Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 29;64(Pt 12):m1633. doi: 10.1107/S1600536808039597

2-Ferrocenyl-6-methyl­pyridin-3-ol

Zhi-Qiang Wang a, Chen Xu a, Fei-Fei Cen b, Ying-Fei Li b, Bao-Ming Ji a,*
PMCID: PMC2960045  PMID: 21581222

Abstract

In the title compound, [Fe(C5H5)(C11H10NO)], the dihedral angle between the pyridyl and substituted cyclo­penta­dienyl rings is 20.4 (3)°. The H atoms of the methyl group are disordered over two positions; their site-occupation factors were fixed at 0.5. The crystal structure is stabilized by well defined inter­molecular O—H⋯N and C—H⋯O hydrogen bonds, leading to the formation of a two-dimensional network parallel to (101).

Related literature

For ferrocene and its derivatives, see: Beletskaya et al. (2001); Hayashi & Togni (1995); Kealy & Pauson (1951); Sarhan & Izumi (2003); Staveren & Metzler-Nolte (2004); Xu et al. (2007).graphic file with name e-64-m1633-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C11H10NO)]

  • M r = 293.14

  • Monoclinic, Inline graphic

  • a = 10.4370 (13) Å

  • b = 12.7196 (15) Å

  • c = 10.5424 (13) Å

  • β = 111.0330 (10)°

  • V = 1306.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 291 (2) K

  • 0.37 × 0.23 × 0.21 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.675, T max = 0.793

  • 7569 measured reflections

  • 2422 independent reflections

  • 1970 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.099

  • S = 1.08

  • 2422 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039597/fj2173sup1.cif

e-64-m1633-sup1.cif (27.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039597/fj2173Isup2.hkl

e-64-m1633-Isup2.hkl (119KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.96 2.774 (3) 169
C7—H7⋯O1 0.98 2.39 2.866 (4) 109

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Doctoral Foundation of Luoyang Normal University.

supplementary crystallographic information

Comment

Since the discovery of ferrocene in the 1950's (Kealy & Pauson, 1951), the fascinating structural properties of ferrocene and its derivatives have been the subject of increasing interest in all fields of organometallic chemistry (Hayashi et al., 1995; Staveren et al., 2004; Xu et al., 2007). Among them, ferrocene-heterocycles are one of the most important ones (Sarhan & Izumi, 2003). Herein we report the crystal structure of the title compound.

A view of the molecular structure of the title compound is given in Fig.1. The hydrogen atoms of methyl groups are disordered; site-occupation factors were fixed at 0.5. The pyridyl and Cp ring form a dihedral angle of 20.4 (3)°. In the crystal of the title compound, intermolecular O—H···N and C—H···O hydrogen bonds are present(Table 1), resulting in a two-dimensional supramolecular architecture(Fig.2).

Experimental

The title compound was prepared as described in literature (Beletskaya et al., 2001) and recrystallized from dichloromethane-petroleum ether solution at room temperature to give the desired product as red crystals suitable for single-crystal X-ray diffraction.

Refinement

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with Uĩso~(H)=1.2Ueq(C)(1.5Ueq for methyl H).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids at the 30% probability level. Only one disordered component of the methyl group is shown.

Fig. 2.

Fig. 2.

Partial view of the crystal packing showing the intermolecular O—H···N and C—H···O hydrogen bonds. One disordered component of the methyl group has been omitted for clarity.

Crystal data

[Fe(C5H5)(C11H10NO)] F000 = 608
Mr = 293.14 Dx = 1.491 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2766 reflections
a = 10.4370 (13) Å θ = 2.4–25.0º
b = 12.7196 (15) Å µ = 1.14 mm1
c = 10.5424 (13) Å T = 291 (2) K
β = 111.0330 (10)º Block, red
V = 1306.3 (3) Å3 0.37 × 0.23 × 0.21 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 2422 independent reflections
Radiation source: fine-focus sealed tube 1970 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.021
T = 291(2) K θmax = 25.5º
φ and ω scans θmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −10→12
Tmin = 0.675, Tmax = 0.794 k = −15→15
7569 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.099   w = 1/[σ2(Fo2) + (0.046P)2 + 0.7167P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
2422 reflections Δρmax = 0.63 e Å3
173 parameters Δρmin = −0.54 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.35569 (4) 1.02041 (3) 0.20685 (4) 0.04595 (16)
O1 0.5672 (2) 0.78281 (18) 0.36235 (18) 0.0576 (5)
H1 0.6489 0.7688 0.3993 0.086*
N1 0.3444 (2) 0.74252 (16) 0.0124 (2) 0.0424 (5)
C1 0.3813 (5) 1.1764 (3) 0.1792 (5) 0.0962 (14)
H1A 0.3075 1.2283 0.1454 0.115*
C2 0.4350 (5) 1.1151 (3) 0.0982 (4) 0.0905 (13)
H2 0.4057 1.1177 −0.0011 0.109*
C3 0.5377 (4) 1.0523 (3) 0.1836 (4) 0.0788 (11)
H3 0.5932 1.0019 0.1552 0.095*
C4 0.5481 (4) 1.0718 (3) 0.3185 (4) 0.0827 (11)
H4 0.6125 1.0386 0.4004 0.099*
C5 0.4490 (4) 1.1502 (3) 0.3136 (4) 0.0856 (12)
H5 0.4325 1.1806 0.3918 0.103*
C6 0.3115 (3) 0.8626 (2) 0.1744 (3) 0.0452 (6)
C7 0.3146 (3) 0.8949 (3) 0.3049 (3) 0.0573 (7)
H7 0.3754 0.8666 0.3922 0.069*
C8 0.2150 (3) 0.9752 (3) 0.2872 (4) 0.0693 (9)
H8 0.1948 1.0114 0.3600 0.083*
C9 0.1511 (3) 0.9943 (3) 0.1476 (4) 0.0778 (11)
H9 0.0787 1.0462 0.1061 0.093*
C10 0.2095 (3) 0.9257 (3) 0.0766 (3) 0.0638 (9)
H10 0.1849 0.9227 −0.0222 0.077*
C11 0.3946 (2) 0.78116 (19) 0.1409 (2) 0.0389 (6)
C12 0.5209 (3) 0.7445 (2) 0.2335 (2) 0.0419 (6)
C13 0.5943 (3) 0.6722 (2) 0.1894 (3) 0.0487 (7)
H13 0.6780 0.6472 0.2490 0.058*
C14 0.5436 (3) 0.6372 (2) 0.0573 (3) 0.0489 (6)
H14 0.5936 0.5896 0.0264 0.059*
C15 0.4175 (3) 0.6734 (2) −0.0295 (3) 0.0455 (6)
C16 0.3599 (3) 0.6378 (3) −0.1758 (3) 0.0637 (8)
H16A 0.2724 0.6705 −0.2207 0.096* 0.50
H16B 0.3490 0.5628 −0.1790 0.096* 0.50
H16C 0.4217 0.6574 −0.2206 0.096* 0.50
H16D 0.4230 0.5900 −0.1929 0.096* 0.50
H16E 0.3464 0.6977 −0.2345 0.096* 0.50
H16F 0.2737 0.6030 −0.1929 0.096* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0494 (3) 0.0480 (3) 0.0396 (2) 0.00711 (17) 0.01483 (18) −0.00218 (16)
O1 0.0420 (11) 0.0758 (14) 0.0404 (10) 0.0147 (10) −0.0031 (8) −0.0069 (9)
N1 0.0351 (11) 0.0414 (12) 0.0407 (11) −0.0034 (9) 0.0014 (9) 0.0023 (9)
C1 0.143 (4) 0.044 (2) 0.120 (4) 0.011 (2) 0.070 (3) −0.003 (2)
C2 0.150 (4) 0.059 (2) 0.088 (3) −0.012 (2) 0.074 (3) −0.002 (2)
C3 0.080 (3) 0.067 (2) 0.110 (3) −0.024 (2) 0.058 (2) −0.031 (2)
C4 0.063 (2) 0.089 (3) 0.092 (3) −0.021 (2) 0.022 (2) −0.033 (2)
C5 0.102 (3) 0.076 (2) 0.091 (3) −0.020 (2) 0.050 (2) −0.039 (2)
C6 0.0298 (13) 0.0498 (16) 0.0499 (15) −0.0026 (11) 0.0069 (11) 0.0015 (12)
C7 0.0532 (18) 0.068 (2) 0.0575 (17) 0.0024 (15) 0.0282 (14) 0.0088 (14)
C8 0.0517 (19) 0.085 (2) 0.084 (2) 0.0068 (17) 0.0393 (19) −0.0064 (18)
C9 0.0382 (17) 0.090 (3) 0.089 (3) 0.0194 (17) 0.0033 (18) −0.013 (2)
C10 0.0414 (16) 0.071 (2) 0.0606 (18) 0.0121 (15) −0.0037 (14) −0.0132 (16)
C11 0.0315 (13) 0.0380 (13) 0.0413 (13) −0.0045 (10) 0.0060 (11) 0.0036 (10)
C12 0.0370 (14) 0.0419 (14) 0.0375 (13) −0.0012 (11) 0.0019 (11) 0.0020 (10)
C13 0.0405 (15) 0.0439 (15) 0.0489 (15) 0.0084 (12) 0.0003 (12) 0.0034 (12)
C14 0.0488 (16) 0.0385 (14) 0.0525 (15) 0.0045 (12) 0.0097 (13) −0.0019 (11)
C15 0.0464 (16) 0.0372 (14) 0.0450 (14) −0.0056 (12) 0.0067 (12) −0.0005 (11)
C16 0.063 (2) 0.0625 (19) 0.0502 (17) 0.0023 (16) 0.0019 (15) −0.0102 (14)

Geometric parameters (Å, °)

Fe1—C8 2.024 (3) C6—C7 1.426 (4)
Fe1—C9 2.025 (3) C6—C10 1.433 (4)
Fe1—C7 2.029 (3) C6—C11 1.473 (4)
Fe1—C2 2.032 (4) C7—C8 1.421 (4)
Fe1—C4 2.036 (3) C7—H7 0.9800
Fe1—C1 2.036 (4) C8—C9 1.401 (5)
Fe1—C5 2.038 (4) C8—H8 0.9800
Fe1—C10 2.040 (3) C9—C10 1.421 (5)
Fe1—C3 2.041 (4) C9—H9 0.9800
Fe1—C6 2.061 (3) C10—H10 0.9800
O1—C12 1.358 (3) C11—C12 1.408 (3)
O1—H1 0.8200 C12—C13 1.381 (4)
N1—C15 1.339 (3) C13—C14 1.374 (4)
N1—C11 1.357 (3) C13—H13 0.9300
C1—C5 1.377 (6) C14—C15 1.385 (4)
C1—C2 1.412 (5) C14—H14 0.9300
C1—H1A 0.9800 C15—C16 1.509 (4)
C2—C3 1.381 (6) C16—H16A 0.9600
C2—H2 0.9800 C16—H16B 0.9600
C3—C4 1.408 (5) C16—H16C 0.9600
C3—H3 0.9800 C16—H16D 0.9600
C4—C5 1.425 (6) C16—H16E 0.9600
C4—H4 0.9800 C16—H16F 0.9600
C5—H5 0.9800
C8—Fe1—C9 40.49 (16) C1—C5—Fe1 70.2 (2)
C8—Fe1—C7 41.06 (13) C4—C5—Fe1 69.5 (2)
C9—Fe1—C7 68.66 (15) C1—C5—H5 126.2
C8—Fe1—C2 155.18 (17) C4—C5—H5 126.2
C9—Fe1—C2 121.4 (2) Fe1—C5—H5 126.2
C7—Fe1—C2 163.08 (15) C7—C6—C10 106.6 (3)
C8—Fe1—C4 124.23 (16) C7—C6—C11 128.5 (2)
C9—Fe1—C4 160.47 (16) C10—C6—C11 124.9 (3)
C7—Fe1—C4 107.62 (16) C7—C6—Fe1 68.41 (17)
C2—Fe1—C4 67.60 (19) C10—C6—Fe1 68.77 (17)
C8—Fe1—C1 119.26 (17) C11—C6—Fe1 127.50 (18)
C9—Fe1—C1 107.08 (18) C8—C7—C6 108.5 (3)
C7—Fe1—C1 154.37 (15) C8—C7—Fe1 69.29 (19)
C2—Fe1—C1 40.61 (16) C6—C7—Fe1 70.80 (16)
C4—Fe1—C1 67.5 (2) C8—C7—H7 125.7
C8—Fe1—C5 105.90 (16) C6—C7—H7 125.7
C9—Fe1—C5 123.03 (16) Fe1—C7—H7 125.7
C7—Fe1—C5 120.16 (16) C9—C8—C7 108.2 (3)
C2—Fe1—C5 67.68 (17) C9—C8—Fe1 69.8 (2)
C4—Fe1—C5 40.93 (16) C7—C8—Fe1 69.66 (17)
C1—Fe1—C5 39.52 (16) C9—C8—H8 125.9
C8—Fe1—C10 68.53 (15) C7—C8—H8 125.9
C9—Fe1—C10 40.92 (14) Fe1—C8—H8 125.9
C7—Fe1—C10 68.58 (14) C8—C9—C10 108.3 (3)
C2—Fe1—C10 109.16 (17) C8—C9—Fe1 69.71 (19)
C4—Fe1—C10 157.32 (14) C10—C9—Fe1 70.09 (18)
C1—Fe1—C10 125.72 (18) C8—C9—H9 125.8
C5—Fe1—C10 160.69 (16) C10—C9—H9 125.8
C8—Fe1—C3 162.32 (18) Fe1—C9—H9 125.8
C9—Fe1—C3 156.78 (18) C9—C10—C6 108.3 (3)
C7—Fe1—C3 126.37 (16) C9—C10—Fe1 68.99 (19)
C2—Fe1—C3 39.63 (17) C6—C10—Fe1 70.33 (16)
C4—Fe1—C3 40.41 (15) C9—C10—H10 125.9
C1—Fe1—C3 67.29 (18) C6—C10—H10 125.9
C5—Fe1—C3 67.95 (15) Fe1—C10—H10 125.9
C10—Fe1—C3 122.69 (14) N1—C11—C12 120.2 (2)
C8—Fe1—C6 68.91 (13) N1—C11—C6 116.3 (2)
C9—Fe1—C6 68.94 (13) C12—C11—C6 123.5 (2)
C7—Fe1—C6 40.79 (11) O1—C12—C13 122.3 (2)
C2—Fe1—C6 126.58 (13) O1—C12—C11 118.9 (2)
C4—Fe1—C6 121.60 (15) C13—C12—C11 118.8 (2)
C1—Fe1—C6 163.36 (16) C14—C13—C12 119.9 (2)
C5—Fe1—C6 156.22 (16) C14—C13—H13 120.0
C10—Fe1—C6 40.90 (11) C12—C13—H13 120.0
C3—Fe1—C6 109.62 (13) C13—C14—C15 119.4 (3)
C12—O1—H1 109.5 C13—C14—H14 120.3
C15—N1—C11 120.4 (2) C15—C14—H14 120.3
C5—C1—C2 108.7 (4) N1—C15—C14 121.3 (2)
C5—C1—Fe1 70.3 (2) N1—C15—C16 118.0 (2)
C2—C1—Fe1 69.5 (2) C14—C15—C16 120.7 (3)
C5—C1—H1A 125.7 C15—C16—H16A 109.5
C2—C1—H1A 125.7 C15—C16—H16B 109.5
Fe1—C1—H1A 125.7 H16A—C16—H16B 109.5
C3—C2—C1 108.0 (4) C15—C16—H16C 109.5
C3—C2—Fe1 70.5 (2) H16A—C16—H16C 109.5
C1—C2—Fe1 69.9 (2) H16B—C16—H16C 109.5
C3—C2—H2 126.0 C15—C16—H16D 109.5
C1—C2—H2 126.0 H16A—C16—H16D 141.1
Fe1—C2—H2 126.0 H16B—C16—H16D 56.3
C2—C3—C4 108.5 (4) H16C—C16—H16D 56.3
C2—C3—Fe1 69.8 (2) C15—C16—H16E 109.5
C4—C3—Fe1 69.6 (2) H16A—C16—H16E 56.3
C2—C3—H3 125.8 H16B—C16—H16E 141.1
C4—C3—H3 125.8 H16C—C16—H16E 56.3
Fe1—C3—H3 125.8 H16D—C16—H16E 109.5
C3—C4—C5 107.2 (4) C15—C16—H16F 109.5
C3—C4—Fe1 70.0 (2) H16A—C16—H16F 56.3
C5—C4—Fe1 69.6 (2) H16B—C16—H16F 56.3
C3—C4—H4 126.4 H16C—C16—H16F 141.1
C5—C4—H4 126.4 H16D—C16—H16F 109.5
Fe1—C4—H4 126.4 H16E—C16—H16F 109.5
C1—C5—C4 107.7 (3)
C8—Fe1—C1—C5 79.3 (3) C8—Fe1—C6—C11 −160.5 (3)
C9—Fe1—C1—C5 121.6 (3) C9—Fe1—C6—C11 155.9 (3)
C7—Fe1—C1—C5 45.4 (5) C7—Fe1—C6—C11 −122.7 (3)
C2—Fe1—C1—C5 −119.8 (4) C2—Fe1—C6—C11 41.8 (3)
C4—Fe1—C1—C5 −38.5 (2) C4—Fe1—C6—C11 −42.4 (3)
C10—Fe1—C1—C5 162.7 (2) C1—Fe1—C6—C11 76.9 (6)
C3—Fe1—C1—C5 −82.4 (3) C5—Fe1—C6—C11 −79.0 (4)
C6—Fe1—C1—C5 −165.0 (4) C10—Fe1—C6—C11 118.3 (3)
C8—Fe1—C1—C2 −160.9 (3) C3—Fe1—C6—C11 0.7 (3)
C9—Fe1—C1—C2 −118.6 (3) C10—C6—C7—C8 0.8 (3)
C7—Fe1—C1—C2 165.3 (3) C11—C6—C7—C8 −179.3 (3)
C4—Fe1—C1—C2 81.3 (3) Fe1—C6—C7—C8 59.2 (2)
C5—Fe1—C1—C2 119.8 (4) C10—C6—C7—Fe1 −58.4 (2)
C10—Fe1—C1—C2 −77.4 (3) C11—C6—C7—Fe1 121.5 (3)
C3—Fe1—C1—C2 37.4 (3) C9—Fe1—C7—C8 −37.4 (2)
C6—Fe1—C1—C2 −45.2 (7) C2—Fe1—C7—C8 −167.0 (5)
C5—C1—C2—C3 −0.9 (5) C4—Fe1—C7—C8 122.3 (2)
Fe1—C1—C2—C3 −60.5 (3) C1—Fe1—C7—C8 47.7 (5)
C5—C1—C2—Fe1 59.6 (3) C5—Fe1—C7—C8 79.3 (3)
C8—Fe1—C2—C3 161.4 (3) C10—Fe1—C7—C8 −81.5 (2)
C9—Fe1—C2—C3 −162.0 (2) C3—Fe1—C7—C8 163.0 (2)
C7—Fe1—C2—C3 −39.2 (6) C6—Fe1—C7—C8 −119.5 (3)
C4—Fe1—C2—C3 37.5 (2) C8—Fe1—C7—C6 119.5 (3)
C1—Fe1—C2—C3 118.6 (4) C9—Fe1—C7—C6 82.08 (19)
C5—Fe1—C2—C3 81.9 (3) C2—Fe1—C7—C6 −47.5 (6)
C10—Fe1—C2—C3 −118.5 (2) C4—Fe1—C7—C6 −118.27 (18)
C6—Fe1—C2—C3 −76.1 (3) C1—Fe1—C7—C6 167.2 (4)
C8—Fe1—C2—C1 42.8 (5) C5—Fe1—C7—C6 −161.19 (19)
C9—Fe1—C2—C1 79.4 (3) C10—Fe1—C7—C6 37.99 (17)
C7—Fe1—C2—C1 −157.8 (5) C3—Fe1—C7—C6 −77.6 (2)
C4—Fe1—C2—C1 −81.1 (3) C6—C7—C8—C9 −0.8 (4)
C5—Fe1—C2—C1 −36.6 (3) Fe1—C7—C8—C9 59.4 (3)
C10—Fe1—C2—C1 123.0 (3) C6—C7—C8—Fe1 −60.1 (2)
C3—Fe1—C2—C1 −118.6 (4) C7—Fe1—C8—C9 −119.4 (3)
C6—Fe1—C2—C1 165.4 (3) C2—Fe1—C8—C9 51.6 (5)
C1—C2—C3—C4 1.0 (5) C4—Fe1—C8—C9 163.5 (2)
Fe1—C2—C3—C4 −59.1 (3) C1—Fe1—C8—C9 82.1 (3)
C1—C2—C3—Fe1 60.1 (3) C5—Fe1—C8—C9 122.6 (2)
C8—Fe1—C3—C2 −153.9 (4) C10—Fe1—C8—C9 −37.8 (2)
C9—Fe1—C3—C2 42.0 (5) C3—Fe1—C8—C9 −170.4 (4)
C7—Fe1—C3—C2 166.8 (2) C6—Fe1—C8—C9 −81.9 (2)
C4—Fe1—C3—C2 −119.8 (3) C9—Fe1—C8—C7 119.4 (3)
C1—Fe1—C3—C2 −38.3 (2) C2—Fe1—C8—C7 171.0 (3)
C5—Fe1—C3—C2 −81.2 (3) C4—Fe1—C8—C7 −77.1 (3)
C10—Fe1—C3—C2 80.6 (3) C1—Fe1—C8—C7 −158.5 (2)
C6—Fe1—C3—C2 124.2 (2) C5—Fe1—C8—C7 −117.9 (2)
C8—Fe1—C3—C4 −34.1 (6) C10—Fe1—C8—C7 81.6 (2)
C9—Fe1—C3—C4 161.8 (4) C3—Fe1—C8—C7 −51.0 (6)
C7—Fe1—C3—C4 −73.4 (3) C6—Fe1—C8—C7 37.56 (19)
C2—Fe1—C3—C4 119.8 (3) C7—C8—C9—C10 0.4 (4)
C1—Fe1—C3—C4 81.5 (3) Fe1—C8—C9—C10 59.7 (3)
C5—Fe1—C3—C4 38.6 (3) C7—C8—C9—Fe1 −59.3 (2)
C10—Fe1—C3—C4 −159.6 (2) C7—Fe1—C9—C8 37.9 (2)
C6—Fe1—C3—C4 −116.1 (2) C2—Fe1—C9—C8 −157.3 (2)
C2—C3—C4—C5 −0.7 (4) C4—Fe1—C9—C8 −44.7 (6)
Fe1—C3—C4—C5 −59.9 (3) C1—Fe1—C9—C8 −115.3 (2)
C2—C3—C4—Fe1 59.2 (3) C5—Fe1—C9—C8 −75.0 (3)
C8—Fe1—C4—C3 168.1 (2) C10—Fe1—C9—C8 119.4 (3)
C9—Fe1—C4—C3 −158.4 (5) C3—Fe1—C9—C8 172.7 (3)
C7—Fe1—C4—C3 125.9 (3) C6—Fe1—C9—C8 81.8 (2)
C2—Fe1—C4—C3 −36.8 (2) C8—Fe1—C9—C10 −119.4 (3)
C1—Fe1—C4—C3 −80.9 (3) C7—Fe1—C9—C10 −81.5 (2)
C5—Fe1—C4—C3 −118.1 (4) C2—Fe1—C9—C10 83.3 (3)
C10—Fe1—C4—C3 49.4 (5) C4—Fe1—C9—C10 −164.1 (5)
C6—Fe1—C4—C3 83.4 (3) C1—Fe1—C9—C10 125.3 (2)
C8—Fe1—C4—C5 −73.8 (3) C5—Fe1—C9—C10 165.6 (2)
C9—Fe1—C4—C5 −40.3 (6) C3—Fe1—C9—C10 53.3 (5)
C7—Fe1—C4—C5 −116.0 (3) C6—Fe1—C9—C10 −37.6 (2)
C2—Fe1—C4—C5 81.3 (3) C8—C9—C10—C6 0.1 (4)
C1—Fe1—C4—C5 37.2 (2) Fe1—C9—C10—C6 59.6 (2)
C10—Fe1—C4—C5 167.5 (4) C8—C9—C10—Fe1 −59.4 (3)
C3—Fe1—C4—C5 118.1 (4) C7—C6—C10—C9 −0.6 (4)
C6—Fe1—C4—C5 −158.5 (2) C11—C6—C10—C9 179.6 (3)
C2—C1—C5—C4 0.5 (5) Fe1—C6—C10—C9 −58.7 (2)
Fe1—C1—C5—C4 59.6 (3) C7—C6—C10—Fe1 58.1 (2)
C2—C1—C5—Fe1 −59.1 (3) C11—C6—C10—Fe1 −121.7 (3)
C3—C4—C5—C1 0.2 (5) C8—Fe1—C10—C9 37.4 (2)
Fe1—C4—C5—C1 −60.0 (3) C7—Fe1—C10—C9 81.7 (2)
C3—C4—C5—Fe1 60.2 (2) C2—Fe1—C10—C9 −116.2 (3)
C8—Fe1—C5—C1 −117.0 (3) C4—Fe1—C10—C9 166.2 (4)
C9—Fe1—C5—C1 −76.2 (3) C1—Fe1—C10—C9 −73.9 (3)
C7—Fe1—C5—C1 −159.1 (2) C5—Fe1—C10—C9 −39.1 (6)
C2—Fe1—C5—C1 37.6 (3) C3—Fe1—C10—C9 −157.9 (3)
C4—Fe1—C5—C1 118.7 (4) C6—Fe1—C10—C9 119.6 (3)
C10—Fe1—C5—C1 −46.7 (6) C8—Fe1—C10—C6 −82.2 (2)
C3—Fe1—C5—C1 80.6 (3) C9—Fe1—C10—C6 −119.6 (3)
C6—Fe1—C5—C1 169.4 (3) C7—Fe1—C10—C6 −37.89 (17)
C8—Fe1—C5—C4 124.4 (3) C2—Fe1—C10—C6 124.2 (2)
C9—Fe1—C5—C4 165.1 (2) C4—Fe1—C10—C6 46.6 (5)
C7—Fe1—C5—C4 82.2 (3) C1—Fe1—C10—C6 166.5 (2)
C2—Fe1—C5—C4 −81.1 (3) C5—Fe1—C10—C6 −158.7 (4)
C1—Fe1—C5—C4 −118.7 (4) C3—Fe1—C10—C6 82.4 (2)
C10—Fe1—C5—C4 −165.4 (4) C15—N1—C11—C12 −3.4 (4)
C3—Fe1—C5—C4 −38.1 (3) C15—N1—C11—C6 175.6 (2)
C6—Fe1—C5—C4 50.7 (4) C7—C6—C11—N1 160.0 (3)
C8—Fe1—C6—C7 −37.80 (19) C10—C6—C11—N1 −20.3 (4)
C9—Fe1—C6—C7 −81.3 (2) Fe1—C6—C11—N1 −109.0 (2)
C2—Fe1—C6—C7 164.5 (2) C7—C6—C11—C12 −21.1 (4)
C4—Fe1—C6—C7 80.3 (2) C10—C6—C11—C12 158.7 (3)
C1—Fe1—C6—C7 −160.4 (5) Fe1—C6—C11—C12 70.0 (3)
C5—Fe1—C6—C7 43.7 (4) N1—C11—C12—O1 −178.5 (2)
C10—Fe1—C6—C7 −118.9 (3) C6—C11—C12—O1 2.5 (4)
C3—Fe1—C6—C7 123.4 (2) N1—C11—C12—C13 2.5 (4)
C8—Fe1—C6—C10 81.1 (2) C6—C11—C12—C13 −176.4 (2)
C9—Fe1—C6—C10 37.6 (2) O1—C12—C13—C14 −179.0 (3)
C7—Fe1—C6—C10 118.9 (3) C11—C12—C13—C14 −0.1 (4)
C2—Fe1—C6—C10 −76.6 (3) C12—C13—C14—C15 −1.4 (4)
C4—Fe1—C6—C10 −160.8 (2) C11—N1—C15—C14 1.9 (4)
C1—Fe1—C6—C10 −41.5 (6) C11—N1—C15—C16 −176.7 (2)
C5—Fe1—C6—C10 162.7 (3) C13—C14—C15—N1 0.5 (4)
C3—Fe1—C6—C10 −117.7 (2) C13—C14—C15—C16 179.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.82 1.96 2.774 (3) 169
C7—H7···O1 0.98 2.39 2.866 (4) 109

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2173).

References

  1. Beletskaya, I. P., Tsvetkov, A. V., Latyshev, G. V., Tafeenko, V. A. & Lukashev, N. V. (2001). J. Organomet. Chem.637-639, 653–663.
  2. Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hayashi, T. & Togni, A. (1995). Editors. Ferrocenes VCH: Weinhein: VCH.
  4. Kealy, T. J. & Pauson, P. L. (1951). Nature (London), 168, 1039–1040.
  5. Sarhan, A. A. O. & Izumi, T. (2003). J. Organomet. Chem.675, 1–12.
  6. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Staveren, D. R. V. & Metzler-Nolte, N. (2004). Chem. Rev.104, 5931–5985. [DOI] [PubMed]
  9. Xu, C., Gong, J. F. & Wu, Y. J. (2007). Tetrahedron Lett.48, 1619–1623.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039597/fj2173sup1.cif

e-64-m1633-sup1.cif (27.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039597/fj2173Isup2.hkl

e-64-m1633-Isup2.hkl (119KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES