Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 29;64(Pt 12):o2496. doi: 10.1107/S1600536808039135

2,4,6,8-Tetra­kis(4-fluoro­phen­yl)-3,7-diaza­bicyclo­[3.3.1]nonan-9-one

S Natarajan a, V Sudhapriya b, V Vijayakumar b, N Shoba c, J Suresh c, P L Nilantha Lakshman d,*
PMCID: PMC2960046  PMID: 21581457

Abstract

In the title compound, C31H24F4N2O, the bicyclo­[3.3.1]nonane ring exists in a chair-boat conformation. Two of the four fluorine-substituted rings adopt equatorial dispositions with the piperidin-4-one rings. Mol­ecules are linked into a two-dimensional network parallel to (Inline graphic01) by N—H⋯O, C—H⋯F and C—H⋯O hydrogen bonds. Inter­molecular N—H⋯π and C—H⋯π inter­actions are also observed.

Related literature

For general background, see: Asakawa (1995); Jeyaraman & Avila (1981).graphic file with name e-64-o2496-scheme1.jpg

Experimental

Crystal data

  • C31H24F4N2O

  • M r = 516.52

  • Monoclinic, Inline graphic

  • a = 37.1521 (9) Å

  • b = 7.1458 (5) Å

  • c = 26.2165 (7) Å

  • β = 133.249 (4)°

  • V = 5069.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.19 × 0.16 × 0.11 mm

Data collection

  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.986, T max = 0.991

  • 5315 measured reflections

  • 4465 independent reflections

  • 2735 reflections with I > 2σ(I)

  • R int = 0.024

  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.112

  • S = 1.02

  • 4465 reflections

  • 351 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039135/ci2727sup1.cif

e-64-o2496-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039135/ci2727Isup2.hkl

e-64-o2496-Isup2.hkl (214.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯F4i 0.93 2.52 3.254 (3) 136
C3—H3⋯O1ii 0.98 2.56 3.358 (2) 138
N2—H1A⋯O1iii 0.86 (2) 2.53 (2) 3.292 (2) 148 (3)
N1—H2ACg3iv 0.89 (2) 2.70 (3) 3.549 (3) 160 (2)
C36—H36⋯Cg2v 0.93 2.81 3.696 (3) 160
C42—H42⋯Cg1v 0.93 2.78 3.651 (3) 157
C45—H45⋯Cg3iii 0.93 2.65 3.494 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic. Cg1, Cg2 and Cg3 are the centroids of the C31–C36, C41–C46 and C61–C66 rings, respectively.

Acknowledgments

SN thanks the DST for the FIST programme.

supplementary crystallographic information

Comment

Azabicyclononane and their derivatives are studied intensively because of their pharmaceutical use and their application as an important structure in the field of molecular recognition. The 3-azabicyclo[3.3.1] nonane skeletal system easily constructed via a double Mannich reaction (Jeyaraman & Avila, 1981), has been known for some time. The bicyclo[3.3.1]nonane carbon framework is frequently encountered in natural products, in particular in alkaloids and terpenoids, e.g. trifarienols (Asakawa, 1995). Further, the study of conformation of the bicyclic ring helps in the understanding of interactions that are possible between the substituted aryl rings.

The molecular structure of the title compound is shown in Fig.1. The bicyclic [3.3.1]nonane ring can exist in chair-chair, chair-boat and boat-boat conformations. Among these, the chair-chair conformation is the most favourable. In the title compound, the bicyclic ring system adopts a chair-boat conformation. In the N1-piperidine ring of the compound, atoms N1 and C7 deviate from the C1/C2/C5/C6 plane by 0.652 (3) and 0.685 (3) Å, respectively, indicating a nearly ideal boat conformation. The phenyl rings substituted at C1 and C6 positions are oriented at an angle of 28.2 (1)° to each other. The phenyl rings substituted at C3 and C4 are oriented with an angle of 28.6 (1)° between them and they are equatorially disposed with respect to the piperidine ring, with torsion angles C7—C5—C4—C41 = -175.1 (2)° and C7—C2—C3—C31 = 173.3 (2)°.

Fig. 2 shows the packing viewed down the c axis. Pairs of intermolecular C—H···F (Table 1) hydrogen bonds form centrosymmetric R22(24) dimers. The moelcules are linked into a two-dimensional network parallel to the (101) by N—H···O, C—H···F and C—H···O hydrogen bonds. In addition, some C—H···π interactions (Table 1 ; Cg1, Cg2 and Cg3 refer to centroids of C31-C36, C41-C46 and C61-C66 rings, respectively).

Experimental

A mixture of 0.73 ml of dry acetone (0.01 mol), 4.96 ml of 4-fluorobenzaldehyde (0.04 mol), 1.54 g dry ammonium acetate (0.02 mol) were taken in a flask with ethanol as solvent. Contents were heated with constant shaking until it becomes pale orange in colour. Then the contents were kept aside for 24 h and the title compound was filtered through the Buchner funnel, washed with 1:1 ethanol-ether mixture until the yellow colour disappeared and dried (yield 45%, m.p. 484 K).

Refinement

Atoms H1A and H2A were located in a difference Fourier map and their positional and isotropic displacement parameters were refined. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C-H = 0.93–0.98 Å and Uiso = 1.2Ueq(C) for CH group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

Packing diagram viewed down the c axis.

Crystal data

C31H24F4N2O F000 = 2144
Mr = 516.52 Dx = 1.353 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 25 reflections
a = 37.1521 (9) Å θ = 2–25º
b = 7.1458 (5) Å µ = 0.10 mm1
c = 26.2165 (7) Å T = 293 (2) K
β = 133.249 (4)º Block, colourless
V = 5069.5 (4) Å3 0.19 × 0.16 × 0.11 mm
Z = 8

Data collection

Nonius MACH-3 diffractometer Rint = 0.024
Radiation source: fine-focus sealed tube θmax = 25.0º
Monochromator: graphite θmin = 2.1º
T = 293(2) K h = 0→44
ω–2θ scans k = −1→8
Absorption correction: ψ scan(North et al., 1968) l = −31→22
Tmin = 0.986, Tmax = 0.991 2 standard reflections
5315 measured reflections every 60 min
4465 independent reflections intensity decay: none
2735 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112   w = 1/[σ2(Fo2) + (0.0552P)2 + 1.3466P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
4465 reflections Δρmax = 0.14 e Å3
351 parameters Δρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.11845 (6) 0.4616 (3) 0.20424 (9) 0.0401 (5)
H1 0.1151 0.3251 0.2002 0.048*
C2 0.17256 (7) 0.5147 (3) 0.24318 (10) 0.0385 (4)
H2 0.1871 0.5885 0.2850 0.046*
C3 0.20558 (6) 0.3394 (3) 0.26425 (9) 0.0378 (5)
H3 0.2379 0.3838 0.2838 0.045*
C4 0.18263 (7) 0.3426 (3) 0.15308 (9) 0.0377 (4)
H4 0.2166 0.3848 0.1798 0.045*
C5 0.14991 (6) 0.5202 (3) 0.12939 (9) 0.0371 (4)
H5 0.1508 0.5974 0.0994 0.044*
C6 0.09512 (6) 0.4758 (3) 0.09015 (9) 0.0398 (5)
H6 0.0897 0.3403 0.0836 0.048*
C7 0.17300 (7) 0.6262 (3) 0.19522 (10) 0.0386 (5)
C11 0.10312 (7) 0.5332 (3) 0.24153 (10) 0.0430 (5)
C12 0.11071 (9) 0.4228 (4) 0.29154 (12) 0.0621 (6)
H12 0.1258 0.3067 0.3025 0.074*
C13 0.09628 (10) 0.4816 (4) 0.32551 (13) 0.0711 (7)
H13 0.1017 0.4068 0.3593 0.085*
C14 0.07391 (8) 0.6514 (4) 0.30841 (12) 0.0571 (6)
C15 0.06615 (8) 0.7656 (3) 0.26035 (12) 0.0564 (6)
H15 0.0512 0.8817 0.2500 0.068*
C16 0.08102 (8) 0.7055 (3) 0.22704 (11) 0.0504 (5)
H16 0.0760 0.7829 0.1941 0.060*
C31 0.21368 (7) 0.2239 (3) 0.31941 (9) 0.0394 (5)
C32 0.18761 (7) 0.0614 (3) 0.30531 (11) 0.0476 (5)
H32 0.1646 0.0158 0.2597 0.057*
C33 0.19552 (8) −0.0333 (3) 0.35830 (12) 0.0531 (6)
H33 0.1778 −0.1413 0.3486 0.064*
C34 0.22973 (8) 0.0344 (3) 0.42487 (11) 0.0520 (6)
C35 0.25679 (8) 0.1928 (3) 0.44138 (11) 0.0526 (6)
H35 0.2801 0.2361 0.4873 0.063*
C36 0.24843 (7) 0.2856 (3) 0.38825 (10) 0.0462 (5)
H36 0.2666 0.3929 0.3987 0.055*
C41 0.16646 (6) 0.2296 (3) 0.09174 (9) 0.0377 (4)
C42 0.17840 (7) 0.2953 (3) 0.05514 (10) 0.0486 (5)
H42 0.1964 0.4056 0.0697 0.058*
C43 0.16441 (8) 0.2022 (3) −0.00210 (11) 0.0572 (6)
H43 0.1725 0.2483 −0.0263 0.069*
C44 0.13822 (8) 0.0401 (3) −0.02224 (11) 0.0552 (6)
C45 0.12559 (8) −0.0312 (3) 0.01184 (11) 0.0550 (6)
H45 0.1078 −0.1423 −0.0031 0.066*
C46 0.13961 (7) 0.0644 (3) 0.06916 (10) 0.0476 (5)
H46 0.1310 0.0176 0.0927 0.057*
C61 0.06009 (7) 0.5723 (3) 0.01948 (10) 0.0406 (5)
C62 0.03742 (8) 0.7397 (3) 0.00973 (12) 0.0590 (6)
H62 0.0420 0.7904 0.0465 0.071*
C63 0.00812 (9) 0.8329 (4) −0.05342 (13) 0.0697 (7)
H63 −0.0071 0.9450 −0.0595 0.084*
C64 0.00196 (8) 0.7583 (4) −0.10652 (11) 0.0596 (6)
C65 0.02287 (8) 0.5928 (3) −0.10022 (11) 0.0546 (6)
H65 0.0177 0.5435 −0.1376 0.066*
C66 0.05205 (7) 0.4997 (3) −0.03665 (10) 0.0469 (5)
H66 0.0665 0.3863 −0.0315 0.056*
N1 0.08615 (6) 0.5436 (3) 0.13358 (8) 0.0448 (4)
N2 0.18264 (6) 0.2354 (2) 0.20033 (8) 0.0396 (4)
O1 0.19350 (5) 0.7766 (2) 0.21027 (7) 0.0521 (4)
F1 0.05822 (5) 0.7074 (2) 0.34005 (7) 0.0799 (4)
F2 0.23818 (6) −0.0598 (2) 0.47714 (7) 0.0775 (4)
F3 0.12520 (6) −0.0562 (2) −0.07769 (7) 0.0844 (5)
F4 −0.02642 (6) 0.8518 (2) −0.16843 (7) 0.0923 (5)
H1A 0.1975 (8) 0.130 (3) 0.2109 (11) 0.057 (7)*
H2A 0.0545 (8) 0.522 (3) 0.1100 (10) 0.052 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0412 (10) 0.0390 (12) 0.0455 (11) 0.0006 (9) 0.0318 (9) 0.0010 (9)
C2 0.0420 (10) 0.0344 (11) 0.0438 (10) −0.0014 (9) 0.0313 (9) −0.0037 (9)
C3 0.0366 (10) 0.0367 (11) 0.0427 (11) 0.0005 (9) 0.0282 (9) −0.0008 (9)
C4 0.0358 (9) 0.0366 (11) 0.0442 (11) −0.0001 (9) 0.0288 (9) −0.0007 (9)
C5 0.0401 (10) 0.0341 (11) 0.0429 (10) 0.0006 (8) 0.0308 (9) 0.0023 (9)
C6 0.0395 (10) 0.0392 (12) 0.0443 (10) −0.0017 (9) 0.0302 (9) −0.0026 (9)
C7 0.0359 (10) 0.0317 (11) 0.0527 (12) 0.0042 (9) 0.0321 (9) 0.0020 (9)
C11 0.0399 (10) 0.0480 (13) 0.0455 (11) −0.0007 (10) 0.0309 (9) 0.0007 (10)
C12 0.0749 (15) 0.0619 (16) 0.0706 (15) 0.0213 (13) 0.0580 (14) 0.0195 (13)
C13 0.0894 (18) 0.083 (2) 0.0738 (16) 0.0217 (16) 0.0686 (15) 0.0244 (15)
C14 0.0563 (13) 0.0735 (17) 0.0589 (14) −0.0002 (12) 0.0463 (12) −0.0053 (13)
C15 0.0618 (13) 0.0542 (15) 0.0660 (14) 0.0085 (12) 0.0487 (12) 0.0040 (12)
C16 0.0588 (13) 0.0490 (13) 0.0573 (12) 0.0035 (11) 0.0452 (11) 0.0051 (11)
C31 0.0411 (10) 0.0378 (11) 0.0454 (11) 0.0036 (9) 0.0320 (9) −0.0010 (9)
C32 0.0539 (12) 0.0384 (12) 0.0529 (12) −0.0034 (10) 0.0374 (11) −0.0054 (10)
C33 0.0688 (14) 0.0370 (12) 0.0703 (15) 0.0002 (11) 0.0541 (13) 0.0017 (11)
C34 0.0722 (15) 0.0462 (14) 0.0604 (14) 0.0155 (12) 0.0543 (13) 0.0130 (12)
C35 0.0642 (14) 0.0536 (14) 0.0472 (12) 0.0036 (12) 0.0410 (12) −0.0026 (11)
C36 0.0526 (11) 0.0424 (12) 0.0481 (11) −0.0034 (10) 0.0362 (10) −0.0050 (10)
C41 0.0370 (9) 0.0359 (11) 0.0425 (10) 0.0037 (9) 0.0282 (9) 0.0026 (9)
C42 0.0570 (12) 0.0449 (12) 0.0589 (13) −0.0065 (10) 0.0455 (11) −0.0042 (11)
C43 0.0716 (14) 0.0621 (16) 0.0597 (13) −0.0006 (13) 0.0535 (13) −0.0007 (12)
C44 0.0622 (13) 0.0568 (15) 0.0434 (11) 0.0048 (12) 0.0350 (11) −0.0062 (11)
C45 0.0626 (13) 0.0443 (13) 0.0531 (12) −0.0088 (11) 0.0378 (11) −0.0084 (11)
C46 0.0554 (12) 0.0427 (13) 0.0520 (12) −0.0045 (11) 0.0397 (11) −0.0012 (10)
C61 0.0379 (10) 0.0403 (12) 0.0447 (11) −0.0010 (9) 0.0288 (9) 0.0001 (9)
C62 0.0704 (15) 0.0555 (15) 0.0572 (13) 0.0157 (13) 0.0462 (13) 0.0046 (12)
C63 0.0783 (17) 0.0603 (17) 0.0675 (16) 0.0270 (14) 0.0488 (14) 0.0153 (14)
C64 0.0550 (13) 0.0605 (16) 0.0488 (13) 0.0061 (12) 0.0300 (11) 0.0138 (12)
C65 0.0497 (12) 0.0654 (16) 0.0438 (12) −0.0071 (12) 0.0301 (11) −0.0051 (12)
C66 0.0432 (11) 0.0477 (13) 0.0474 (12) 0.0013 (10) 0.0301 (10) −0.0027 (10)
N1 0.0374 (9) 0.0567 (12) 0.0455 (9) 0.0043 (9) 0.0303 (8) 0.0037 (9)
N2 0.0479 (9) 0.0329 (10) 0.0443 (9) 0.0049 (8) 0.0340 (8) 0.0024 (8)
O1 0.0620 (9) 0.0362 (8) 0.0657 (9) −0.0095 (7) 0.0467 (8) −0.0059 (7)
F1 0.0926 (10) 0.1006 (12) 0.0882 (10) 0.0073 (9) 0.0781 (9) −0.0025 (9)
F2 0.1203 (12) 0.0641 (9) 0.0821 (9) 0.0118 (8) 0.0825 (10) 0.0192 (8)
F3 0.1090 (11) 0.0841 (11) 0.0633 (8) −0.0052 (9) 0.0602 (9) −0.0224 (8)
F4 0.0987 (11) 0.0894 (12) 0.0591 (8) 0.0184 (9) 0.0426 (9) 0.0273 (8)

Geometric parameters (Å, °)

C1—N1 1.473 (2) C32—C33 1.384 (3)
C1—C11 1.518 (3) C32—H32 0.93
C1—C2 1.554 (2) C33—C34 1.362 (3)
C1—H1 0.98 C33—H33 0.93
C2—C7 1.498 (3) C34—F2 1.356 (2)
C2—C3 1.566 (3) C34—C35 1.372 (3)
C2—H2 0.98 C35—C36 1.372 (3)
C3—N2 1.459 (2) C35—H35 0.93
C3—C31 1.505 (3) C36—H36 0.93
C3—H3 0.98 C41—C42 1.386 (3)
C4—N2 1.456 (2) C41—C46 1.389 (3)
C4—C41 1.508 (3) C42—C43 1.377 (3)
C4—C5 1.562 (3) C42—H42 0.93
C4—H4 0.98 C43—C44 1.365 (3)
C5—C7 1.503 (3) C43—H43 0.93
C5—C6 1.559 (2) C44—C45 1.361 (3)
C5—H5 0.98 C44—F3 1.363 (2)
C6—N1 1.470 (2) C45—C46 1.387 (3)
C6—C61 1.516 (3) C45—H45 0.93
C6—H6 0.98 C46—H46 0.93
C7—O1 1.216 (2) C61—C62 1.382 (3)
C11—C16 1.381 (3) C61—C66 1.386 (3)
C11—C12 1.383 (3) C62—C63 1.379 (3)
C12—C13 1.383 (3) C62—H62 0.93
C12—H12 0.93 C63—C64 1.356 (3)
C13—C14 1.361 (3) C63—H63 0.93
C13—H13 0.93 C64—F4 1.359 (2)
C14—C15 1.356 (3) C64—C65 1.361 (3)
C14—F1 1.360 (2) C65—C66 1.386 (3)
C15—C16 1.383 (3) C65—H65 0.93
C15—H15 0.93 C66—H66 0.93
C16—H16 0.93 N1—H2A 0.89 (2)
C31—C36 1.388 (3) N2—H1A 0.86 (2)
C31—C32 1.390 (3)
N1—C1—C11 109.51 (15) C32—C31—C3 123.93 (17)
N1—C1—C2 107.55 (15) C33—C32—C31 120.76 (19)
C11—C1—C2 112.45 (15) C33—C32—H32 119.6
N1—C1—H1 109.1 C31—C32—H32 119.6
C11—C1—H1 109.1 C34—C33—C32 118.8 (2)
C2—C1—H1 109.1 C34—C33—H33 120.6
C7—C2—C1 109.37 (15) C32—C33—H33 120.6
C7—C2—C3 105.39 (14) F2—C34—C33 119.0 (2)
C1—C2—C3 112.61 (15) F2—C34—C35 118.6 (2)
C7—C2—H2 109.8 C33—C34—C35 122.42 (19)
C1—C2—H2 109.8 C34—C35—C36 118.1 (2)
C3—C2—H2 109.8 C34—C35—H35 121.0
N2—C3—C31 113.52 (16) C36—C35—H35 121.0
N2—C3—C2 107.60 (14) C35—C36—C31 121.9 (2)
C31—C3—C2 111.73 (14) C35—C36—H36 119.0
N2—C3—H3 107.9 C31—C36—H36 119.0
C31—C3—H3 107.9 C42—C41—C46 118.01 (18)
C2—C3—H3 107.9 C42—C41—C4 118.32 (17)
N2—C4—C41 113.15 (16) C46—C41—C4 123.66 (16)
N2—C4—C5 108.19 (14) C43—C42—C41 122.0 (2)
C41—C4—C5 112.21 (15) C43—C42—H42 119.0
N2—C4—H4 107.7 C41—C42—H42 119.0
C41—C4—H4 107.7 C44—C43—C42 117.9 (2)
C5—C4—H4 107.7 C44—C43—H43 121.0
C7—C5—C6 108.66 (14) C42—C43—H43 121.0
C7—C5—C4 106.05 (14) C45—C44—F3 118.8 (2)
C6—C5—C4 113.94 (15) C45—C44—C43 122.6 (2)
C7—C5—H5 109.4 F3—C44—C43 118.6 (2)
C6—C5—H5 109.4 C44—C45—C46 119.0 (2)
C4—C5—H5 109.4 C44—C45—H45 120.5
N1—C6—C61 109.65 (16) C46—C45—H45 120.5
N1—C6—C5 107.95 (15) C45—C46—C41 120.48 (19)
C61—C6—C5 110.70 (15) C45—C46—H46 119.8
N1—C6—H6 109.5 C41—C46—H46 119.8
C61—C6—H6 109.5 C62—C61—C66 117.84 (19)
C5—C6—H6 109.5 C62—C61—C6 121.58 (18)
O1—C7—C2 124.21 (18) C66—C61—C6 120.48 (18)
O1—C7—C5 123.78 (18) C63—C62—C61 121.3 (2)
C2—C7—C5 111.69 (17) C63—C62—H62 119.3
C16—C11—C12 117.76 (18) C61—C62—H62 119.3
C16—C11—C1 122.54 (18) C64—C63—C62 118.8 (2)
C12—C11—C1 119.69 (19) C64—C63—H63 120.6
C13—C12—C11 121.3 (2) C62—C63—H63 120.6
C13—C12—H12 119.3 C63—C64—F4 118.7 (2)
C11—C12—H12 119.3 C63—C64—C65 122.4 (2)
C14—C13—C12 118.5 (2) F4—C64—C65 118.9 (2)
C14—C13—H13 120.7 C64—C65—C66 118.3 (2)
C12—C13—H13 120.7 C64—C65—H65 120.8
C15—C14—F1 118.8 (2) C66—C65—H65 120.8
C15—C14—C13 122.4 (2) C65—C66—C61 121.2 (2)
F1—C14—C13 118.8 (2) C65—C66—H66 119.4
C14—C15—C16 118.5 (2) C61—C66—H66 119.4
C14—C15—H15 120.8 C6—N1—C1 114.91 (15)
C16—C15—H15 120.8 C6—N1—H2A 107.3 (13)
C11—C16—C15 121.5 (2) C1—N1—H2A 110.8 (13)
C11—C16—H16 119.2 C4—N2—C3 111.62 (15)
C15—C16—H16 119.2 C4—N2—H1A 111.2 (14)
C36—C31—C32 117.96 (18) C3—N2—H1A 109.6 (14)
C36—C31—C3 118.09 (18)
N1—C1—C2—C7 −1.1 (2) C31—C32—C33—C34 −0.6 (3)
C11—C1—C2—C7 −121.79 (18) C32—C33—C34—F2 −178.90 (18)
N1—C1—C2—C3 −117.95 (17) C32—C33—C34—C35 −0.2 (3)
C11—C1—C2—C3 121.40 (17) F2—C34—C35—C36 179.10 (18)
C7—C2—C3—N2 −61.43 (18) C33—C34—C35—C36 0.4 (3)
C1—C2—C3—N2 57.74 (18) C34—C35—C36—C31 0.3 (3)
C7—C2—C3—C31 173.32 (15) C32—C31—C36—C35 −1.1 (3)
C1—C2—C3—C31 −67.52 (19) C3—C31—C36—C35 177.44 (18)
N2—C4—C5—C7 59.39 (18) N2—C4—C41—C42 −161.32 (17)
C41—C4—C5—C7 −175.09 (15) C5—C4—C41—C42 75.9 (2)
N2—C4—C5—C6 −60.09 (19) N2—C4—C41—C46 19.6 (2)
C41—C4—C5—C6 65.43 (19) C5—C4—C41—C46 −103.2 (2)
C7—C5—C6—N1 −3.4 (2) C46—C41—C42—C43 0.1 (3)
C4—C5—C6—N1 114.62 (17) C4—C41—C42—C43 −179.00 (19)
C7—C5—C6—C61 116.65 (18) C41—C42—C43—C44 −0.3 (3)
C4—C5—C6—C61 −125.36 (17) C42—C43—C44—C45 0.1 (3)
C1—C2—C7—O1 128.28 (19) C42—C43—C44—F3 −178.32 (19)
C3—C2—C7—O1 −110.4 (2) F3—C44—C45—C46 178.73 (19)
C1—C2—C7—C5 −58.06 (19) C43—C44—C45—C46 0.3 (3)
C3—C2—C7—C5 63.24 (18) C44—C45—C46—C41 −0.5 (3)
C6—C5—C7—O1 −125.73 (19) C42—C41—C46—C45 0.3 (3)
C4—C5—C7—O1 111.4 (2) C4—C41—C46—C45 179.37 (19)
C6—C5—C7—C2 60.57 (19) N1—C6—C61—C62 20.6 (3)
C4—C5—C7—C2 −62.32 (17) C5—C6—C61—C62 −98.4 (2)
N1—C1—C11—C16 −28.4 (3) N1—C6—C61—C66 −163.06 (17)
C2—C1—C11—C16 91.1 (2) C5—C6—C61—C66 77.9 (2)
N1—C1—C11—C12 150.81 (19) C66—C61—C62—C63 −0.6 (3)
C2—C1—C11—C12 −89.7 (2) C6—C61—C62—C63 175.7 (2)
C16—C11—C12—C13 0.6 (3) C61—C62—C63—C64 −0.4 (4)
C1—C11—C12—C13 −178.6 (2) C62—C63—C64—F4 −179.1 (2)
C11—C12—C13—C14 0.4 (4) C62—C63—C64—C65 1.3 (4)
C12—C13—C14—C15 −1.2 (4) C63—C64—C65—C66 −1.0 (3)
C12—C13—C14—F1 178.0 (2) F4—C64—C65—C66 179.5 (2)
F1—C14—C15—C16 −178.3 (2) C64—C65—C66—C61 −0.2 (3)
C13—C14—C15—C16 0.8 (4) C62—C61—C66—C65 1.0 (3)
C12—C11—C16—C15 −1.0 (3) C6—C61—C66—C65 −175.47 (18)
C1—C11—C16—C15 178.22 (19) C61—C6—N1—C1 −179.30 (16)
C14—C15—C16—C11 0.3 (3) C5—C6—N1—C1 −58.6 (2)
N2—C3—C31—C36 159.61 (16) C11—C1—N1—C6 −176.23 (16)
C2—C3—C31—C36 −78.5 (2) C2—C1—N1—C6 61.3 (2)
N2—C3—C31—C32 −21.9 (2) C41—C4—N2—C3 171.16 (15)
C2—C3—C31—C32 100.0 (2) C5—C4—N2—C3 −63.87 (18)
C36—C31—C32—C33 1.3 (3) C31—C3—N2—C4 −170.94 (14)
C3—C31—C32—C33 −177.17 (18) C2—C3—N2—C4 64.88 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15···F4i 0.93 2.52 3.254 (3) 136
C3—H3···O1ii 0.98 2.56 3.358 (2) 138
N2—H1A···O1iii 0.86 (2) 2.53 (2) 3.292 (2) 148 (3)
N1—H2A···Cg3iv 0.89 (2) 2.70 (3) 3.549 (3) 160 (2)
C36—H36···Cg2v 0.93 2.81 3.696 (3) 160
C42—H42···Cg1v 0.93 2.78 3.651 (3) 157
C45—H45···Cg3iii 0.93 2.65 3.494 (3) 151

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, y−1, z; (iv) −x, −y+1, −z; (v) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2727).

References

  1. Asakawa, Y. (1995). In Progress in the Chemistry of Organic Natural Products, edited by G. W. Moore, R. E. Steglich & W. Tamm. New York: Springer-Verlag.
  2. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  4. Jeyaraman, R. & Avila, S. (1981). Chem. Rev.81, 149–174.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039135/ci2727sup1.cif

e-64-o2496-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039135/ci2727Isup2.hkl

e-64-o2496-Isup2.hkl (214.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES