 1.0675 0.6774 0.8835 0.093*
C5 1.0049 (3) 0.6611 (5) 0.79729 (16) 0.0657 (10)
H5 1.0673 0.6589 0.7858 0.079*
C6 0.9140 (2) 0.6554 (4) 0.75344 (14) 0.0473 (8)
C7 0.9202 (2) 0.6387 (4) 0.69200 (14) 0.0460 (7)
C8 0.8453 (2) 0.5740 (4) 0.59087 (13) 0.0477 (8)
H8 0.9104 0.5182 0.5896 0.057*
C9 0.7567 (3) 0.4588 (5) 0.56306 (14) 0.0519 (8)
C10 1.0249 (2) 0.6546 (6) 0.67706 (17) 0.0690 (11)
H10A 1.0172 0.6609 0.6354 0.104*
H10B 1.0657 0.5571 0.6917 0.104*
H10C 1.0581 0.7558 0.6947 0.104*
C11 0.8367 (3) 0.7413 (5) 0.55651 (16) 0.0692 (11)
H11A 0.8971 0.8084 0.5701 0.104*
H11B 0.7777 0.8032 0.5622 0.104*
H11C 0.8300 0.7171 0.5157 0.104*
C12 0.6251 (2) 0.9931 (4) 0.62768 (14) 0.0477 (7)
C13 0.5374 (3) 1.0828 (4) 0.60353 (17) 0.0594 (9)
H13 0.5290 1.2003 0.6039 0.071*
C14 0.4655 (3) 0.9659 (4) 0.57912 (15) 0.0510 (8)
C15 0.3571 (3) 0.9869 (6) 0.5464 (2) 0.0819 (13)
H15A 0.3469 0.9248 0.5103 0.123*
H15B 0.3432 1.1053 0.5383 0.123*
H15C 0.3115 0.9440 0.5697 0.123*
C16 0.7269 (3) 1.0596 (5) 0.66044 (19) 0.0730 (12)
H16A 0.7522 0.9881 0.6936 0.110*
H16B 0.7186 1.1735 0.6735 0.110*
H16C 0.7747 1.0595 0.6351 0.110*
C17 0.4717 (2) 0.6429 (4) 0.57657 (12) 0.0411 (7)
H17A 0.5156 0.5804 0.5559 0.049*
H17B 0.4041 0.6494 0.5513 0.049*
C18 0.3806 (2) 0.5024 (5) 0.64872 (15) 0.0504 (8)
C19 0.4159 (3) 0.4218 (4) 0.70075 (16) 0.0586 (9)
H19 0.3761 0.3709 0.7241 0.070*
C20 0.5217 (3) 0.4297 (4) 0.71236 (14) 0.0491 (8)
C21 0.5955 (3) 0.3618 (6) 0.76487 (17) 0.0787 (12)
H21A 0.6578 0.3282 0.7538 0.118*
H21B 0.5657 0.2651 0.7801 0.118*
H21C 0.6101 0.4486 0.7943 0.118*
C22 0.2745 (3) 0.5421 (6) 0.61745 (19) 0.0811 (13)
H22A 0.2645 0.5038 0.5777 0.122*
H22B 0.2635 0.6627 0.6180 0.122*
H22C 0.2268 0.4854 0.6364 0.122*
Cu1 0.69565 (3) 0.58580 (5) 0.659531 (15) 0.03989 (15)
N1 0.83952 (18) 0.6059 (3) 0.65209 (11) 0.0421 (6)
N2 0.61092 (17) 0.8286 (3) 0.61916 (11) 0.0432 (6)
N3 0.51185 (17) 0.8133 (3) 0.58899 (10) 0.0402 (6)
N4 0.55252 (18) 0.5077 (3) 0.66850 (11) 0.0428 (6)
N5 0.46534 (18) 0.5521 (3) 0.62967 (11) 0.0411 (6)
O1 0.72874 (16) 0.6610 (3) 0.73752 (9) 0.0561 (6)
O2 0.67815 (16) 0.4594 (3) 0.58584 (9) 0.0503 (6)
O3 0.7635 (2) 0.3745 (4) 0.51962 (12) 0.0863 (10)
