Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 20;64(Pt 12):o2396. doi: 10.1107/S1600536808037434

2,5-Bis(1,1,3,3-tetra­methyl­butyl)thio­phene

Hassan Y Elnagar a, Mahmood Sabahi a, Vince J Gatto a, Frank R Fronczek b,*
PMCID: PMC2960047  PMID: 21581366

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C20H36S. Crystals are non-merohedrally twinned by twofold rotation about [001]. The bulky octyl groups of each mol­ecule are on the same side of the thio­phene plane and are approximately parallel. S—C distances are in the range 1.729 (4)–1.745 (3) Å, and the C—S—C angles are 92.98 (18) and 93.08 (17)°. The CH2 groups of the octyl groups are involved in weak C—H⋯S intra­molecular inter­actions.

Related literature

For previous synthetic work, see: Kutz & Corson (1946); Caeser (1948). For the catalyst system, see: Elnagar et al. (2006). For a related structure, see: Krebs et al. (1992). For a description of the Cambridge Strucural Database, see: Allen (2002).graphic file with name e-64-o2396-scheme1.jpg

Experimental

Crystal data

  • C20H36S

  • M r = 308.55

  • Monoclinic, Inline graphic

  • a = 21.2367 (6) Å

  • b = 7.9954 (2) Å

  • c = 11.7987 (3) Å

  • β = 105.059 (2)°

  • V = 1934.57 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.40 mm−1

  • T = 90.0 (5) K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.766, T max = 0.872

  • 9297 measured reflections

  • 9297 independent reflections

  • 9129 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.182

  • S = 1.08

  • 9297 reflections

  • 403 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: 2248/609 Friedel pairs corresponding to each component of the non-merohedral twin.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT and ROTAX (Cooper et al., 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CrystMol (Duchamp, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037434/fb2113sup1.cif

e-64-o2396-sup1.cif (31.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037434/fb2113Isup2.hkl

e-64-o2396-Isup2.hkl (445.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯S1 0.99 2.82 3.301 (4) 111
C16—H16A⋯S1 0.99 2.78 3.243 (4) 109
C28—H28A⋯S2 0.99 2.72 3.209 (4) 111
C36—H36A⋯S2 0.99 2.86 3.312 (4) 108

supplementary crystallographic information

Comment

Kutz & Corson (1946) first reported acid catalyzed alkylation of thiophene with olefins and alcohols. They suggested that the mono-alkylation reaction occurred at the 2-position of the thiophene ring. Higher boiling liquid products were also isolated, which they believed to be di-alkylated thiophenes. Caeser (1948) synthesized 2,5-di-(1,1,3,3-tetramethylbutyl)thiophene by reacting diisobutylene with thiophene and isolated it as a low-melting solid (b.p. 146–147°C, m.p. 36–37°C). He correctly proposed the structure from its physical properties as well as from the work by Kutz & Corson (1946) on the mono-alkyl derivatives.

The two independent molecules of the asymmetric unit are shown in Fig. 1. Their conformations are quite similar, having both octyl chains on the same side of the thiophene plane. A least-squares fit, overlaying the thiophene and three central C atoms of the octyl groups yields an average deviation (11 atoms) of 0.182 Å, as shown in Fig. 2 (Duchamp, 2005). The thiophene rings in both molecules exhibit maximum deviation 0.011 (4) Å from planarity; it is pertinent for C2 in one molecule and C23 in the other. Some geometric features of the thiophene rings are given in Abstract. The molecules deviate slightly from mirror symmetry, as described by the S—C—C—C torsion angles about the bonds attaching the octyl groups to the thiophenes. Torsion angle magnitudes are about 12° larger on one side of the molecule than on the other: S1—C1—C5—C8 = -59.2 (4) and S2—C24—C33—C36 = -57.1 (4)° vs. S1—C4—C13—C16 = 47.8 (4) and S2—C21—C25—C28 = 44.7 (4)°.

No otherwise unsubstituted thiophenes having tertiary C atoms adjacent to both S atoms are present in the Cambridge Structural Database (Version 5.29 of November 2007; Allen, 2002) except for several macrocyclic molecules: AMADIB, FOJPOK, FOJPUK, FOJQAX, FOJQEB, LOHVEJ, XEMDOJ, XEMFAX, and YOZHEA. The structure of tetra-t-butylthiophene has been reported (Krebs et al., 1992). It has its thiophene twisted out of planarity as a result of the four bulky substituents.

Weak intramolecular C—H···S interactions involving the CH2 groups of the octyl substituents and the thiophene S atoms are listed in Tab. 1. The C—H···S angles are quite small for this type of interaction, near the tetrahedral angle.

Experimental

Thiophene (42.4 g, 0.50 mol) and diisobutylene (60.8 g, 0.54 mol) were mixed at 20°C, and then the catalyst system containing triethylaluminum (30 ml, 1.0 M solution in heptane, 0.03 mol)/hydrogen chloride (120 ml, 1.0 M solution in ether, 0.12 mol) was carefully added to control the exothermic reaction, under a nitrogen atmosphere (Elnagar et al., 2006). The resulting reaction mixture was heated for 1 h at 80° C. After workup with 12% NaOH solution, the crude product (67.2 g, 87% yield based on diisobutylene) was obtained as a liquid. It solidified upon standing at room temperature. The solidified material was recrystallized from 20% aqueous 2-propanol to obtain colorless plate-like crystals with a melting point range of 36.9–38.1° C. 1H NMR (CDCl3) δ 6.57 (s, 2 H), 1.72 (s, 4 H), 1.42 (s, 12 H), 0.86 (s, 18 H); 13C NMR (CDCl3) δ 154.4, 121.3, 58.3, 38.7, 33.1, 32.8, 31.8.

Refinement

Though all the H atoms were observable in the difference electron density map, they were situated into the idealized positions. The C—H distances were 0.95 for thiophene C, 0.98 for methyl and 0.99 Å for CH2, and thereafter treated as riding. Uiso for H was assigned as 1.2 × Ueq of the carrier atoms except for the methyls (1.5). The crystal was a non-merohedral twin with a twinning operation being rotation by 180° about [0 0 1]. The twin law was (-1 0 -0.935, 0 -1 0, 0 0 1), determined by ROTAX (Cooper et al., 2002). (-0.935 ~2a(cosβ)/c.) The number of the reflections in the first and the second domain of the non-merohedral components was 9704 and 2651 respectively. Four domain states were taken into account: two for the non-merohedral components while each moreover had an inversion counterpart. Refinement yielded component proportions 0.80 (2): 0.16 (2) and both inversion-related components 0.02 (2). 2248/609 Friedel pairs were present in the data set for the major/minor component. The largest residual peak was located 1.55 Å from as H20A.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecules. The displacement ellipsoids shown at the 50% probability level. The H atoms are shown with arbitrary radius.

Fig. 2.

Fig. 2.

Overlay of two independent molecules of the title structure (Duchamp, 2005). The H atoms are not shown.

Crystal data

C20H36S F000 = 688
Mr = 308.55 Dx = 1.059 Mg m3
Monoclinic, Pc Melting point = 309.9–311.1 K
Hall symbol: P -2yc Cu Kα radiation λ = 1.54178 Å
a = 21.2367 (6) Å Cell parameters from 5236 reflections
b = 7.9954 (2) Å θ = 5.5–67.5º
c = 11.7987 (3) Å µ = 1.40 mm1
β = 105.059 (2)º T = 90.0 (5) K
V = 1934.57 (9) Å3 Plate, colourless
Z = 4 0.20 × 0.15 × 0.10 mm

Data collection

Bruker Kappa APEXII diffractometer 9297 independent reflections
Radiation source: fine-focus sealed tube 9129 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.029
T = 90.0(5) K θmax = 68.0º
φ and ω scans θmin = 5.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004) h = −25→25
Tmin = 0.766, Tmax = 0.872 k = −9→9
9297 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070 H-atom parameters constrained
wR(F2) = 0.182   w = 1/[σ2(Fo2) + (0.0988P)2 + 3.4793P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
9297 reflections Δρmax = 1.11 e Å3
403 parameters Δρmin = −0.42 e Å3
2 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
268 constraints Extinction coefficient: 0.0051 (6)
Primary atom site location: structure-invariant direct methods Absolute structure: 2248/609 Friedel pairs corresponding to each component of the non-merohedral twin.

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.74529 (4) 0.37096 (11) 0.09540 (6) 0.0175 (2)
S2 0.17907 (4) 1.10233 (10) 0.07647 (7) 0.0163 (2)
C1 0.68069 (18) 0.2661 (4) 0.1298 (3) 0.0186 (8)
C2 0.69312 (17) 0.2494 (5) 0.2480 (3) 0.0174 (7)
H2 0.6645 0.1927 0.2850 0.021*
C3 0.75267 (17) 0.3243 (5) 0.3119 (3) 0.0175 (7)
H3 0.7670 0.3249 0.3952 0.021*
C4 0.78701 (18) 0.3949 (4) 0.2414 (3) 0.0168 (8)
C5 0.62285 (19) 0.2072 (5) 0.0327 (4) 0.0216 (8)
C6 0.6476 (2) 0.0883 (5) −0.0492 (4) 0.0264 (9)
H6A 0.6753 0.0019 −0.0024 0.040*
H6B 0.6728 0.1520 −0.0931 0.040*
H6C 0.6103 0.0355 −0.1043 0.040*
C7 0.5769 (2) 0.1051 (5) 0.0870 (4) 0.0255 (9)
H7A 0.6001 0.0074 0.1275 0.038*
H7B 0.5392 0.0681 0.0250 0.038*
H7C 0.5620 0.1748 0.1433 0.038*
C8 0.58894 (19) 0.3537 (5) −0.0433 (3) 0.0223 (8)
H8A 0.5605 0.3035 −0.1153 0.027*
H8B 0.6235 0.4153 −0.0682 0.027*
C9 0.54724 (18) 0.4873 (5) −0.0015 (3) 0.0207 (8)
C10 0.5396 (2) 0.6352 (6) −0.0882 (4) 0.0327 (10)
H10A 0.5826 0.6820 −0.0854 0.049*
H10B 0.5122 0.7216 −0.0664 0.049*
H10C 0.5191 0.5957 −0.1679 0.049*
C11 0.4790 (2) 0.4239 (6) −0.0066 (4) 0.0331 (10)
H11A 0.4587 0.3812 −0.0855 0.050*
H11B 0.4527 0.5157 0.0116 0.050*
H11C 0.4817 0.3338 0.0508 0.050*
C12 0.5790 (2) 0.5537 (5) 0.1222 (4) 0.0246 (9)
H12A 0.6225 0.5973 0.1251 0.037*
H12B 0.5827 0.4626 0.1792 0.037*
H12C 0.5520 0.6434 0.1414 0.037*
C13 0.85485 (16) 0.4777 (4) 0.2767 (3) 0.0157 (7)
C14 0.90328 (19) 0.3590 (5) 0.2417 (4) 0.0194 (8)
H14A 0.8917 0.3466 0.1562 0.029*
H14B 0.9017 0.2495 0.2782 0.029*
H14C 0.9474 0.4051 0.2685 0.029*
C15 0.87649 (19) 0.4946 (5) 0.4099 (3) 0.0209 (8)
H15A 0.8439 0.5590 0.4370 0.031*
H15B 0.9186 0.5525 0.4326 0.031*
H15C 0.8809 0.3832 0.4457 0.031*
C16 0.85696 (18) 0.6429 (5) 0.2102 (3) 0.0183 (8)
H16A 0.8409 0.6164 0.1256 0.022*
H16B 0.9036 0.6724 0.2238 0.022*
C17 0.82107 (18) 0.8068 (5) 0.2308 (3) 0.0183 (7)
C18 0.8267 (2) 0.9278 (5) 0.1335 (4) 0.0235 (8)
H18A 0.8727 0.9440 0.1360 0.035*
H18B 0.8072 1.0355 0.1452 0.035*
H18C 0.8036 0.8814 0.0571 0.035*
C19 0.8539 (2) 0.8900 (5) 0.3479 (4) 0.0306 (10)
H19A 0.8420 0.8299 0.4117 0.046*
H19B 0.8393 1.0065 0.3468 0.046*
H19C 0.9013 0.8871 0.3602 0.046*
C20 0.74868 (19) 0.7770 (5) 0.2225 (4) 0.0251 (9)
H20A 0.7445 0.7036 0.2867 0.038*
H20B 0.7279 0.7240 0.1472 0.038*
H20C 0.7274 0.8842 0.2283 0.038*
C21 0.13402 (18) 1.0878 (4) 0.1789 (3) 0.0151 (7)
C22 0.16804 (18) 1.1608 (5) 0.2811 (3) 0.0197 (8)
H22 0.1522 1.1643 0.3492 0.024*
C23 0.22905 (18) 1.2314 (5) 0.2779 (3) 0.0192 (8)
H23 0.2569 1.2892 0.3419 0.023*
C24 0.24308 (17) 1.2070 (4) 0.1732 (3) 0.0158 (7)
C25 0.06682 (16) 1.0086 (4) 0.1492 (3) 0.0126 (7)
C26 0.01955 (18) 1.1315 (5) 0.0677 (3) 0.0193 (8)
H26A −0.0247 1.0856 0.0486 0.029*
H26B 0.0332 1.1475 −0.0048 0.029*
H26C 0.0202 1.2393 0.1076 0.029*
C27 0.04334 (18) 0.9911 (5) 0.2620 (3) 0.0213 (8)
H27A 0.0019 0.9301 0.2442 0.032*
H27B 0.0372 1.1025 0.2921 0.032*
H27C 0.0760 0.9297 0.3213 0.032*
C28 0.06434 (18) 0.8429 (5) 0.0803 (3) 0.0168 (7)
H28A 0.0842 0.8668 0.0148 0.020*
H28B 0.0177 0.8194 0.0442 0.020*
C29 0.09494 (18) 0.6761 (4) 0.1364 (3) 0.0171 (7)
C30 0.1644 (2) 0.6973 (6) 0.2128 (5) 0.0354 (11)
H30A 0.1635 0.7583 0.2844 0.053*
H30B 0.1901 0.7602 0.1693 0.053*
H30C 0.1841 0.5870 0.2337 0.053*
C31 0.0965 (2) 0.5597 (5) 0.0348 (4) 0.0248 (9)
H31A 0.0525 0.5492 −0.0173 0.037*
H31B 0.1123 0.4493 0.0656 0.037*
H31C 0.1258 0.6059 −0.0092 0.037*
C32 0.0529 (2) 0.5926 (5) 0.2079 (4) 0.0289 (9)
H32A 0.0521 0.6631 0.2755 0.043*
H32B 0.0713 0.4830 0.2355 0.043*
H32C 0.0084 0.5784 0.1586 0.043*
C33 0.30216 (19) 1.2630 (5) 0.1341 (3) 0.0195 (8)
C34 0.2808 (2) 1.3824 (6) 0.0277 (4) 0.0288 (9)
H34A 0.3194 1.4236 0.0056 0.043*
H34B 0.2568 1.4771 0.0487 0.043*
H34C 0.2526 1.3219 −0.0386 0.043*
C35 0.3491 (2) 1.3595 (5) 0.2330 (4) 0.0247 (9)
H35A 0.3886 1.3881 0.2089 0.037*
H35B 0.3608 1.2898 0.3037 0.037*
H35C 0.3280 1.4622 0.2497 0.037*
C36 0.33644 (19) 1.1113 (5) 0.0874 (3) 0.0215 (8)
H36A 0.3025 1.0570 0.0246 0.026*
H36B 0.3683 1.1606 0.0490 0.026*
C37 0.37233 (18) 0.9698 (5) 0.1674 (3) 0.0210 (8)
C38 0.3867 (3) 0.8360 (7) 0.0861 (5) 0.0519 (14)
H38A 0.4085 0.8869 0.0310 0.078*
H38B 0.3457 0.7845 0.0422 0.078*
H38C 0.4150 0.7503 0.1326 0.078*
C39 0.3342 (2) 0.8904 (6) 0.2456 (5) 0.0410 (12)
H39A 0.3214 0.9769 0.2942 0.062*
H39B 0.3615 0.8068 0.2963 0.062*
H39C 0.2951 0.8363 0.1969 0.062*
C40 0.4392 (2) 1.0251 (6) 0.2493 (5) 0.0393 (11)
H40A 0.4319 1.0848 0.3173 0.059*
H40B 0.4615 1.0990 0.2060 0.059*
H40C 0.4662 0.9262 0.2761 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0180 (5) 0.0209 (4) 0.0138 (4) −0.0024 (4) 0.0045 (3) 0.0004 (3)
S2 0.0143 (4) 0.0216 (4) 0.0125 (4) −0.0029 (4) 0.0026 (3) −0.0002 (3)
C1 0.0183 (19) 0.0130 (18) 0.0264 (19) 0.0028 (14) 0.0090 (15) 0.0038 (15)
C2 0.0122 (17) 0.024 (2) 0.0171 (17) 0.0004 (14) 0.0055 (13) 0.0010 (14)
C3 0.0132 (17) 0.025 (2) 0.0141 (17) 0.0015 (15) 0.0026 (14) 0.0018 (14)
C4 0.0184 (19) 0.0170 (19) 0.0163 (18) 0.0050 (14) 0.0068 (15) 0.0008 (13)
C5 0.0170 (19) 0.026 (2) 0.024 (2) −0.0046 (16) 0.0100 (16) −0.0015 (16)
C6 0.027 (2) 0.027 (2) 0.024 (2) −0.0017 (17) 0.0055 (17) −0.0046 (16)
C7 0.018 (2) 0.027 (2) 0.031 (2) −0.0057 (16) 0.0060 (17) −0.0036 (16)
C8 0.0159 (19) 0.033 (2) 0.0153 (19) −0.0036 (16) 0.0000 (15) −0.0009 (15)
C9 0.0164 (19) 0.026 (2) 0.0194 (19) 0.0024 (16) 0.0041 (15) 0.0017 (15)
C10 0.034 (2) 0.031 (2) 0.034 (2) 0.0077 (18) 0.0114 (19) 0.0005 (18)
C11 0.023 (2) 0.040 (3) 0.034 (2) 0.0006 (18) 0.0042 (18) −0.0068 (19)
C12 0.023 (2) 0.023 (2) 0.028 (2) 0.0003 (16) 0.0076 (16) −0.0059 (16)
C13 0.0097 (17) 0.0151 (18) 0.0193 (18) 0.0008 (13) −0.0018 (13) 0.0009 (14)
C14 0.0189 (19) 0.0124 (18) 0.028 (2) 0.0020 (14) 0.0073 (16) 0.0022 (14)
C15 0.019 (2) 0.020 (2) 0.023 (2) −0.0028 (15) 0.0052 (15) 0.0050 (15)
C16 0.0153 (18) 0.028 (2) 0.0118 (17) −0.0026 (15) 0.0041 (14) 0.0023 (14)
C17 0.0168 (18) 0.0195 (19) 0.0182 (18) 0.0014 (15) 0.0041 (14) 0.0000 (14)
C18 0.029 (2) 0.0169 (19) 0.026 (2) −0.0016 (16) 0.0086 (17) 0.0004 (16)
C19 0.044 (3) 0.021 (2) 0.025 (2) 0.0002 (18) 0.0053 (19) −0.0029 (16)
C20 0.021 (2) 0.0202 (19) 0.036 (2) 0.0065 (16) 0.0125 (18) −0.0009 (16)
C21 0.0177 (18) 0.0157 (18) 0.0120 (17) 0.0032 (14) 0.0040 (14) 0.0024 (13)
C22 0.0188 (19) 0.0198 (19) 0.0175 (18) −0.0089 (15) −0.0005 (14) 0.0005 (14)
C23 0.0204 (19) 0.0164 (19) 0.0199 (18) −0.0001 (14) 0.0040 (15) −0.0009 (14)
C24 0.0138 (17) 0.0168 (18) 0.0153 (17) −0.0008 (14) 0.0010 (14) −0.0026 (13)
C25 0.0083 (16) 0.0186 (18) 0.0094 (15) −0.0010 (13) −0.0006 (12) 0.0017 (13)
C26 0.0171 (19) 0.0188 (19) 0.0192 (18) 0.0027 (15) −0.0002 (15) 0.0051 (14)
C27 0.0141 (19) 0.034 (2) 0.0176 (18) −0.0007 (16) 0.0076 (15) −0.0002 (16)
C28 0.0149 (18) 0.0193 (19) 0.0151 (17) −0.0015 (14) 0.0018 (14) −0.0012 (14)
C29 0.0167 (18) 0.0135 (18) 0.0203 (18) −0.0030 (14) 0.0036 (14) 0.0049 (14)
C30 0.026 (2) 0.023 (2) 0.048 (3) −0.0025 (17) −0.0079 (19) 0.0043 (19)
C31 0.030 (2) 0.019 (2) 0.027 (2) −0.0021 (17) 0.0121 (18) 0.0012 (16)
C32 0.040 (3) 0.024 (2) 0.030 (2) −0.0017 (18) 0.0218 (19) 0.0046 (17)
C33 0.0166 (19) 0.026 (2) 0.0138 (18) −0.0021 (15) −0.0003 (14) −0.0020 (15)
C34 0.021 (2) 0.031 (2) 0.034 (2) −0.0057 (16) 0.0051 (17) 0.0137 (18)
C35 0.019 (2) 0.026 (2) 0.031 (2) −0.0070 (16) 0.0078 (16) −0.0029 (16)
C36 0.0164 (19) 0.033 (2) 0.0201 (19) −0.0083 (16) 0.0144 (15) −0.0031 (16)
C37 0.0117 (18) 0.028 (2) 0.0233 (19) −0.0023 (15) 0.0046 (15) −0.0083 (16)
C38 0.060 (4) 0.054 (3) 0.039 (3) 0.017 (3) 0.008 (3) −0.020 (3)
C39 0.024 (2) 0.044 (3) 0.061 (3) 0.009 (2) 0.022 (2) 0.029 (2)
C40 0.021 (2) 0.042 (3) 0.048 (3) −0.009 (2) −0.005 (2) 0.003 (2)

Geometric parameters (Å, °)

S1—C4 1.731 (4) C20—H20B 0.9800
S1—C1 1.743 (4) C20—H20C 0.9800
S2—C21 1.729 (4) C21—C22 1.365 (5)
S2—C24 1.745 (3) C21—C25 1.517 (5)
C1—C2 1.357 (5) C22—C23 1.423 (5)
C1—C5 1.520 (5) C22—H22 0.9500
C2—C3 1.425 (5) C23—C24 1.358 (5)
C2—H2 0.9500 C23—H23 0.9500
C3—C4 1.363 (5) C24—C33 1.512 (5)
C3—H3 0.9500 C25—C26 1.549 (5)
C4—C13 1.541 (5) C25—C27 1.544 (5)
C5—C7 1.534 (5) C25—C28 1.548 (5)
C5—C6 1.542 (5) C26—H26A 0.9800
C5—C8 1.536 (6) C26—H26B 0.9800
C6—H6A 0.9800 C26—H26C 0.9800
C6—H6B 0.9800 C27—H27A 0.9800
C6—H6C 0.9800 C27—H27B 0.9800
C7—H7A 0.9800 C27—H27C 0.9800
C7—H7B 0.9800 C28—C29 1.554 (5)
C7—H7C 0.9800 C28—H28A 0.9900
C8—C9 1.548 (5) C28—H28B 0.9900
C8—H8A 0.9900 C29—C31 1.525 (5)
C8—H8B 0.9900 C29—C30 1.525 (5)
C9—C11 1.522 (6) C29—C32 1.532 (5)
C9—C12 1.535 (5) C30—H30A 0.9800
C9—C10 1.544 (6) C30—H30B 0.9800
C10—H10A 0.9800 C30—H30C 0.9800
C10—H10B 0.9800 C31—H31A 0.9800
C10—H10C 0.9800 C31—H31B 0.9800
C11—H11A 0.9800 C31—H31C 0.9800
C11—H11B 0.9800 C32—H32A 0.9800
C11—H11C 0.9800 C32—H32B 0.9800
C12—H12A 0.9800 C32—H32C 0.9800
C12—H12B 0.9800 C33—C35 1.532 (5)
C12—H12C 0.9800 C33—C34 1.548 (5)
C13—C15 1.525 (5) C33—C36 1.586 (5)
C13—C14 1.533 (5) C34—H34A 0.9800
C13—C16 1.542 (5) C34—H34B 0.9800
C14—H14A 0.9800 C34—H34C 0.9800
C14—H14B 0.9800 C35—H35A 0.9800
C14—H14C 0.9800 C35—H35B 0.9800
C15—H15A 0.9800 C35—H35C 0.9800
C15—H15B 0.9800 C36—C37 1.541 (6)
C15—H15C 0.9800 C36—H36A 0.9900
C16—C17 1.567 (5) C36—H36B 0.9900
C16—H16A 0.9900 C37—C39 1.516 (6)
C16—H16B 0.9900 C37—C38 1.519 (6)
C17—C19 1.529 (5) C37—C40 1.559 (6)
C17—C18 1.529 (5) C38—H38A 0.9800
C17—C20 1.533 (5) C38—H38B 0.9800
C18—H18A 0.9800 C38—H38C 0.9800
C18—H18B 0.9800 C39—H39A 0.9800
C18—H18C 0.9800 C39—H39B 0.9800
C19—H19A 0.9800 C39—H39C 0.9800
C19—H19B 0.9800 C40—H40A 0.9800
C19—H19C 0.9800 C40—H40B 0.9800
C20—H20A 0.9800 C40—H40C 0.9800
C4—S1—C1 92.98 (18) H20B—C20—H20C 109.5
C21—S2—C24 93.08 (17) C22—C21—C25 129.3 (3)
C2—C1—C5 130.3 (3) C22—C21—S2 109.1 (3)
C2—C1—S1 109.4 (3) C25—C21—S2 121.7 (3)
C5—C1—S1 120.3 (3) C21—C22—C23 115.0 (3)
C1—C2—C3 114.3 (3) C21—C22—H22 122.5
C1—C2—H2 122.8 C23—C22—H22 122.5
C3—C2—H2 122.8 C24—C23—C22 112.6 (3)
C4—C3—C2 113.1 (3) C24—C23—H23 123.7
C4—C3—H3 123.4 C22—C23—H23 123.7
C2—C3—H3 123.4 C23—C24—C33 129.1 (3)
C3—C4—C13 128.6 (3) C23—C24—S2 110.2 (3)
C3—C4—S1 110.2 (3) C33—C24—S2 120.7 (3)
C13—C4—S1 121.1 (3) C21—C25—C26 107.3 (3)
C1—C5—C7 109.1 (3) C21—C25—C27 109.5 (3)
C1—C5—C6 108.9 (3) C26—C25—C27 106.9 (3)
C7—C5—C6 106.9 (3) C21—C25—C28 112.3 (3)
C1—C5—C8 111.6 (3) C26—C25—C28 106.8 (3)
C7—C5—C8 113.4 (3) C27—C25—C28 113.7 (3)
C6—C5—C8 106.7 (3) C25—C26—H26A 109.5
C5—C6—H6A 109.5 C25—C26—H26B 109.5
C5—C6—H6B 109.5 H26A—C26—H26B 109.5
H6A—C6—H6B 109.5 C25—C26—H26C 109.5
C5—C6—H6C 109.5 H26A—C26—H26C 109.5
H6A—C6—H6C 109.5 H26B—C26—H26C 109.5
H6B—C6—H6C 109.5 C25—C27—H27A 109.5
C5—C7—H7A 109.5 C25—C27—H27B 109.5
C5—C7—H7B 109.5 H27A—C27—H27B 109.5
H7A—C7—H7B 109.5 C25—C27—H27C 109.5
C5—C7—H7C 109.5 H27A—C27—H27C 109.5
H7A—C7—H7C 109.5 H27B—C27—H27C 109.5
H7B—C7—H7C 109.5 C25—C28—C29 123.8 (3)
C5—C8—C9 124.1 (3) C25—C28—H28A 106.4
C5—C8—H8A 106.3 C29—C28—H28A 106.4
C9—C8—H8A 106.3 C25—C28—H28B 106.4
C5—C8—H8B 106.3 C29—C28—H28B 106.4
C9—C8—H8B 106.3 H28A—C28—H28B 106.4
H8A—C8—H8B 106.4 C31—C29—C30 108.5 (3)
C11—C9—C12 109.4 (3) C31—C29—C32 107.6 (3)
C11—C9—C10 107.1 (4) C30—C29—C32 109.6 (3)
C12—C9—C10 108.1 (3) C31—C29—C28 106.3 (3)
C11—C9—C8 112.0 (3) C30—C29—C28 112.9 (3)
C12—C9—C8 113.3 (3) C32—C29—C28 111.7 (3)
C10—C9—C8 106.7 (3) C29—C30—H30A 109.5
C9—C10—H10A 109.5 C29—C30—H30B 109.5
C9—C10—H10B 109.5 H30A—C30—H30B 109.5
H10A—C10—H10B 109.5 C29—C30—H30C 109.5
C9—C10—H10C 109.5 H30A—C30—H30C 109.5
H10A—C10—H10C 109.5 H30B—C30—H30C 109.5
H10B—C10—H10C 109.5 C29—C31—H31A 109.5
C9—C11—H11A 109.5 C29—C31—H31B 109.5
C9—C11—H11B 109.5 H31A—C31—H31B 109.5
H11A—C11—H11B 109.5 C29—C31—H31C 109.5
C9—C11—H11C 109.5 H31A—C31—H31C 109.5
H11A—C11—H11C 109.5 H31B—C31—H31C 109.5
H11B—C11—H11C 109.5 C29—C32—H32A 109.5
C9—C12—H12A 109.5 C29—C32—H32B 109.5
C9—C12—H12B 109.5 H32A—C32—H32B 109.5
H12A—C12—H12B 109.5 C29—C32—H32C 109.5
C9—C12—H12C 109.5 H32A—C32—H32C 109.5
H12A—C12—H12C 109.5 H32B—C32—H32C 109.5
H12B—C12—H12C 109.5 C24—C33—C35 110.1 (3)
C15—C13—C14 106.8 (3) C24—C33—C34 109.7 (3)
C15—C13—C4 109.0 (3) C35—C33—C34 107.7 (3)
C14—C13—C4 107.9 (3) C24—C33—C36 111.8 (3)
C15—C13—C16 114.1 (3) C35—C33—C36 112.5 (3)
C14—C13—C16 106.4 (3) C34—C33—C36 104.7 (3)
C4—C13—C16 112.3 (3) C33—C34—H34A 109.5
C13—C14—H14A 109.5 C33—C34—H34B 109.5
C13—C14—H14B 109.5 H34A—C34—H34B 109.5
H14A—C14—H14B 109.5 C33—C34—H34C 109.5
C13—C14—H14C 109.5 H34A—C34—H34C 109.5
H14A—C14—H14C 109.5 H34B—C34—H34C 109.5
H14B—C14—H14C 109.5 C33—C35—H35A 109.5
C13—C15—H15A 109.5 C33—C35—H35B 109.5
C13—C15—H15B 109.5 H35A—C35—H35B 109.5
H15A—C15—H15B 109.5 C33—C35—H35C 109.5
C13—C15—H15C 109.5 H35A—C35—H35C 109.5
H15A—C15—H15C 109.5 H35B—C35—H35C 109.5
H15B—C15—H15C 109.5 C37—C36—C33 123.2 (3)
C13—C16—C17 123.9 (3) C37—C36—H36A 106.5
C13—C16—H16A 106.4 C33—C36—H36A 106.5
C17—C16—H16A 106.4 C37—C36—H36B 106.5
C13—C16—H16B 106.4 C33—C36—H36B 106.5
C17—C16—H16B 106.4 H36A—C36—H36B 106.5
H16A—C16—H16B 106.4 C39—C37—C38 108.4 (4)
C19—C17—C18 107.3 (3) C39—C37—C36 115.0 (3)
C19—C17—C20 109.8 (3) C38—C37—C36 106.2 (4)
C18—C17—C20 108.8 (3) C39—C37—C40 106.6 (4)
C19—C17—C16 112.3 (3) C38—C37—C40 106.9 (4)
C18—C17—C16 106.1 (3) C36—C37—C40 113.4 (3)
C20—C17—C16 112.3 (3) C37—C38—H38A 109.5
C17—C18—H18A 109.5 C37—C38—H38B 109.5
C17—C18—H18B 109.5 H38A—C38—H38B 109.5
H18A—C18—H18B 109.5 C37—C38—H38C 109.5
C17—C18—H18C 109.5 H38A—C38—H38C 109.5
H18A—C18—H18C 109.5 H38B—C38—H38C 109.5
H18B—C18—H18C 109.5 C37—C39—H39A 109.5
C17—C19—H19A 109.5 C37—C39—H39B 109.5
C17—C19—H19B 109.5 H39A—C39—H39B 109.5
H19A—C19—H19B 109.5 C37—C39—H39C 109.5
C17—C19—H19C 109.5 H39A—C39—H39C 109.5
H19A—C19—H19C 109.5 H39B—C39—H39C 109.5
H19B—C19—H19C 109.5 C37—C40—H40A 109.5
C17—C20—H20A 109.5 C37—C40—H40B 109.5
C17—C20—H20B 109.5 H40A—C40—H40B 109.5
H20A—C20—H20B 109.5 C37—C40—H40C 109.5
C17—C20—H20C 109.5 H40A—C40—H40C 109.5
H20A—C20—H20C 109.5 H40B—C40—H40C 109.5
C4—S1—C1—C2 −1.4 (3) C24—S2—C21—C22 −0.1 (3)
C4—S1—C1—C5 179.5 (3) C24—S2—C21—C25 178.2 (3)
C5—C1—C2—C3 −179.0 (4) C25—C21—C22—C23 −176.8 (3)
S1—C1—C2—C3 2.0 (4) S2—C21—C22—C23 1.2 (4)
C1—C2—C3—C4 −1.7 (5) C21—C22—C23—C24 −2.2 (5)
C2—C3—C4—C13 −176.0 (3) C22—C23—C24—C33 179.4 (4)
C2—C3—C4—S1 0.6 (4) C22—C23—C24—S2 2.0 (4)
C1—S1—C4—C3 0.4 (3) C21—S2—C24—C23 −1.2 (3)
C1—S1—C4—C13 177.3 (3) C21—S2—C24—C33 −178.8 (3)
C2—C1—C5—C7 −4.3 (6) C22—C21—C25—C26 105.5 (4)
S1—C1—C5—C7 174.7 (3) S2—C21—C25—C26 −72.4 (3)
C2—C1—C5—C6 −120.7 (4) C22—C21—C25—C27 −10.2 (5)
S1—C1—C5—C6 58.3 (4) S2—C21—C25—C27 172.0 (3)
C2—C1—C5—C8 121.8 (4) C22—C21—C25—C28 −137.4 (4)
S1—C1—C5—C8 −59.2 (4) S2—C21—C25—C28 44.7 (4)
C1—C5—C8—C9 −71.6 (4) C21—C25—C28—C29 73.7 (4)
C7—C5—C8—C9 52.1 (5) C26—C25—C28—C29 −168.9 (3)
C6—C5—C8—C9 169.6 (4) C27—C25—C28—C29 −51.4 (4)
C5—C8—C9—C11 −79.2 (5) C25—C28—C29—C31 −166.2 (3)
C5—C8—C9—C12 45.1 (5) C25—C28—C29—C30 −47.3 (5)
C5—C8—C9—C10 163.9 (4) C25—C28—C29—C32 76.7 (4)
C3—C4—C13—C15 −8.5 (5) C23—C24—C33—C35 −0.1 (5)
S1—C4—C13—C15 175.2 (3) S2—C24—C33—C35 177.0 (3)
C3—C4—C13—C14 107.1 (4) C23—C24—C33—C34 −118.5 (4)
S1—C4—C13—C14 −69.2 (4) S2—C24—C33—C34 58.6 (4)
C3—C4—C13—C16 −135.9 (4) C23—C24—C33—C36 125.7 (4)
S1—C4—C13—C16 47.8 (4) S2—C24—C33—C36 −57.1 (4)
C15—C13—C16—C17 −55.2 (5) C24—C33—C36—C37 −68.1 (4)
C14—C13—C16—C17 −172.6 (3) C35—C33—C36—C37 56.4 (5)
C4—C13—C16—C17 69.6 (4) C34—C33—C36—C37 173.1 (3)
C13—C16—C17—C19 72.5 (5) C33—C36—C37—C39 49.9 (5)
C13—C16—C17—C18 −170.7 (3) C33—C36—C37—C38 169.8 (4)
C13—C16—C17—C20 −51.9 (5) C33—C36—C37—C40 −73.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8B···S1 0.99 2.82 3.301 (4) 111
C16—H16A···S1 0.99 2.78 3.243 (4) 109
C28—H28A···S2 0.99 2.72 3.209 (4) 111
C36—H36A···S2 0.99 2.86 3.312 (4) 108

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2113).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Caeser, P. D. (1948). J. Am. Chem. Soc.70, 3623–3625. [DOI] [PubMed]
  4. Cooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst.35, 168–174.
  5. Duchamp, D. J. (2005). CrystMol D&A Consulting, L.C.C. URL: http://www.crystmol.com/home.html.
  6. Elnagar, H. Y., Gatto, V. J., Lo, J., Boone, J. E., Coury, J. E. & Sakahara, B. (2006). US Patent 2006/0 276 677 A1.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Krebs, A. W., Franken, E., Müller, M., Colberg, H., Cholcha, W., Wilken, J., Ohrenberg, J., Albrecht, R. & Weiss, E. (1992). Tetrahedron Lett.33, 5947–5950.
  9. Kutz, W. M. & Corson, B. B. (1946). J. Am. Chem. Soc.68, 1477–1479.
  10. Sheldrick, G. (2004). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037434/fb2113sup1.cif

e-64-o2396-sup1.cif (31.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037434/fb2113Isup2.hkl

e-64-o2396-Isup2.hkl (445.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES