Abstract
The title compound, [Cd(C6H4NO3)2(H2O)4], was obtained by the reaction of cadmium chloride with 5-hydroxynicotinic acid. The CdII atom is located on an inversion centre and is coordinated by two N atoms from two 5-hydroxynicotinic acid ligands and four water molecules in a distorted octahedral geometry. The structure is stabilized by intermolecular O—H⋯O hydrogen bonds, forming a three-dimensional network.
Related literature
For cadmium componds and their photoluminescent properties, see: He et al. (2008 ▶); Kang et al. (2007 ▶); Zhang et al. (2006 ▶); Zora et al. (2006 ▶).
Experimental
Crystal data
[Cd(C6H4NO3)2(H2O)4]
M r = 460.68
Triclinic,
a = 7.2190 (1) Å
b = 7.2510 (1) Å
c = 8.9260 (1) Å
α = 70.377 (1)°
β = 68.154 (1)°
γ = 65.7170 (10)°
V = 385.97 (1) Å3
Z = 1
Mo Kα radiation
μ = 1.48 mm−1
T = 296 (2) K
0.27 × 0.17 × 0.07 mm
Data collection
Bruker APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.667, T max = 0.903
6067 measured reflections
1759 independent reflections
1754 reflections with I > 2σ(I)
R int = 0.017
Refinement
R[F 2 > 2σ(F 2)] = 0.016
wR(F 2) = 0.042
S = 1.09
1759 reflections
131 parameters
7 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.36 e Å−3
Δρmin = −0.34 e Å−3
Data collection: SMART (Bruker, 2004 ▶); cell refinement: SAINT (Bruker, 2004 ▶); data reduction: XPREP (Bruker, 2004 ▶); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035903/at2660sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035903/at2660Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1W—H1WA⋯O2i | 0.81 (2) | 1.94 (2) | 2.742 (2) | 171 (3) |
| O1W—H1WB⋯O3ii | 0.79 (2) | 2.20 (2) | 2.973 (2) | 164 (3) |
| O2W—H2WA⋯O1iii | 0.82 (2) | 1.87 (2) | 2.656 (2) | 160 (3) |
| O2W—H2WB⋯O2iv | 0.82 (2) | 1.93 (2) | 2.735 (2) | 165 (3) |
| O3—H3⋯O1v | 0.83 (2) | 1.88 (2) | 2.664 (2) | 157 (3) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
supplementary crystallographic information
Comment
There is intense research on the synthesis of the cadmium metal compounds for their interesting photoluminescent properties. A large number of these compounds have been synthesized (He et al., 2008; Zora et al., 2006; Kang et al.,2007; Zhang et al., 2006).
As illustrated in Fig. 1, the Cd(II) atom is coordinated by two nitrogen atoms from two 5-hydroxynicotinic acid ligands and four water molecules. Four coordinated atoms of O1W, O2W, O1WA and O2WA constitute the base of the octahedral, whereas N1 and N1A atoms occupy the apical position. The intermolecular hydrogen bonds play an important role in the formation of the three-dimensional network. As shown in Fig. 2, the intermolecular O—H···O hydrogen bonds link the neighboring molecules to a three-dimensional network.
Experimental
A mixture of 0.5 mmol 5-hydroxynicotinic acid and 0.5 mmol of cadmium chloride in 10 ml distilled water was stirred for 30 min at 323 K, then the reaction mixture was filtered and well shaped colourless crystals of the title compound was obtained from the mother liquor by slow evaporation at room temperature for several days.
Refinement
The H atoms bonded to C atoms were positioned geometrically [aromatic C—H = 0.93 Å and aliphatic C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 and Uiso(H) = 1.5Ueq(O).
Figures
Fig. 1.
A view of the molecule of (I), showing the atom-labelling scheme, displacement ellipsoids are shown at the 30% probability level. [Symmetry code: (A) -x + 1, -y + 1, -z + 2].
Fig. 2.
A view of the three dimensional framework of the title compound. The O—H···O interactions are depicted by dashed lines.
Crystal data
| [Cd(C6H4NO3)2(H2O)4] | Z = 1 |
| Mr = 460.68 | F000 = 230 |
| Triclinic, P1 | Dx = 1.982 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation λ = 0.71073 Å |
| a = 7.21900 (10) Å | Cell parameters from 5615 reflections |
| b = 7.25100 (10) Å | θ = 2.5–27.5º |
| c = 8.92600 (10) Å | µ = 1.48 mm−1 |
| α = 70.3770 (10)º | T = 296 (2) K |
| β = 68.1540 (10)º | Sheet, colourless |
| γ = 65.7170 (10)º | 0.27 × 0.17 × 0.07 mm |
| V = 385.972 (9) Å3 |
Data collection
| Bruker APEXII diffractometer | 1759 independent reflections |
| Radiation source: fine-focus sealed tube | 1754 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.017 |
| T = 296(2) K | θmax = 27.5º |
| ω scans | θmin = 2.5º |
| Absorption correction: multi-scan(SADABS; Sheldrick, 1996) | h = −9→9 |
| Tmin = 0.667, Tmax = 0.903 | k = −9→9 |
| 6067 measured reflections | l = −11→11 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.016 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.042 | w = 1/[σ2(Fo2) + (0.0249P)2 + 0.1253P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.09 | (Δ/σ)max < 0.001 |
| 1759 reflections | Δρmax = 0.36 e Å−3 |
| 131 parameters | Δρmin = −0.33 e Å−3 |
| 7 restraints | Extinction correction: none |
| Primary atom site location: structure-invariant direct methods |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cd1 | 0.5000 | 0.5000 | 1.0000 | 0.02626 (6) | |
| O1 | 0.8938 (2) | 0.7990 (2) | 0.32463 (16) | 0.0427 (3) | |
| O1W | 0.2684 (3) | 0.3168 (3) | 1.07212 (17) | 0.0482 (4) | |
| H1WA | 0.287 (5) | 0.249 (4) | 1.009 (3) | 0.072* | |
| H1WB | 0.209 (5) | 0.270 (4) | 1.163 (2) | 0.072* | |
| O2 | 0.6901 (2) | 0.8709 (2) | 0.16430 (15) | 0.0429 (3) | |
| O2W | 0.7595 (2) | 0.2074 (2) | 0.92481 (18) | 0.0478 (4) | |
| H2WA | 0.881 (3) | 0.189 (4) | 0.865 (3) | 0.072* | |
| H2WB | 0.762 (5) | 0.098 (3) | 0.994 (3) | 0.072* | |
| O3 | 0.0066 (2) | 0.7675 (2) | 0.58671 (17) | 0.0400 (3) | |
| H3 | 0.002 (4) | 0.785 (4) | 0.491 (2) | 0.053 (7)* | |
| N1 | 0.4459 (2) | 0.6297 (2) | 0.74305 (16) | 0.0264 (3) | |
| C1 | 0.5945 (2) | 0.6740 (2) | 0.60554 (19) | 0.0267 (3) | |
| H1A | 0.7280 | 0.6483 | 0.6138 | 0.032* | |
| C2 | 0.5560 (2) | 0.7568 (2) | 0.45137 (18) | 0.0245 (3) | |
| C3 | 0.3595 (3) | 0.7885 (2) | 0.43778 (19) | 0.0263 (3) | |
| H3A | 0.3310 | 0.8402 | 0.3354 | 0.032* | |
| C4 | 0.2061 (2) | 0.7415 (2) | 0.5802 (2) | 0.0270 (3) | |
| C5 | 0.2549 (2) | 0.6655 (3) | 0.73035 (19) | 0.0276 (3) | |
| H5A | 0.1507 | 0.6383 | 0.8260 | 0.033* | |
| C6 | 0.7273 (3) | 0.8123 (2) | 0.30121 (19) | 0.0288 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cd1 | 0.02499 (9) | 0.03841 (10) | 0.01604 (8) | −0.01493 (7) | −0.00552 (6) | −0.00099 (6) |
| O1 | 0.0313 (6) | 0.0688 (9) | 0.0266 (6) | −0.0259 (6) | −0.0010 (5) | −0.0044 (6) |
| O1W | 0.0589 (9) | 0.0749 (10) | 0.0276 (6) | −0.0484 (8) | −0.0017 (6) | −0.0091 (7) |
| O2 | 0.0587 (8) | 0.0592 (8) | 0.0199 (6) | −0.0385 (7) | −0.0088 (5) | 0.0028 (5) |
| O2W | 0.0368 (7) | 0.0424 (7) | 0.0347 (7) | −0.0075 (6) | 0.0072 (6) | 0.0013 (6) |
| O3 | 0.0285 (6) | 0.0620 (8) | 0.0326 (7) | −0.0220 (6) | −0.0135 (5) | 0.0007 (6) |
| N1 | 0.0258 (6) | 0.0362 (7) | 0.0187 (6) | −0.0141 (5) | −0.0068 (5) | −0.0018 (5) |
| C1 | 0.0252 (7) | 0.0376 (8) | 0.0208 (7) | −0.0155 (6) | −0.0064 (6) | −0.0037 (6) |
| C2 | 0.0278 (7) | 0.0271 (7) | 0.0195 (7) | −0.0128 (6) | −0.0046 (6) | −0.0033 (5) |
| C3 | 0.0312 (7) | 0.0288 (7) | 0.0207 (7) | −0.0120 (6) | −0.0109 (6) | −0.0005 (5) |
| C4 | 0.0249 (7) | 0.0305 (7) | 0.0281 (7) | −0.0112 (6) | −0.0107 (6) | −0.0026 (6) |
| C5 | 0.0254 (7) | 0.0358 (8) | 0.0219 (7) | −0.0143 (6) | −0.0053 (6) | −0.0023 (6) |
| C6 | 0.0340 (8) | 0.0319 (8) | 0.0206 (7) | −0.0166 (6) | −0.0025 (6) | −0.0038 (6) |
Geometric parameters (Å, °)
| Cd1—O2W | 2.2830 (14) | O3—C4 | 1.3543 (19) |
| Cd1—O2Wi | 2.2830 (14) | O3—H3 | 0.830 (17) |
| Cd1—N1i | 2.2831 (13) | N1—C5 | 1.335 (2) |
| Cd1—N1 | 2.2831 (13) | N1—C1 | 1.3411 (19) |
| Cd1—O1W | 2.3291 (13) | C1—C2 | 1.387 (2) |
| Cd1—O1Wi | 2.3291 (13) | C1—H1A | 0.9300 |
| O1—C6 | 1.255 (2) | C2—C3 | 1.385 (2) |
| O1W—H1WA | 0.809 (17) | C2—C6 | 1.517 (2) |
| O1W—H1WB | 0.794 (17) | C3—C4 | 1.389 (2) |
| O2—C6 | 1.244 (2) | C3—H3A | 0.9300 |
| O2W—H2WA | 0.823 (17) | C4—C5 | 1.386 (2) |
| O2W—H2WB | 0.822 (17) | C5—H5A | 0.9300 |
| O2W—Cd1—O2Wi | 180.0 | C5—N1—C1 | 118.64 (13) |
| O2W—Cd1—N1i | 87.79 (5) | C5—N1—Cd1 | 117.86 (10) |
| O2Wi—Cd1—N1i | 92.21 (5) | C1—N1—Cd1 | 123.49 (10) |
| O2W—Cd1—N1 | 92.21 (5) | N1—C1—C2 | 122.29 (14) |
| O2Wi—Cd1—N1 | 87.79 (5) | N1—C1—H1A | 118.9 |
| N1i—Cd1—N1 | 180.000 (1) | C2—C1—H1A | 118.9 |
| O2W—Cd1—O1W | 85.72 (6) | C3—C2—C1 | 118.97 (14) |
| O2Wi—Cd1—O1W | 94.28 (6) | C3—C2—C6 | 121.06 (14) |
| N1i—Cd1—O1W | 90.57 (5) | C1—C2—C6 | 119.96 (14) |
| N1—Cd1—O1W | 89.43 (5) | C2—C3—C4 | 118.68 (14) |
| O2W—Cd1—O1Wi | 94.28 (6) | C2—C3—H3A | 120.7 |
| O2Wi—Cd1—O1Wi | 85.72 (6) | C4—C3—H3A | 120.7 |
| N1i—Cd1—O1Wi | 89.43 (5) | O3—C4—C5 | 115.78 (14) |
| N1—Cd1—O1Wi | 90.57 (5) | O3—C4—C3 | 125.40 (14) |
| O1W—Cd1—O1Wi | 180.0 | C5—C4—C3 | 118.81 (14) |
| Cd1—O1W—H1WA | 117 (2) | N1—C5—C4 | 122.55 (14) |
| Cd1—O1W—H1WB | 127 (2) | N1—C5—H5A | 118.7 |
| H1WA—O1W—H1WB | 110 (2) | C4—C5—H5A | 118.7 |
| Cd1—O2W—H2WA | 131 (2) | O2—C6—O1 | 125.02 (15) |
| Cd1—O2W—H2WB | 117 (2) | O2—C6—C2 | 117.26 (15) |
| H2WA—O2W—H2WB | 105 (2) | O1—C6—C2 | 117.71 (14) |
| C4—O3—H3 | 108.2 (19) | ||
| O2W—Cd1—N1—C5 | 119.15 (12) | C1—C2—C3—C4 | 1.8 (2) |
| O2Wi—Cd1—N1—C5 | −60.85 (12) | C6—C2—C3—C4 | −177.83 (14) |
| O1W—Cd1—N1—C5 | 33.45 (13) | C2—C3—C4—O3 | 178.81 (15) |
| O1Wi—Cd1—N1—C5 | −146.55 (13) | C2—C3—C4—C5 | 0.2 (2) |
| O2W—Cd1—N1—C1 | −61.78 (13) | C1—N1—C5—C4 | 1.7 (2) |
| O2Wi—Cd1—N1—C1 | 118.22 (13) | Cd1—N1—C5—C4 | −179.16 (12) |
| O1W—Cd1—N1—C1 | −147.47 (13) | O3—C4—C5—N1 | 179.22 (15) |
| O1Wi—Cd1—N1—C1 | 32.53 (13) | C3—C4—C5—N1 | −2.1 (2) |
| C5—N1—C1—C2 | 0.5 (2) | C3—C2—C6—O2 | −5.8 (2) |
| Cd1—N1—C1—C2 | −178.62 (11) | C1—C2—C6—O2 | 174.61 (15) |
| N1—C1—C2—C3 | −2.2 (2) | C3—C2—C6—O1 | 173.06 (16) |
| N1—C1—C2—C6 | 177.42 (14) | C1—C2—C6—O1 | −6.6 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+2.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1W—H1WA···O2ii | 0.809 (17) | 1.941 (17) | 2.742 (2) | 171 (3) |
| O1W—H1WB···O3iii | 0.794 (17) | 2.201 (18) | 2.9728 (19) | 164 (3) |
| O2W—H2WA···O1iv | 0.823 (17) | 1.867 (18) | 2.6556 (18) | 160 (3) |
| O2W—H2WB···O2v | 0.822 (17) | 1.933 (17) | 2.7349 (19) | 165 (3) |
| O3—H3···O1vi | 0.830 (17) | 1.878 (19) | 2.6637 (19) | 157 (3) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+2; (iv) −x+2, −y+1, −z+1; (v) x, y−1, z+1; (vi) x−1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2660).
References
- Bruker (2004). SAINT, SMART and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
- He, Y. H., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Cryst. Growth Des.8, 3586–3594.
- Kang, Y., Zhang, J., Qin, Y. Y., Li, Z. J. & Yao, Y. G. (2007). J. Mol. Struct.784, 98–108.
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Zhang, L. Y., Zhang, J. P., Lin, Y. Y. & Chen, X. M. (2006). Cryst. Growth Des.6, 1684–1689.
- Zora, P., Gordana, P., Marijana, V. & Drazen, V. T. (2006). Polyhedron, 25, 2353–2362.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035903/at2660sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035903/at2660Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