O4 0.9427 (3) 0.3264 (13) 0.48232 (19) 0.269 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0451 (18) 0.054 (2) 0.0463 (18) 0.0114 (15) 0.0040 (15) −0.0053 (15)
C2 0.057 (2) 0.096 (3) 0.0428 (19) 0.016 (2) 0.0085 (17) −0.0079 (18)
C3 0.077 (3) 0.102 (3) 0.043 (2) 0.019 (2) 0.003 (2) −0.007 (2)
C4 0.059 (3) 0.110 (4) 0.053 (2) 0.023 (2) −0.0117 (19) −0.013 (2)
C5 0.0406 (19) 0.087 (3) 0.064 (2) 0.0130 (19) −0.0011 (17) −0.010 (2)
C6 0.0365 (17) 0.0529 (19) 0.0495 (18) 0.0100 (14) 0.0022 (14) −0.0056 (15)
C7 0.0319 (16) 0.0505 (19) 0.0542 (19) 0.0051 (13) 0.0063 (14) 0.0006 (15)
C8 0.0319 (16) 0.071 (2) 0.0423 (17) 0.0032 (15) 0.0116 (13) −0.0015 (15)
C9 0.0422 (18) 0.072 (2) 0.0412 (17) 0.0053 (16) 0.0081 (14) −0.0056 (15)
C10 0.0305 (18) 0.105 (3) 0.071 (2) −0.0030 (19) 0.0106 (17) −0.013 (2)
C11 0.058 (2) 0.093 (3) 0.061 (2) −0.001 (2) 0.0220 (18) 0.019 (2)
C12 0.0421 (18) 0.0425 (19) 0.058 (2) −0.0077 (14) 0.0094 (15) 0.0009 (15)
C13 0.057 (2) 0.0430 (19) 0.072 (2) 0.0043 (16) 0.0015 (19) −0.0004 (16)
C14 0.0444 (18) 0.052 (2) 0.055 (2) 0.0094 (15) 0.0066 (15) 0.0041 (15)
C15 0.056 (2) 0.079 (3) 0.096 (3) 0.021 (2) −0.015 (2) −0.001 (3)
C16 0.051 (2) 0.064 (3) 0.096 (3) −0.0145 (18) −0.002 (2) −0.009 (2)
C17 0.0341 (16) 0.0482 (18) 0.0402 (16) −0.0048 (13) 0.0059 (13) −0.0052 (13)
C18 0.0394 (17) 0.059 (2) 0.057 (2) −0.0143 (16) 0.0188 (15) −0.0086 (16)
C19 0.054 (2) 0.068 (2) 0.062 (2) −0.0176 (17) 0.0295 (18) −0.0038 (18)
C20 0.058 (2) 0.0458 (19) 0.0480 (18) −0.0049 (15) 0.0206 (16) 0.0004 (14)
C21 0.088 (3) 0.084 (3) 0.063 (2) −0.001 (2) 0.015 (2) 0.027 (2)
C22 0.037 (2) 0.121 (4) 0.087 (3) −0.013 (2) 0.019 (2) 0.006 (3)
Cu1 0.0293 (2) 0.0490 (3) 0.0421 (2) 0.00231 (15) 0.00949 (15) −0.00283 (16)
N1 0.0319 (13) 0.0521 (16) 0.0421 (14) 0.0036 (11) 0.0074 (11) 0.0015 (11)
N2 0.0263 (12) 0.0471 (16) 0.0528 (15) −0.0040 (11) 0.0008 (11) 0.0023 (12)
N3 0.0311 (13) 0.0443 (15) 0.0441 (13) 0.0003 (11) 0.0056 (11) 0.0014 (11)
N4 0.0390 (14) 0.0445 (15) 0.0462 (14) −0.0040 (12) 0.0119 (12) 0.0031 (12)
N5 0.0309 (13) 0.0526 (16) 0.0414 (14) −0.0067 (11) 0.0111 (11) −0.0009 (11)
O1 0.0336 (12) 0.0861 (17) 0.0478 (13) 0.0080 (11) 0.0069 (10) −0.0120 (12)
O2 0.0379 (12) 0.0612 (15) 0.0548 (13) −0.0025 (10) 0.0167 (10) −0.0111 (10)
O3 0.0584 (17) 0.142 (3) 0.0650 (17) −0.0115 (16) 0.0265 (14) −0.0473 (17)
O4 0.082 (3) 0.624 (14) 0.103 (3) 0.110 (5) 0.026 (2) −0.007 (5)

Geometric parameters (Å, °)

C1—O1 1.314 (4) C14—C15 1.497 (4)
C1—C2 1.413 (4) C15—H15A 0.9600
C1—C6 1.417 (4) C15—H15B 0.9600
C2—C3 1.364 (5) C15—H15C 0.9600
C2—H2 0.9300 C16—H16A 0.9600
C3—C4 1.388 (6) C16—H16B 0.9600
C3—H3 0.9300 C16—H16C 0.9600
C4—C5 1.376 (5) C17—N3 1.449 (4)
C4—H4 0.9300 C17—N5 1.451 (4)
C5—C6 1.414 (4) C17—H17A 0.9700
C5—H5 0.9300 C17—H17B 0.9700
C6—C7 1.464 (4) C18—N5 1.361 (4)
C7—N1 1.293 (4) C18—C19 1.364 (5)
C7—C10 1.518 (4) C18—C22 1.483 (5)
C8—N1 1.473 (4) C19—C20 1.384 (5)
C8—C9 1.522 (5) C19—H19 0.9300
C8—C11 1.533 (5) C20—N4 1.334 (4)
C8—H8 0.9800 C20—C21 1.500 (5)
C9—O3 1.233 (4) C21—H21A 0.9600
C9—O2 1.275 (4) C21—H21B 0.9600
C10—H10A 0.9600 C21—H21C 0.9600
C10—H10B 0.9600 C22—H22A 0.9600
C10—H10C 0.9600 C22—H22B 0.9600
C11—H11A 0.9600 C22—H22C 0.9600
C11—H11B 0.9600 Cu1—O1 1.879 (2)
C11—H11C 0.9600 Cu1—O2 1.961 (2)
C12—N2 1.316 (4) Cu1—N1 1.974 (2)
C12—C13 1.381 (5) Cu1—N4 2.062 (2)
C12—C16 1.505 (5) Cu1—N2 2.315 (3)
C13—C14 1.364 (5) N2—N3 1.367 (3)
C13—H13 0.9300 N4—N5 1.362 (3)
C14—N3 1.348 (4)
O1—C1—C2 116.7 (3) H16A—C16—H16B 109.5
O1—C1—C6 125.1 (3) C12—C16—H16C 109.5
C2—C1—C6 118.1 (3) H16A—C16—H16C 109.5
C3—C2—C1 122.8 (4) H16B—C16—H16C 109.5
C3—C2—H2 118.6 N3—C17—N5 111.7 (2)
C1—C2—H2 118.6 N3—C17—H17A 109.3
C2—C3—C4 119.9 (3) N5—C17—H17A 109.3
C2—C3—H3 120.0 N3—C17—H17B 109.3
C4—C3—H3 120.0 N5—C17—H17B 109.3
C5—C4—C3 118.6 (3) H17A—C17—H17B 107.9
C5—C4—H4 120.7 N5—C18—C19 105.8 (3)
C3—C4—H4 120.7 N5—C18—C22 123.6 (3)
C4—C5—C6 123.5 (4) C19—C18—C22 130.6 (3)
C4—C5—H5 118.3 C18—C19—C20 107.4 (3)
C6—C5—H5 118.3 C18—C19—H19 126.3
C5—C6—C1 117.1 (3) C20—C19—H19 126.3
C5—C6—C7 119.7 (3) N4—C20—C19 109.9 (3)
C1—C6—C7 123.1 (3) N4—C20—C21 122.5 (3)
N1—C7—C6 120.9 (3) C19—C20—C21 127.6 (3)
N1—C7—C10 121.2 (3) C20—C21—H21A 109.5
C6—C7—C10 117.8 (3) C20—C21—H21B 109.5
N1—C8—C9 108.6 (2) H21A—C21—H21B 109.5
N1—C8—C11 110.5 (3) C20—C21—H21C 109.5
C9—C8—C11 108.8 (3) H21A—C21—H21C 109.5
N1—C8—H8 109.6 H21B—C21—H21C 109.5
C9—C8—H8 109.6 C18—C22—H22A 109.5
C11—C8—H8 109.6 C18—C22—H22B 109.5
O3—C9—O2 124.0 (3) H22A—C22—H22B 109.5
O3—C9—C8 119.0 (3) C18—C22—H22C 109.5
O2—C9—C8 117.0 (3) H22A—C22—H22C 109.5
C7—C10—H10A 109.5 H22B—C22—H22C 109.5
C7—C10—H10B 109.5 O1—Cu1—O2 166.62 (10)
H10A—C10—H10B 109.5 O1—Cu1—N1 91.65 (10)
C7—C10—H10C 109.5 O2—Cu1—N1 84.17 (9)
H10A—C10—H10C 109.5 O1—Cu1—N4 91.49 (10)
H10B—C10—H10C 109.5 O2—Cu1—N4 89.98 (9)
C8—C11—H11A 109.5 N1—Cu1—N4 167.22 (10)
C8—C11—H11B 109.5 O1—Cu1—N2 97.50 (10)
H11A—C11—H11B 109.5 O2—Cu1—N2 95.87 (9)
C8—C11—H11C 109.5 N1—Cu1—N2 107.40 (9)
H11A—C11—H11C 109.5 N4—Cu1—N2 84.45 (9)
H11B—C11—H11C 109.5 C7—N1—C8 121.9 (3)
N2—C12—C13 111.0 (3) C7—N1—Cu1 129.1 (2)
N2—C12—C16 120.2 (3) C8—N1—Cu1 109.07 (18)
C13—C12—C16 128.8 (3) C12—N2—N3 104.9 (2)
C14—C13—C12 106.7 (3) C12—N2—Cu1 134.91 (19)
C14—C13—H13 126.6 N3—N2—Cu1 118.30 (18)
C12—C13—H13 126.6 C14—N3—N2 111.7 (3)
N3—C14—C13 105.7 (3) C14—N3—C17 130.7 (3)
N3—C14—C15 123.0 (3) N2—N3—C17 117.5 (2)
C13—C14—C15 131.2 (3) C20—N4—N5 105.7 (2)
C14—C15—H15A 109.5 C20—N4—Cu1 131.3 (2)
C14—C15—H15B 109.5 N5—N4—Cu1 122.41 (18)
H15A—C15—H15B 109.5 C18—N5—N4 111.2 (2)
C14—C15—H15C 109.5 C18—N5—C17 128.8 (3)
H15A—C15—H15C 109.5 N4—N5—C17 120.0 (2)
H15B—C15—H15C 109.5 C1—O1—Cu1 126.14 (19)
C12—C16—H16A 109.5 C9—O2—Cu1 114.6 (2)
C12—C16—H16B 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2096).

References

  1. Baul, T. S. B., Masharing, C., Ruisi, G., Jirásko, R., Holčapek, M., Voc, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem.692, 4849–4862.
  2. Bruker (2000). SMART and SAINT Bruker Axs Inc., Madison, Wisconsin, USA.
  3. Casella, L. & Guillotti, M. (1983). Inorg. Chem.22, 2259–2266.
  4. Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev.252, 1027–1050.
  5. Parekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem.35, 67–72.
  6. Plesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem.22, 433–440.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Usman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438–m440.
  10. Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev.248, 1717–2128.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037264/bq2096sup1.cif

e-64-m1553-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037264/bq2096Isup2.hkl

e-64-m1553-Isup2.hkl (269.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES