Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 20;64(Pt 12):o2377. doi: 10.1107/S1600536808036817

2-[4-(2-Methyl­prop­yl)phen­yl]-N′-[(E)-1-phenyl­ethyl­idene]propane­hydrazide

Hoong-Kun Fun a,*, Samuel Robinson Jebas a,, K V Sujith b, B Kalluraya b
PMCID: PMC2960058  PMID: 21581349

Abstract

In the title compound, C21H26N2O, the dihedral angle between the two aromatic rings is 85.90 (19)°. The propenone–hydrazide unit forms dihedral angles of 21.62 (8) and 72.83 (9)°, respectively, with the terminal and central aromatic rings. The 2-methyl­propyl group is disordered over two sites, with occupancies of 0.533 (13) and 0.467 (13). In crystal structure, mol­ecules are linked into centrosymmetric dimers by paired N—H⋯O and C—H⋯O hydrogen bonds. In addition, C—H⋯π inter­actions are observed.

Related literature

For the pharmaceutical applications of ibuprofen, see: Palaska et al. (2002). For the synthesis of hydrazones, see: Rollas & Küçükgüzel (2007). For the pharmaceutical applications of hydrazones, see: Bedia et al. (2006); Rollas et al. (2002); Terzioglu & Gürsoy (2003). For a related structure, see: Fun et al. (2008). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-o2377-scheme1.jpg

Experimental

Crystal data

  • C21H26N2O

  • M r = 322.44

  • Triclinic, Inline graphic

  • a = 5.4355 (2) Å

  • b = 10.2850 (4) Å

  • c = 17.3095 (6) Å

  • α = 80.821 (4)°

  • β = 84.312 (3)°

  • γ = 74.719 (3)°

  • V = 919.85 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100.0 (1) K

  • 0.22 × 0.20 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.984, T max = 0.989

  • 12794 measured reflections

  • 4238 independent reflections

  • 2556 reflections with I > 2σ(I)

  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072

  • wR(F 2) = 0.194

  • S = 1.07

  • 4238 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036817/ci2710sup1.cif

e-64-o2377-sup1.cif (23.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036817/ci2710Isup2.hkl

e-64-o2377-Isup2.hkl (203.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.86 (2) 2.08 (2) 2.928 (3) 173 (2)
C20—H20A⋯O1i 0.96 2.31 3.247 (3) 165
C20—H20BCg1ii 0.96 2.75 3.609 (3) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship.

supplementary crystallographic information

Comment

Ibuprofen belongs to the class of Non-Steroidal anti-Inflammatory Drugs (NSAIDs) with antipyretic, anti-inflammatory and analgesic properties (Palaska et al., 2002). Hydrazones containing an azometine -NHN═CH- moiety are synthesized by heating the appropriate substituted hydrazines/hydrazides with aldehydes and ketones in solvents like ethanol, methanol, tetrahydrofuran, butanol, glacial acetic acid, ethanol-glacial acetic acid. Another synthetic route for the synthesis of hydrazones is the coupling of aryldiazonium salts with active hydrogen compounds (Rollas & Kuckguzel, 2007). Hydrazide-hydrazones compounds are not only intermediates but they are also very effective organic compounds of their own. Hydrazones have been demonstrated to possess antimicrobial, anticonvulsant, analgesic, anti-inflammatory, antiplatelet, antitubercular, anticancer and antitumoral activities (Bedia et al., 2006; Rollas et al., 2002; Terzioglu & Gursoy, 2003). Prompted by these and in continuation of our work, (Fun et al., 2008) we are interested in the synthesis and crystal structure determination of ibuprofen derivatives. We report here the crystal structure of the title compound (I).

Bond lengths in the title molecule (Fig.1) have normal values (Allen et al., 1987). The two phenyl rings are essentially planar, with the maximum deviation from planarity being 0.003 (3)Å for atom C3 in the (C1-C6) ring and 0.012 (3)Å for atom C10 in the (C10-C15) ring. The two phenyl rings form a dihedral angle of 85.90 (11)°, indicating that they are almost orthogonal to each other. The propenone-hydrazide unit (O1/N1/N2/C8-C9) forms dihedral angles of 21.62 (8)° and 72.83 (9)° with (C1-C6) and (C10-C15) rings, respectively.

The crystal packing is consolidated by inter-molecular N—H···O and C—H···O hydrogen bonds together with C—H···π interactions (Table 1) involving the (C1-C6) ring (Centroid Cg1).

Experimental

The title compound was obtained by refluxing 2-[4-(2-methylpropyl)phenyl]propanehydrazide (0.01 mol) and acetophenone (0.01 mol) in ethanol (30 ml) with 3 drops of concentrated sulfuric acid for 1 h. The excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 87%; m.p.380–381 K).

Refinement

The 2-methylpropyl group is disordered over two orientations with refined occupancies of 0.533 (13):0.467 (13). H atoms were positioned geometrically (N-H=0.86Å and C-H=0.93-0.98Å) and refined using a riding model with, Uiso(H)=1.2Uequ(C,N) and 1.5Uequ(Cmethyl). A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are shown.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the b axis. Only the major disorder component is shown.

Crystal data

C21H26N2O Z = 2
Mr = 322.44 F000 = 348
Triclinic, P1 Dx = 1.164 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 5.4355 (2) Å Cell parameters from 2156 reflections
b = 10.2850 (4) Å θ = 2.6–26.3º
c = 17.3095 (6) Å µ = 0.07 mm1
α = 80.821 (4)º T = 100.0 (1) K
β = 84.312 (3)º Block, colourless
γ = 74.719 (3)º 0.22 × 0.20 × 0.15 mm
V = 919.85 (6) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4238 independent reflections
Radiation source: fine-focus sealed tube 2556 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.063
T = 100.0(1) K θmax = 27.5º
φ and ω scans θmin = 1.2º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −7→7
Tmin = 0.984, Tmax = 0.989 k = −13→13
12794 measured reflections l = −22→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.194   w = 1/[σ2(Fo2) + (0.0958P)2] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
4238 reflections Δρmax = 0.33 e Å3
255 parameters Δρmin = −0.25 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 −0.0323 (4) 1.15692 (18) 0.02969 (11) 0.0501 (6)
N1 0.4274 (4) 0.90562 (19) 0.13372 (11) 0.0262 (5)
N2 0.2392 (4) 0.9662 (2) 0.08205 (12) 0.0313 (5)
C1 0.8421 (4) 0.8048 (2) 0.22728 (13) 0.0279 (5)
H1A 0.7995 0.8977 0.2095 0.033*
C2 1.0316 (5) 0.7513 (3) 0.27947 (14) 0.0310 (6)
H2A 1.1146 0.8087 0.2967 0.037*
C3 1.0993 (5) 0.6133 (3) 0.30636 (14) 0.0315 (6)
H3A 1.2282 0.5778 0.3411 0.038*
C4 0.9730 (5) 0.5284 (3) 0.28104 (14) 0.0313 (6)
H4A 1.0165 0.4356 0.2990 0.038*
C5 0.7821 (4) 0.5819 (2) 0.22888 (14) 0.0274 (5)
H5A 0.6985 0.5241 0.2123 0.033*
C6 0.7130 (4) 0.7198 (2) 0.20080 (13) 0.0244 (5)
C7 0.5099 (4) 0.7754 (2) 0.14382 (13) 0.0250 (5)
C8 0.1345 (5) 1.1015 (2) 0.07640 (14) 0.0342 (6)
C9 0.2172 (5) 1.1812 (2) 0.13175 (13) 0.0285 (6)
H9A 0.3966 1.1389 0.1424 0.034*
C10 0.0556 (4) 1.1707 (2) 0.20861 (13) 0.0236 (5)
C11 −0.2016 (4) 1.2400 (2) 0.21324 (14) 0.0276 (6)
H11A −0.2775 1.2898 0.1682 0.033*
C12 −0.3465 (5) 1.2360 (2) 0.28371 (15) 0.0314 (6)
H12A −0.5168 1.2851 0.2854 0.038*
C13 −0.2420 (5) 1.1600 (2) 0.35198 (14) 0.0288 (6)
C14 0.0141 (5) 1.0878 (2) 0.34642 (14) 0.0285 (5)
H14A 0.0887 1.0349 0.3909 0.034*
C15 0.1596 (5) 1.0932 (2) 0.27617 (13) 0.0261 (5)
H15A 0.3298 1.0441 0.2743 0.031*
C16 −0.3971 (5) 1.1569 (3) 0.42892 (15) 0.0398 (7)
H16A −0.3843 1.0634 0.4501 0.048* 0.467 (13)
H16B −0.5731 1.1986 0.4190 0.048* 0.467 (13)
H16C −0.3175 1.0769 0.4631 0.048* 0.533 (13)
H16D −0.5637 1.1492 0.4198 0.048* 0.533 (13)
C17A −0.3180 (19) 1.2210 (10) 0.4913 (4) 0.0316 (18) 0.467 (13)
H17A −0.1511 1.1634 0.5068 0.038* 0.467 (13)
C18A −0.281 (2) 1.3628 (10) 0.4643 (5) 0.053 (3) 0.467 (13)
H18A −0.1524 1.3595 0.4218 0.079* 0.467 (13)
H18B −0.2269 1.3958 0.5070 0.079* 0.467 (13)
H18C −0.4387 1.4228 0.4470 0.079* 0.467 (13)
C19A −0.4977 (19) 1.2181 (10) 0.5642 (6) 0.037 (2) 0.467 (13)
H19A −0.4286 1.2466 0.6057 0.055* 0.467 (13)
H19B −0.5165 1.1272 0.5801 0.055* 0.467 (13)
H19C −0.6615 1.2786 0.5530 0.055* 0.467 (13)
C17B −0.4221 (17) 1.2748 (9) 0.4729 (4) 0.0370 (17) 0.533 (13)
H17B −0.5134 1.3567 0.4401 0.044* 0.533 (13)
C18B −0.1698 (15) 1.2984 (10) 0.4884 (4) 0.041 (2) 0.533 (13)
H18D −0.0717 1.3101 0.4397 0.061* 0.533 (13)
H18E −0.0771 1.2215 0.5221 0.061* 0.533 (13)
H18F −0.2002 1.3787 0.5133 0.061* 0.533 (13)
C19B −0.586 (2) 1.2606 (11) 0.5497 (6) 0.053 (2) 0.533 (13)
H19D −0.6109 1.3408 0.5743 0.080* 0.533 (13)
H19E −0.4999 1.1825 0.5841 0.080* 0.533 (13)
H19F −0.7481 1.2496 0.5388 0.080* 0.533 (13)
C20 0.4176 (5) 0.6775 (2) 0.10498 (14) 0.0311 (6)
H20A 0.3320 0.7251 0.0589 0.047*
H20B 0.3010 0.6385 0.1407 0.047*
H20C 0.5607 0.6065 0.0906 0.047*
C21 0.1932 (6) 1.3288 (2) 0.09447 (15) 0.0388 (7)
H21A 0.2250 1.3800 0.1325 0.058*
H21B 0.0239 1.3677 0.0769 0.058*
H21C 0.3155 1.3314 0.0506 0.058*
H1N2 0.185 (4) 0.923 (2) 0.0516 (14) 0.026 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0774 (15) 0.0287 (10) 0.0408 (11) 0.0079 (10) −0.0309 (11) −0.0144 (8)
N1 0.0268 (11) 0.0257 (11) 0.0250 (10) −0.0033 (8) −0.0014 (8) −0.0063 (8)
N2 0.0422 (13) 0.0252 (11) 0.0264 (11) −0.0018 (9) −0.0092 (10) −0.0103 (9)
C1 0.0273 (13) 0.0247 (12) 0.0312 (13) −0.0046 (10) 0.0033 (11) −0.0089 (10)
C2 0.0264 (13) 0.0376 (14) 0.0324 (14) −0.0090 (11) 0.0025 (11) −0.0160 (11)
C3 0.0247 (13) 0.0370 (15) 0.0321 (14) −0.0027 (11) −0.0013 (11) −0.0114 (11)
C4 0.0317 (14) 0.0266 (13) 0.0330 (14) −0.0015 (11) −0.0030 (11) −0.0051 (10)
C5 0.0282 (13) 0.0236 (12) 0.0320 (13) −0.0059 (10) −0.0017 (10) −0.0094 (10)
C6 0.0226 (12) 0.0265 (12) 0.0239 (12) −0.0046 (10) 0.0058 (10) −0.0098 (10)
C7 0.0257 (12) 0.0260 (12) 0.0231 (12) −0.0047 (10) 0.0036 (10) −0.0089 (10)
C8 0.0502 (16) 0.0248 (13) 0.0259 (13) −0.0028 (12) −0.0074 (12) −0.0061 (10)
C9 0.0358 (14) 0.0227 (12) 0.0272 (13) −0.0048 (10) −0.0030 (11) −0.0073 (10)
C10 0.0286 (12) 0.0191 (11) 0.0266 (12) −0.0077 (9) −0.0053 (10) −0.0089 (9)
C11 0.0311 (14) 0.0214 (12) 0.0320 (13) −0.0055 (10) −0.0123 (11) −0.0041 (10)
C12 0.0222 (12) 0.0308 (13) 0.0430 (15) −0.0050 (10) −0.0033 (11) −0.0125 (11)
C13 0.0282 (13) 0.0291 (13) 0.0327 (14) −0.0108 (11) 0.0017 (11) −0.0109 (11)
C14 0.0326 (14) 0.0255 (13) 0.0263 (13) −0.0049 (10) −0.0059 (11) −0.0019 (10)
C15 0.0272 (13) 0.0222 (12) 0.0291 (13) −0.0042 (10) −0.0043 (10) −0.0064 (10)
C16 0.0325 (15) 0.0487 (17) 0.0395 (16) −0.0112 (13) 0.0053 (12) −0.0128 (13)
C17A 0.030 (4) 0.034 (4) 0.028 (3) −0.004 (3) −0.006 (3) 0.000 (3)
C18A 0.082 (7) 0.036 (5) 0.039 (4) −0.009 (5) −0.003 (4) −0.012 (4)
C19A 0.031 (5) 0.041 (5) 0.035 (4) 0.001 (4) −0.002 (4) −0.013 (4)
C17B 0.030 (4) 0.041 (4) 0.033 (3) −0.001 (3) 0.001 (3) −0.002 (3)
C18B 0.039 (4) 0.047 (5) 0.038 (4) −0.008 (3) 0.005 (3) −0.016 (3)
C19B 0.041 (5) 0.062 (6) 0.045 (5) 0.006 (4) 0.015 (4) −0.015 (4)
C20 0.0349 (14) 0.0268 (13) 0.0306 (13) −0.0009 (11) −0.0032 (11) −0.0119 (10)
C21 0.0544 (18) 0.0287 (14) 0.0329 (14) −0.0108 (13) 0.0035 (13) −0.0061 (11)

Geometric parameters (Å, °)

O1—C8 1.236 (3) C15—H15A 0.9300
N1—C7 1.284 (3) C16—C17A 1.502 (7)
N1—N2 1.379 (3) C16—C17B 1.502 (7)
N2—C8 1.349 (3) C16—H16A 0.9600
N2—H1N2 0.86 (2) C16—H16B 0.9599
C1—C2 1.381 (3) C16—H16C 0.9600
C1—C6 1.407 (3) C16—H16D 0.9600
C1—H1A 0.9300 C17A—C19A 1.519 (13)
C2—C3 1.384 (3) C17A—C18A 1.519 (14)
C2—H2A 0.9300 C17A—H17A 0.9800
C3—C4 1.387 (3) C18A—H18A 0.9600
C3—H3A 0.9300 C18A—H18B 0.9600
C4—C5 1.386 (3) C18A—H18C 0.9600
C4—H4A 0.9300 C19A—H19A 0.9600
C5—C6 1.387 (3) C19A—H19B 0.9600
C5—H5A 0.9300 C19A—H19C 0.9600
C6—C7 1.491 (3) C17B—C18B 1.511 (12)
C7—C20 1.506 (3) C17B—C19B 1.533 (12)
C8—C9 1.524 (3) C17B—H17B 0.9800
C9—C10 1.525 (3) C18B—H18D 0.9600
C9—C21 1.529 (3) C18B—H18E 0.9600
C9—H9A 0.9800 C18B—H18F 0.9600
C10—C15 1.385 (3) C19B—H19D 0.9600
C10—C11 1.393 (3) C19B—H19E 0.9600
C11—C12 1.386 (3) C19B—H19F 0.9600
C11—H11A 0.9300 C20—H20A 0.9600
C12—C13 1.391 (3) C20—H20B 0.9600
C12—H12A 0.9300 C20—H20C 0.9600
C13—C14 1.396 (3) C21—H21A 0.9600
C13—C16 1.505 (3) C21—H21B 0.9600
C14—C15 1.385 (3) C21—H21C 0.9600
C14—H14A 0.9300
C7—N1—N2 119.18 (19) C17B—C16—C13 116.1 (3)
C8—N2—N1 119.6 (2) C17A—C16—H16A 106.5
C8—N2—H1N2 116.6 (16) C17B—C16—H16A 127.9
N1—N2—H1N2 123.7 (16) C13—C16—H16A 108.0
C2—C1—C6 120.5 (2) C17A—C16—H16B 109.7
C2—C1—H1A 119.7 C17B—C16—H16B 84.1
C6—C1—H1A 119.7 C13—C16—H16B 108.4
C1—C2—C3 120.7 (2) H16A—C16—H16B 107.5
C1—C2—H2A 119.6 C17A—C16—H16C 79.8
C3—C2—H2A 119.6 C17B—C16—H16C 106.1
C2—C3—C4 119.4 (2) C13—C16—H16C 108.5
C2—C3—H3A 120.3 H16B—C16—H16C 131.7
C4—C3—H3A 120.3 C17A—C16—H16D 129.3
C5—C4—C3 120.0 (2) C17B—C16—H16D 109.7
C5—C4—H4A 120.0 C13—C16—H16D 108.5
C3—C4—H4A 120.0 H16A—C16—H16D 79.4
C4—C5—C6 121.4 (2) H16C—C16—H16D 107.7
C4—C5—H5A 119.3 C16—C17A—C19A 111.3 (6)
C6—C5—H5A 119.3 C16—C17A—C18A 114.6 (8)
C5—C6—C1 117.9 (2) C19A—C17A—C18A 111.4 (7)
C5—C6—C7 120.8 (2) C16—C17A—H17A 106.3
C1—C6—C7 121.3 (2) C19A—C17A—H17A 106.3
N1—C7—C6 115.09 (19) C18A—C17A—H17A 106.3
N1—C7—C20 126.2 (2) C16—C17B—C18B 114.0 (7)
C6—C7—C20 118.7 (2) C16—C17B—C19B 111.2 (6)
O1—C8—N2 120.1 (2) C18B—C17B—C19B 110.3 (7)
O1—C8—C9 121.5 (2) C16—C17B—H17B 107.0
N2—C8—C9 118.3 (2) C18B—C17B—H17B 107.0
C8—C9—C10 108.12 (19) C19B—C17B—H17B 107.0
C8—C9—C21 110.8 (2) C17B—C18B—H18D 109.5
C10—C9—C21 112.25 (19) C17B—C18B—H18E 109.5
C8—C9—H9A 108.5 H18D—C18B—H18E 109.5
C10—C9—H9A 108.5 C17B—C18B—H18F 109.5
C21—C9—H9A 108.5 H18D—C18B—H18F 109.5
C15—C10—C11 117.8 (2) H18E—C18B—H18F 109.5
C15—C10—C9 121.3 (2) C17B—C19B—H19D 109.5
C11—C10—C9 120.9 (2) C17B—C19B—H19E 109.5
C12—C11—C10 121.2 (2) H19D—C19B—H19E 109.5
C12—C11—H11A 119.4 C17B—C19B—H19F 109.5
C10—C11—H11A 119.4 H19D—C19B—H19F 109.5
C11—C12—C13 121.2 (2) H19E—C19B—H19F 109.5
C11—C12—H12A 119.4 C7—C20—H20A 109.5
C13—C12—H12A 119.4 C7—C20—H20B 109.5
C12—C13—C14 117.3 (2) H20A—C20—H20B 109.5
C12—C13—C16 121.5 (2) C7—C20—H20C 109.5
C14—C13—C16 121.3 (2) H20A—C20—H20C 109.5
C15—C14—C13 121.5 (2) H20B—C20—H20C 109.5
C15—C14—H14A 119.3 C9—C21—H21A 109.5
C13—C14—H14A 119.3 C9—C21—H21B 109.5
C14—C15—C10 121.0 (2) H21A—C21—H21B 109.5
C14—C15—H15A 119.5 C9—C21—H21C 109.5
C10—C15—H15A 119.5 H21A—C21—H21C 109.5
C17A—C16—C13 116.4 (3) H21B—C21—H21C 109.5
C7—N1—N2—C8 173.9 (2) C21—C9—C10—C11 50.4 (3)
C6—C1—C2—C3 0.4 (3) C15—C10—C11—C12 2.5 (3)
C1—C2—C3—C4 −0.6 (4) C9—C10—C11—C12 −176.96 (19)
C2—C3—C4—C5 0.4 (4) C10—C11—C12—C13 −1.6 (3)
C3—C4—C5—C6 0.1 (4) C11—C12—C13—C14 −0.2 (3)
C4—C5—C6—C1 −0.4 (3) C11—C12—C13—C16 179.1 (2)
C4—C5—C6—C7 179.1 (2) C12—C13—C14—C15 1.0 (3)
C2—C1—C6—C5 0.1 (3) C16—C13—C14—C15 −178.3 (2)
C2—C1—C6—C7 −179.3 (2) C13—C14—C15—C10 −0.1 (3)
N2—N1—C7—C6 −179.98 (19) C11—C10—C15—C14 −1.7 (3)
N2—N1—C7—C20 −1.1 (4) C9—C10—C15—C14 177.78 (19)
C5—C6—C7—N1 167.0 (2) C12—C13—C16—C17A −113.3 (6)
C1—C6—C7—N1 −13.6 (3) C14—C13—C16—C17A 66.0 (6)
C5—C6—C7—C20 −12.0 (3) C12—C13—C16—C17B −81.6 (6)
C1—C6—C7—C20 167.4 (2) C14—C13—C16—C17B 97.7 (5)
N1—N2—C8—O1 179.2 (2) C17B—C16—C17A—C19A 80.4 (10)
N1—N2—C8—C9 −3.9 (4) C13—C16—C17A—C19A 176.9 (5)
O1—C8—C9—C10 92.1 (3) C17B—C16—C17A—C18A −47.1 (11)
N2—C8—C9—C10 −84.7 (3) C13—C16—C17A—C18A 49.4 (12)
O1—C8—C9—C21 −31.3 (4) C17A—C16—C17B—C18B 42.9 (10)
N2—C8—C9—C21 151.9 (2) C13—C16—C17B—C18B −55.0 (10)
C8—C9—C10—C15 108.5 (2) C17A—C16—C17B—C19B −82.6 (10)
C21—C9—C10—C15 −129.0 (2) C13—C16—C17B—C19B 179.6 (4)
C8—C9—C10—C11 −72.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1i 0.86 (2) 2.08 (2) 2.928 (3) 173 (2)
C20—H20A···O1i 0.96 2.31 3.247 (3) 165
C20—H20B···Cg1ii 0.96 2.75 3.609 (3) 150

Symmetry codes: (i) −x, −y+2, −z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2710).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem.41, 1253–1261. [DOI] [PubMed]
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1001–o1002. [DOI] [PMC free article] [PubMed]
  5. Palaska, E., Sahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101–107. [DOI] [PubMed]
  6. Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174. [DOI] [PubMed]
  7. Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem.38, 781–786. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036817/ci2710sup1.cif

e-64-o2377-sup1.cif (23.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036817/ci2710Isup2.hkl

e-64-o2377-Isup2.hkl (203.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES