Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):m1544–m1545. doi: 10.1107/S1600536808037100

[1,1′-Bis(diphenyl­phosphino)ferrocene]carbon­yl[dihydro­bis(pyrazol-1-yl)borato]hydridoruthenium(II) acetone solvate

Seong Huh a,*, Alan J Lough b
PMCID: PMC2960072  PMID: 21581157

Abstract

In the title compound, [FeRu(C17H14P)2(C6H8BN4)H(CO)]·C3H6O, the RuII ion is coordinated in a distorted octa­hedral environment involving a hydride ligand, a carbonyl ligand and two bidentate ligands. Of the two bidentate ligands, the bulky 1,1′-bis­(diphenyl­phosphino)ferrocene (dppf) ligand chelates with a larger bite angle of 101.90 (2)°, whereas the bite angle of the [H2Bpz2] ligand (pz = pyrazol­yl) is 85.67 (7)°. The latter ligand creates an RuN4B six-membered ring with a boat conformation, which puckers towards the site of the small hydride ligand. The hydride ligand is cis with respect to the carbonyl ligand and trans to one of the P atoms of the dppf ligand. In the crystal structure, there are weak inter­molecular C—H⋯O hydrogen bonds between complex mol­ecules and acetone solvent mol­ecules.

Related literature

For background information on RuII complexes, see: Buriez et al. (1999); Han et al. (1996); Hill et al. (1998); Huh et al. (1996); Na et al. (1996); Sánchez-Delgado et al. (1986). For related structures, see: Huh et al. (1999, 2000).graphic file with name e-64-m1544-scheme1.jpg

Experimental

Crystal data

  • [FeRu(C17H14P)2(C6H8BN4)H(CO)]·C3H6O

  • M r = 889.49

  • Monoclinic, Inline graphic

  • a = 9.0730 (2) Å

  • b = 29.9785 (5) Å

  • c = 14.7960 (3) Å

  • β = 94.617 (1)°

  • V = 4011.38 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 100 (1) K

  • 0.20 × 0.20 × 0.12 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) T min = 0.847, T max = 0.904

  • 41892 measured reflections

  • 11681 independent reflections

  • 7603 reflections with I > 2σ(I)

  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.079

  • S = 0.94

  • 11681 reflections

  • 508 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037100/is2360sup1.cif

e-64-m1544-sup1.cif (31KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037100/is2360Isup2.hkl

e-64-m1544-Isup2.hkl (366.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ru1—H1 1.60 (2)
Ru1—C1 1.832 (2)
Ru1—N1 2.1469 (17)
Ru1—N3 2.1514 (18)
Ru1—P1 2.3025 (6)
Ru1—P2 2.4813 (6)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1S 1.00 2.45 3.426 (3) 166
C32—H32A⋯O1Si 0.95 2.45 3.251 (3) 142

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by Hankuk University of Foreign Studies Research Fund of 2008.

supplementary crystallographic information

Comment

Hydridocarbonyl RuII polyphophine complexes are excellent catalyst precursors for the homogeneous hydrogenation of carbonyl groups such as aldehydes and ketones under molecular hydrogen atomosphere (Sánchez-Delgado et al., 1986; Huh et al., 1996; Na et al., 1996). Poly(azolyl)borate RuII complexes are also versatile organometallic catalyst precursors for various organic reactions (Buriez et al., 1999). Most of the poly(azolyl)borate complexes possess potentially tridentate hydrotris(pyrazol-1-yl)borate derivatives (Buriez et al., 1999). However, Hill et al. (1998) reported RuII complexes with a bidentate dihydrobis(pyrazol-1-yl)borate ligand, [H2Bpz2]- (pz = pyrazolyl), and their reactivity with various unsaturated organic groups. We have also structurally characterized two hydridocarbonyl RuII complexes bearing a bidentate dihydrobis(pyrazol-1-yl)borate ligand (Huh et al., 1999; 2000). These compounds are potentially efficient catalyst precursors for the homogeneous hydrogenation of aldehydes and ketones.

As the dihydrobis(pyrazol-1-yl)borate ligand usually occupies no more than two coordination sites of a transition metal ion, it may be advantageous to introduce additional chelate ligands to further control the electronic and steric factors of the RuII complex (Huh et al., 1996). In this regard, we successfully prepared and characterized a new RuII compound with two different bidentate ligands. A ligand displacement reaction of RuH(PPh3)22-H2Bpz2)(CO) by 1,1'-bis(diphenylphosphino)ferrocene (dppf) yielded the title compound RuH(CO)(dppf)(η2-H2Bpz2).CH3COCH3, (I), which contains two different bidentate ligands, a neutral dppf ligand with two P donor atoms and an anionic [H2Bpz2]- ligand with two N donor atoms. The two mutually trans-positioned PPh3 ligands of the starting RuII complex were successfully replaced by the dppf ligand.

The dppf ligand coordinates to the RuII ion in the normal bidentate chelation mode as shown in Figure 1. The dppf ligand is bulkier than the [H2Bpz2]- ligand and hence the bite angle for the dppf ligand, P1—Ru1—P2, is 101.90 (2)°. This value is not significantly different from that in the known structure of [RuH(dppf)(NCCH3)(PPh3)(CO)]+, 102.15 (9)° (Han et al., 1996). The N1—Ru1—N3 bite angle is much smaller with a value of 85.67 (7)° A six-membered ring consisting of atoms of Ru1/N1—N4/B1 is in a boat conformation which is puckered towards the hydride ligand.

The longer Ru1—P2 bond (compared to Ru1—P1) may be attributed to the stronger trans effect of the hydride ligand than nitrogen donor atom of [H2Bpz2]-. The overall coordination environment of RuII ion is a distorted octahedral geometry. The two cyclopentadienyl rings of the dppf ligand show a staggered geometry.

Experimental

A reaction mixture of RuH(PPh3)22-H2Bpz2)(CO) (207 mg, 0.258 mmol; Hill et al. 1998) and dppf (213 mg, 0.516 mmol) in 40 ml CH2Cl2 was heated under reflux in a nitrogen atmosphere for 22 h. The resulting solution was evaporated to dryness after filtration. The crude solids were dissolved in a minimum amount of acetone and stored at 258 K. X-ray quality yellow block crystals were obtained. The crystals were collected, washed with hexane and air-dried. Anal. Calcd for C41H37BN4FeOP2Ru.C3H6O: C, 59.41; H, 4.87; N, 6.30. Found: C, 59.32; H, 4.77; N, 6.23. IR (KBr): ν(BH2) 2408, 2365, 2342, 2279, ν(CO) 1924 cm-1. 1H NMR (CDCl3, 298 K, TMS, Bruker AMX 500, 500 MHz): δ -6.28 (dd, 1H, 2J = 127.9, 26.4 Hz) p.p.m..

Refinement

H atoms bonded to C atoms were placed in calculated positions, with C—H = 0.95 – 1.00 Å and were included in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. The positional parameters of the H atoms bonded to B1 were refined with Uiso(H) = 1.2Ueq(B), while the hydride H atom (H1) was refined independently with an isotropic displacement parameter.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% ellipsoids for non-hydrogen atoms. The solvent acetone molecule is not shown and H atoms bonded to C atoms have been omitted.

Crystal data

[FeRu(C17H14P1)2(C6H8BN4)H(CO)]·C3H6O F000 = 1824
Mr = 889.49 Dx = 1.473 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 41892 reflections
a = 9.0730 (2) Å θ = 2.6–30.1º
b = 29.9785 (5) Å µ = 0.86 mm1
c = 14.7960 (3) Å T = 100 (1) K
β = 94.617 (1)º Plate, yellow
V = 4011.38 (14) Å3 0.20 × 0.20 × 0.12 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 11681 independent reflections
Radiation source: fine-focus sealed tube 7603 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.064
Detector resolution: 9 pixels mm-1 θmax = 30.1º
T = 100(1) K θmin = 2.6º
φ scans and ω scans with κ offsets h = −12→12
Absorption correction: multi-scan(DENZO-SMN; Otwinowski & Minor, 1997) k = −42→42
Tmin = 0.847, Tmax = 0.904 l = −20→20
41892 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079   w = 1/[σ2(Fo2) + (0.0318P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94 (Δ/σ)max = 0.001
11681 reflections Δρmax = 0.60 e Å3
508 parameters Δρmin = −0.50 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru1 0.595588 (19) 0.361280 (6) 0.185146 (12) 0.01354 (5)
H1 0.647 (2) 0.3263 (6) 0.1126 (13) 0.019 (6)*
Fe1 0.27014 (3) 0.468086 (10) 0.17021 (2) 0.01479 (8)
P1 0.41814 (6) 0.377120 (18) 0.06951 (4) 0.01403 (12)
P2 0.51433 (7) 0.408011 (18) 0.31033 (4) 0.01519 (13)
O1 0.80746 (18) 0.42485 (5) 0.10937 (10) 0.0230 (4)
N1 0.78142 (19) 0.33846 (6) 0.27188 (12) 0.0157 (4)
N2 0.8112 (2) 0.29422 (6) 0.28533 (12) 0.0178 (4)
N3 0.4803 (2) 0.30479 (6) 0.23495 (12) 0.0156 (4)
N4 0.5526 (2) 0.26580 (6) 0.25653 (12) 0.0168 (4)
C1 0.7193 (2) 0.40206 (7) 0.13852 (15) 0.0162 (5)
C2 0.3400 (2) 0.43298 (7) 0.06501 (14) 0.0149 (5)
C3 0.1942 (3) 0.45016 (7) 0.04071 (15) 0.0189 (5)
H3A 0.1040 0.4319 0.0236 0.023*
C4 0.1991 (3) 0.49724 (7) 0.04804 (15) 0.0206 (5)
H4A 0.1127 0.5178 0.0375 0.025*
C5 0.3462 (3) 0.51024 (7) 0.07443 (15) 0.0184 (5)
H5A 0.3818 0.5415 0.0852 0.022*
C6 0.4337 (2) 0.47123 (7) 0.08458 (14) 0.0160 (5)
H6A 0.5422 0.4703 0.1028 0.019*
C7 0.3510 (2) 0.44297 (7) 0.29240 (14) 0.0159 (5)
C8 0.2046 (2) 0.42628 (7) 0.26797 (14) 0.0166 (5)
H8A 0.1770 0.3942 0.2592 0.020*
C9 0.1059 (3) 0.46316 (7) 0.25763 (15) 0.0198 (5)
H9A −0.0026 0.4614 0.2398 0.024*
C10 0.1886 (3) 0.50291 (7) 0.27475 (15) 0.0193 (5)
H10A 0.1483 0.5340 0.2713 0.023*
C11 0.3385 (3) 0.49088 (7) 0.29740 (14) 0.0180 (5)
H11A 0.4219 0.5121 0.3124 0.022*
C12 0.2620 (2) 0.33857 (7) 0.05801 (14) 0.0159 (5)
C13 0.1236 (2) 0.34714 (7) 0.08908 (15) 0.0184 (5)
H13A 0.1039 0.3757 0.1133 0.022*
C14 0.0141 (3) 0.31475 (7) 0.08521 (15) 0.0209 (5)
H14A −0.0796 0.3212 0.1064 0.025*
C15 0.0417 (3) 0.27301 (8) 0.05045 (16) 0.0236 (6)
H15A −0.0333 0.2508 0.0473 0.028*
C16 0.1784 (3) 0.26361 (7) 0.02030 (16) 0.0224 (5)
H16A 0.1974 0.2348 −0.0030 0.027*
C17 0.2882 (3) 0.29595 (7) 0.02387 (15) 0.0194 (5)
H17A 0.3819 0.2891 0.0030 0.023*
C18 0.4825 (2) 0.37586 (7) −0.04626 (14) 0.0153 (5)
C19 0.6268 (3) 0.36541 (7) −0.06363 (15) 0.0194 (5)
H19A 0.6941 0.3552 −0.0156 0.023*
C20 0.6739 (3) 0.36966 (7) −0.15022 (16) 0.0235 (6)
H20A 0.7731 0.3626 −0.1609 0.028*
C21 0.5763 (3) 0.38415 (7) −0.22115 (16) 0.0253 (6)
H21A 0.6087 0.3873 −0.2803 0.030*
C22 0.4321 (3) 0.39395 (8) −0.20531 (15) 0.0247 (6)
H22A 0.3647 0.4034 −0.2540 0.030*
C23 0.3849 (3) 0.39010 (7) −0.11906 (15) 0.0215 (5)
H23A 0.2854 0.3972 −0.1090 0.026*
C24 0.4732 (2) 0.37769 (7) 0.41384 (14) 0.0168 (5)
C25 0.3670 (3) 0.39273 (8) 0.46939 (15) 0.0220 (5)
H25A 0.3122 0.4190 0.4534 0.026*
C26 0.3400 (3) 0.36973 (8) 0.54809 (16) 0.0272 (6)
H26A 0.2678 0.3806 0.5856 0.033*
C27 0.4174 (3) 0.33129 (8) 0.57210 (16) 0.0263 (6)
H27A 0.3982 0.3155 0.6256 0.032*
C28 0.5235 (3) 0.31590 (8) 0.51712 (16) 0.0242 (6)
H28A 0.5772 0.2895 0.5330 0.029*
C29 0.5515 (3) 0.33896 (7) 0.43905 (15) 0.0197 (5)
H29A 0.6250 0.3283 0.4022 0.024*
C30 0.6473 (2) 0.45032 (7) 0.35541 (15) 0.0169 (5)
C31 0.7036 (2) 0.48054 (7) 0.29513 (16) 0.0190 (5)
H31A 0.6760 0.4777 0.2321 0.023*
C32 0.7987 (3) 0.51464 (7) 0.32510 (17) 0.0220 (5)
H32A 0.8343 0.5352 0.2831 0.026*
C33 0.8414 (3) 0.51844 (8) 0.41672 (17) 0.0267 (6)
H33A 0.9073 0.5415 0.4377 0.032*
C34 0.7880 (3) 0.48861 (8) 0.47795 (17) 0.0300 (6)
H34A 0.8178 0.4912 0.5408 0.036*
C35 0.6910 (3) 0.45492 (8) 0.44738 (16) 0.0239 (5)
H35A 0.6540 0.4348 0.4897 0.029*
C36 0.9347 (3) 0.28986 (8) 0.34064 (15) 0.0210 (5)
H36A 0.9779 0.2624 0.3608 0.025*
C37 0.9894 (2) 0.33193 (8) 0.36373 (15) 0.0220 (5)
H37A 1.0757 0.3391 0.4016 0.026*
C38 0.8894 (2) 0.36109 (7) 0.31905 (15) 0.0182 (5)
H38A 0.8966 0.3927 0.3215 0.022*
C39 0.4607 (3) 0.23805 (7) 0.29611 (15) 0.0203 (5)
H39A 0.4850 0.2089 0.3175 0.024*
C40 0.3255 (3) 0.25860 (7) 0.30071 (15) 0.0198 (5)
H40A 0.2396 0.2470 0.3249 0.024*
C41 0.3438 (2) 0.30025 (7) 0.26178 (14) 0.0175 (5)
H41A 0.2692 0.3225 0.2551 0.021*
B1 0.7149 (3) 0.25689 (9) 0.2369 (2) 0.0198 (6)
H1B 0.751 (2) 0.2240 (7) 0.2692 (15) 0.024*
H2B 0.729 (2) 0.2576 (7) 0.1595 (15) 0.024*
O1S −0.0065 (2) 0.60075 (6) 0.27422 (15) 0.0531 (6)
C1S 0.0106 (3) 0.63712 (8) 0.30926 (19) 0.0302 (6)
C2S 0.1145 (4) 0.64454 (11) 0.3906 (2) 0.0562 (9)
H2SA 0.1604 0.6161 0.4099 0.084*
H2SB 0.0602 0.6566 0.4398 0.084*
H2SC 0.1913 0.6657 0.3759 0.084*
C3S −0.0704 (3) 0.67699 (8) 0.2707 (2) 0.0395 (7)
H3SA −0.1237 0.6691 0.2127 0.059*
H3SB 0.0004 0.7009 0.2611 0.059*
H3SC −0.1410 0.6872 0.3130 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.01350 (9) 0.01260 (9) 0.01445 (9) 0.00019 (7) 0.00074 (7) 0.00110 (8)
Fe1 0.01595 (17) 0.01349 (16) 0.01497 (17) 0.00123 (13) 0.00153 (13) 0.00056 (13)
P1 0.0147 (3) 0.0129 (3) 0.0144 (3) 0.0005 (2) 0.0006 (2) −0.0003 (2)
P2 0.0161 (3) 0.0150 (3) 0.0145 (3) 0.0005 (2) 0.0008 (2) 0.0004 (2)
O1 0.0221 (9) 0.0219 (9) 0.0253 (9) −0.0046 (7) 0.0030 (7) 0.0032 (7)
N1 0.0143 (10) 0.0148 (9) 0.0181 (10) 0.0003 (8) 0.0024 (8) 0.0014 (8)
N2 0.0166 (10) 0.0162 (10) 0.0208 (10) 0.0021 (8) 0.0023 (8) 0.0034 (8)
N3 0.0165 (10) 0.0153 (9) 0.0148 (10) −0.0001 (8) −0.0001 (8) 0.0017 (8)
N4 0.0196 (10) 0.0123 (9) 0.0185 (10) 0.0019 (8) 0.0021 (8) 0.0010 (8)
C1 0.0171 (12) 0.0170 (12) 0.0142 (11) 0.0020 (9) −0.0015 (9) −0.0004 (9)
C2 0.0164 (12) 0.0149 (11) 0.0133 (11) 0.0010 (9) −0.0002 (9) 0.0009 (9)
C3 0.0202 (13) 0.0182 (12) 0.0176 (12) 0.0004 (10) −0.0030 (10) −0.0005 (10)
C4 0.0262 (14) 0.0196 (12) 0.0161 (12) 0.0071 (10) 0.0011 (10) 0.0039 (10)
C5 0.0242 (13) 0.0136 (11) 0.0175 (12) −0.0006 (9) 0.0024 (10) 0.0016 (9)
C6 0.0179 (12) 0.0187 (12) 0.0119 (11) −0.0023 (9) 0.0038 (9) 0.0009 (9)
C7 0.0181 (12) 0.0156 (11) 0.0144 (12) 0.0018 (9) 0.0030 (9) 0.0024 (9)
C8 0.0197 (12) 0.0143 (11) 0.0162 (12) 0.0011 (9) 0.0031 (9) 0.0008 (9)
C9 0.0156 (12) 0.0237 (13) 0.0207 (13) 0.0020 (10) 0.0059 (10) 0.0015 (10)
C10 0.0194 (13) 0.0184 (12) 0.0206 (13) 0.0049 (10) 0.0051 (10) −0.0003 (10)
C11 0.0231 (13) 0.0159 (12) 0.0149 (12) 0.0000 (10) 0.0012 (10) −0.0014 (9)
C12 0.0171 (12) 0.0175 (12) 0.0127 (11) −0.0003 (9) −0.0010 (9) −0.0008 (9)
C13 0.0195 (12) 0.0175 (11) 0.0182 (12) 0.0002 (9) 0.0021 (10) −0.0011 (10)
C14 0.0171 (12) 0.0243 (13) 0.0216 (13) −0.0034 (10) 0.0031 (10) 0.0016 (10)
C15 0.0238 (14) 0.0228 (13) 0.0236 (14) −0.0079 (10) −0.0016 (11) 0.0015 (11)
C16 0.0282 (14) 0.0153 (12) 0.0236 (13) −0.0019 (10) 0.0020 (11) −0.0028 (10)
C17 0.0213 (13) 0.0206 (12) 0.0165 (12) 0.0030 (10) 0.0026 (10) −0.0004 (10)
C18 0.0220 (13) 0.0103 (10) 0.0140 (11) −0.0028 (9) 0.0040 (9) −0.0008 (9)
C19 0.0233 (12) 0.0147 (11) 0.0200 (12) −0.0028 (10) 0.0010 (10) 0.0015 (10)
C20 0.0273 (14) 0.0205 (13) 0.0239 (13) −0.0027 (10) 0.0088 (11) −0.0031 (10)
C21 0.0397 (16) 0.0224 (13) 0.0151 (12) −0.0035 (11) 0.0101 (11) −0.0035 (10)
C22 0.0360 (16) 0.0234 (13) 0.0146 (12) 0.0030 (11) 0.0001 (11) −0.0002 (10)
C23 0.0197 (13) 0.0231 (13) 0.0215 (13) 0.0014 (10) 0.0006 (10) −0.0020 (10)
C24 0.0196 (12) 0.0181 (11) 0.0126 (11) −0.0022 (9) 0.0009 (9) −0.0022 (9)
C25 0.0237 (13) 0.0252 (13) 0.0173 (12) 0.0009 (10) 0.0022 (10) 0.0025 (10)
C26 0.0280 (14) 0.0359 (15) 0.0184 (13) 0.0005 (12) 0.0067 (11) −0.0008 (11)
C27 0.0306 (15) 0.0320 (14) 0.0165 (12) −0.0096 (12) 0.0023 (11) 0.0043 (11)
C28 0.0309 (15) 0.0191 (12) 0.0218 (13) −0.0041 (11) −0.0026 (11) 0.0048 (11)
C29 0.0205 (13) 0.0203 (12) 0.0182 (12) 0.0014 (10) 0.0019 (10) −0.0016 (10)
C30 0.0146 (12) 0.0176 (12) 0.0185 (12) 0.0031 (9) 0.0006 (9) −0.0046 (10)
C31 0.0195 (13) 0.0180 (12) 0.0192 (12) 0.0011 (10) −0.0003 (10) −0.0022 (10)
C32 0.0183 (12) 0.0157 (12) 0.0323 (14) 0.0006 (10) 0.0047 (11) −0.0011 (11)
C33 0.0210 (13) 0.0243 (13) 0.0345 (15) −0.0031 (11) 0.0002 (11) −0.0122 (12)
C34 0.0287 (15) 0.0396 (15) 0.0208 (13) −0.0026 (12) −0.0032 (11) −0.0094 (12)
C35 0.0258 (14) 0.0264 (13) 0.0196 (13) 0.0001 (11) 0.0024 (11) −0.0023 (11)
C36 0.0178 (12) 0.0237 (13) 0.0213 (13) 0.0058 (10) 0.0001 (10) 0.0063 (10)
C37 0.0155 (12) 0.0305 (14) 0.0192 (12) 0.0011 (10) −0.0034 (10) 0.0007 (11)
C38 0.0178 (12) 0.0172 (11) 0.0197 (12) −0.0010 (10) 0.0027 (9) −0.0006 (10)
C39 0.0233 (13) 0.0142 (11) 0.0232 (13) −0.0028 (10) 0.0007 (10) 0.0015 (10)
C40 0.0193 (13) 0.0210 (12) 0.0191 (12) −0.0044 (10) 0.0026 (10) 0.0004 (10)
C41 0.0166 (12) 0.0177 (12) 0.0179 (12) −0.0003 (9) 0.0002 (9) 0.0008 (10)
B1 0.0185 (14) 0.0138 (13) 0.0273 (16) 0.0021 (11) 0.0036 (12) 0.0004 (12)
O1S 0.0455 (14) 0.0234 (11) 0.0910 (18) −0.0002 (9) 0.0086 (12) −0.0025 (11)
C1S 0.0219 (13) 0.0239 (14) 0.0468 (17) 0.0003 (11) 0.0154 (12) 0.0070 (13)
C2S 0.058 (2) 0.063 (2) 0.046 (2) 0.0098 (18) −0.0029 (17) 0.0101 (17)
C3S 0.0322 (17) 0.0273 (15) 0.059 (2) 0.0012 (12) 0.0009 (15) 0.0055 (14)

Geometric parameters (Å, °)

Ru1—H1 1.60 (2) C16—C17 1.388 (3)
Ru1—C1 1.832 (2) C16—H16A 0.9500
Ru1—N1 2.1469 (17) C17—H17A 0.9500
Ru1—N3 2.1514 (18) C18—C19 1.390 (3)
Ru1—P1 2.3025 (6) C18—C23 1.405 (3)
Ru1—P2 2.4813 (6) C19—C20 1.389 (3)
Fe1—C2 2.023 (2) C19—H19A 0.9500
Fe1—C6 2.030 (2) C20—C21 1.387 (3)
Fe1—C8 2.038 (2) C20—H20A 0.9500
Fe1—C7 2.040 (2) C21—C22 1.380 (3)
Fe1—C11 2.051 (2) C21—H21A 0.9500
Fe1—C10 2.053 (2) C22—C23 1.383 (3)
Fe1—C3 2.055 (2) C22—H22A 0.9500
Fe1—C9 2.055 (2) C23—H23A 0.9500
Fe1—C5 2.059 (2) C24—C25 1.391 (3)
Fe1—C4 2.064 (2) C24—C29 1.396 (3)
P1—C2 1.818 (2) C25—C26 1.392 (3)
P1—C12 1.825 (2) C25—H25A 0.9500
P1—C18 1.854 (2) C26—C27 1.381 (3)
P2—C7 1.817 (2) C26—H26A 0.9500
P2—C30 1.838 (2) C27—C28 1.389 (3)
P2—C24 1.845 (2) C27—H27A 0.9500
O1—C1 1.161 (3) C28—C29 1.387 (3)
N1—C38 1.341 (3) C28—H28A 0.9500
N1—N2 1.365 (2) C29—H29A 0.9500
N2—C36 1.340 (3) C30—C35 1.393 (3)
N2—B1 1.558 (3) C30—C31 1.396 (3)
N3—C41 1.338 (3) C31—C32 1.388 (3)
N3—N4 1.365 (2) C31—H31A 0.9500
N4—C39 1.345 (3) C32—C33 1.384 (3)
N4—B1 1.547 (3) C32—H32A 0.9500
C2—C3 1.438 (3) C33—C34 1.388 (3)
C2—C6 1.443 (3) C33—H33A 0.9500
C3—C4 1.416 (3) C34—C35 1.391 (3)
C3—H3A 1.0000 C34—H34A 0.9500
C4—C5 1.415 (3) C35—H35A 0.9500
C4—H4A 1.0000 C36—C37 1.388 (3)
C5—C6 1.415 (3) C36—H36A 0.9500
C5—H5A 1.0000 C37—C38 1.388 (3)
C6—H6A 1.0000 C37—H37A 0.9500
C7—C8 1.438 (3) C38—H38A 0.9500
C7—C11 1.443 (3) C39—C40 1.379 (3)
C8—C9 1.423 (3) C39—H39A 0.9500
C8—H8A 1.0000 C40—C41 1.391 (3)
C9—C10 1.420 (3) C40—H40A 0.9500
C9—H9A 1.0000 C41—H41A 0.9500
C10—C11 1.421 (3) B1—H1B 1.13 (2)
C10—H10A 1.0000 B1—H2B 1.16 (2)
C11—H11A 1.0000 O1S—C1S 1.212 (3)
C12—C13 1.396 (3) C1S—C2S 1.485 (4)
C12—C17 1.401 (3) C1S—C3S 1.492 (3)
C13—C14 1.386 (3) C2S—H2SA 0.9800
C13—H13A 0.9500 C2S—H2SB 0.9800
C14—C15 1.383 (3) C2S—H2SC 0.9800
C14—H14A 0.9500 C3S—H3SA 0.9800
C15—C16 1.380 (3) C3S—H3SB 0.9800
C15—H15A 0.9500 C3S—H3SC 0.9800
H1—Ru1—C1 87.9 (7) C10—C9—Fe1 69.69 (13)
H1—Ru1—N1 86.2 (7) C8—C9—Fe1 69.01 (13)
C1—Ru1—N1 87.83 (8) C10—C9—H9A 125.8
H1—Ru1—N3 83.7 (7) C8—C9—H9A 125.8
C1—Ru1—N3 169.69 (8) Fe1—C9—H9A 125.8
N1—Ru1—N3 85.67 (7) C9—C10—C11 108.11 (19)
H1—Ru1—P1 82.0 (7) C9—C10—Fe1 69.88 (13)
C1—Ru1—P1 89.75 (7) C11—C10—Fe1 69.66 (12)
N1—Ru1—P1 168.07 (5) C9—C10—H10A 125.9
N3—Ru1—P1 94.98 (5) C11—C10—H10A 125.9
H1—Ru1—P2 173.2 (7) Fe1—C10—H10A 125.9
C1—Ru1—P2 97.60 (7) C10—C11—C7 108.5 (2)
N1—Ru1—P2 90.00 (5) C10—C11—Fe1 69.82 (13)
N3—Ru1—P2 90.39 (5) C7—C11—Fe1 68.93 (12)
P1—Ru1—P2 101.90 (2) C10—C11—H11A 125.7
C2—Fe1—C6 41.71 (8) C7—C11—H11A 125.7
C2—Fe1—C8 110.71 (9) Fe1—C11—H11A 125.7
C6—Fe1—C8 137.83 (9) C13—C12—C17 118.0 (2)
C2—Fe1—C7 112.17 (8) C13—C12—P1 124.40 (16)
C6—Fe1—C7 109.97 (9) C17—C12—P1 117.27 (17)
C8—Fe1—C7 41.29 (8) C14—C13—C12 121.2 (2)
C2—Fe1—C11 142.11 (9) C14—C13—H13A 119.4
C6—Fe1—C11 112.02 (9) C12—C13—H13A 119.4
C8—Fe1—C11 68.75 (9) C15—C14—C13 119.9 (2)
C7—Fe1—C11 41.32 (8) C15—C14—H14A 120.0
C2—Fe1—C10 177.15 (9) C13—C14—H14A 120.0
C6—Fe1—C10 140.60 (9) C16—C15—C14 119.9 (2)
C8—Fe1—C10 68.57 (9) C16—C15—H15A 120.0
C7—Fe1—C10 69.25 (9) C14—C15—H15A 120.0
C11—Fe1—C10 40.52 (9) C15—C16—C17 120.4 (2)
C2—Fe1—C3 41.30 (8) C15—C16—H16A 119.8
C6—Fe1—C3 68.74 (9) C17—C16—H16A 119.8
C8—Fe1—C3 113.94 (9) C16—C17—C12 120.6 (2)
C7—Fe1—C3 143.10 (9) C16—C17—H17A 119.7
C11—Fe1—C3 175.43 (8) C12—C17—H17A 119.7
C10—Fe1—C3 136.17 (9) C19—C18—C23 118.1 (2)
C2—Fe1—C9 137.30 (9) C19—C18—P1 123.14 (17)
C6—Fe1—C9 178.48 (9) C23—C18—P1 118.44 (17)
C8—Fe1—C9 40.69 (8) C20—C19—C18 121.0 (2)
C7—Fe1—C9 69.08 (9) C20—C19—H19A 119.5
C11—Fe1—C9 68.13 (9) C18—C19—H19A 119.5
C10—Fe1—C9 40.43 (9) C21—C20—C19 120.1 (2)
C3—Fe1—C9 111.24 (9) C21—C20—H20A 119.9
C2—Fe1—C5 69.29 (9) C19—C20—H20A 119.9
C6—Fe1—C5 40.48 (8) C22—C21—C20 119.6 (2)
C8—Fe1—C5 177.30 (9) C22—C21—H21A 120.2
C7—Fe1—C5 136.06 (9) C20—C21—H21A 120.2
C11—Fe1—C5 109.49 (9) C21—C22—C23 120.5 (2)
C10—Fe1—C5 111.57 (9) C21—C22—H22A 119.8
C3—Fe1—C5 67.95 (9) C23—C22—H22A 119.8
C9—Fe1—C5 141.02 (9) C22—C23—C18 120.6 (2)
C2—Fe1—C4 68.99 (9) C22—C23—H23A 119.7
C6—Fe1—C4 68.04 (9) C18—C23—H23A 119.7
C8—Fe1—C4 142.53 (9) C25—C24—C29 118.3 (2)
C7—Fe1—C4 175.85 (9) C25—C24—P2 121.78 (17)
C11—Fe1—C4 135.46 (9) C29—C24—P2 119.95 (17)
C10—Fe1—C4 109.79 (9) C24—C25—C26 120.7 (2)
C3—Fe1—C4 40.22 (8) C24—C25—H25A 119.7
C9—Fe1—C4 112.99 (9) C26—C25—H25A 119.7
C5—Fe1—C4 40.14 (9) C27—C26—C25 120.6 (2)
C2—P1—C12 106.41 (10) C27—C26—H26A 119.7
C2—P1—C18 97.80 (10) C25—C26—H26A 119.7
C12—P1—C18 101.58 (10) C26—C27—C28 119.2 (2)
C2—P1—Ru1 117.68 (7) C26—C27—H27A 120.4
C12—P1—Ru1 115.45 (7) C28—C27—H27A 120.4
C18—P1—Ru1 115.41 (8) C29—C28—C27 120.3 (2)
C7—P2—C30 99.13 (10) C29—C28—H28A 119.9
C7—P2—C24 100.87 (10) C27—C28—H28A 119.9
C30—P2—C24 102.09 (10) C28—C29—C24 120.9 (2)
C7—P2—Ru1 120.30 (7) C28—C29—H29A 119.5
C30—P2—Ru1 115.76 (8) C24—C29—H29A 119.5
C24—P2—Ru1 115.69 (7) C35—C30—C31 118.0 (2)
C38—N1—N2 106.74 (17) C35—C30—P2 123.33 (18)
C38—N1—Ru1 130.98 (15) C31—C30—P2 118.62 (17)
N2—N1—Ru1 122.24 (13) C32—C31—C30 121.6 (2)
C36—N2—N1 109.25 (18) C32—C31—H31A 119.2
C36—N2—B1 128.41 (19) C30—C31—H31A 119.2
N1—N2—B1 122.27 (18) C33—C32—C31 119.4 (2)
C41—N3—N4 106.40 (17) C33—C32—H32A 120.3
C41—N3—Ru1 131.99 (14) C31—C32—H32A 120.3
N4—N3—Ru1 121.08 (14) C32—C33—C34 120.1 (2)
C39—N4—N3 109.17 (18) C32—C33—H33A 119.9
C39—N4—B1 127.43 (19) C34—C33—H33A 119.9
N3—N4—B1 123.40 (18) C33—C34—C35 120.0 (2)
O1—C1—Ru1 173.74 (19) C33—C34—H34A 120.0
C3—C2—C6 106.32 (18) C35—C34—H34A 120.0
C3—C2—P1 133.40 (17) C34—C35—C30 120.8 (2)
C6—C2—P1 120.21 (16) C34—C35—H35A 119.6
C3—C2—Fe1 70.55 (12) C30—C35—H35A 119.6
C6—C2—Fe1 69.40 (12) N2—C36—C37 109.1 (2)
P1—C2—Fe1 126.63 (11) N2—C36—H36A 125.5
C4—C3—C2 108.4 (2) C37—C36—H36A 125.5
C4—C3—Fe1 70.23 (12) C36—C37—C38 104.4 (2)
C2—C3—Fe1 68.15 (12) C36—C37—H37A 127.8
C4—C3—H3A 125.8 C38—C37—H37A 127.8
C2—C3—H3A 125.8 N1—C38—C37 110.6 (2)
Fe1—C3—H3A 125.8 N1—C38—H38A 124.7
C5—C4—C3 108.6 (2) C37—C38—H38A 124.7
C5—C4—Fe1 69.74 (13) N4—C39—C40 109.3 (2)
C3—C4—Fe1 69.56 (12) N4—C39—H39A 125.4
C5—C4—H4A 125.7 C40—C39—H39A 125.4
C3—C4—H4A 125.7 C39—C40—C41 104.2 (2)
Fe1—C4—H4A 125.7 C39—C40—H40A 127.9
C6—C5—C4 108.09 (19) C41—C40—H40A 127.9
C6—C5—Fe1 68.66 (12) N3—C41—C40 111.0 (2)
C4—C5—Fe1 70.11 (13) N3—C41—H41A 124.5
C6—C5—H5A 125.9 C40—C41—H41A 124.5
C4—C5—H5A 125.9 H1B—B1—H2B 112.4 (15)
Fe1—C5—H5A 125.9 H1B—B1—N4 108.6 (11)
C5—C6—C2 108.60 (19) H2B—B1—N4 111.2 (11)
C5—C6—Fe1 70.87 (13) H1B—B1—N2 107.4 (11)
C2—C6—Fe1 68.88 (12) H2B—B1—N2 109.8 (11)
C5—C6—H6A 125.7 N4—B1—N2 107.27 (18)
C2—C6—H6A 125.7 O1S—C1S—C2S 122.2 (3)
Fe1—C6—H6A 125.7 O1S—C1S—C3S 121.0 (3)
C8—C7—C11 106.53 (19) C2S—C1S—C3S 116.8 (2)
C8—C7—P2 124.19 (16) C1S—C2S—H2SA 109.5
C11—C7—P2 129.28 (17) C1S—C2S—H2SB 109.5
C8—C7—Fe1 69.30 (12) H2SA—C2S—H2SB 109.5
C11—C7—Fe1 69.75 (12) C1S—C2S—H2SC 109.5
P2—C7—Fe1 124.98 (12) H2SA—C2S—H2SC 109.5
C9—C8—C7 108.49 (19) H2SB—C2S—H2SC 109.5
C9—C8—Fe1 70.30 (12) C1S—C3S—H3SA 109.5
C7—C8—Fe1 69.41 (12) C1S—C3S—H3SB 109.5
C9—C8—H8A 125.8 H3SA—C3S—H3SB 109.5
C7—C8—H8A 125.8 C1S—C3S—H3SC 109.5
Fe1—C8—H8A 125.8 H3SA—C3S—H3SC 109.5
C10—C9—C8 108.3 (2) H3SB—C3S—H3SC 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10A···O1S 1.00 2.45 3.426 (3) 166
C32—H32A···O1Si 0.95 2.45 3.251 (3) 142

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2360).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Buriez, B., Burns, I. D., Hill, A. F., White, A. J. P., Williams, D. J. & Wilton-Ely, J. D. E. T. (1999). Organometallics, 18, 1504–1516.
  3. Han, S.-H., Sung, K.-M., Huh, S., Jun, M.-J., Whang, D. & Kim, K. (1996). Polyhedron, 15, 3811–3820.
  4. Hill, A. F., White, A. J. P., Williams, D. J. & Wilton-Ely, J. D. E. T. (1998). Organometallics, 17, 4249–4258.
  5. Huh, S., Kim, Y., Park, S., Park, T.-J. & Jun, M.-J. (1999). Acta Cryst. C55, 850–852.
  6. Huh, S., Park, Y. J., Lough, A. J. & Jun, M.-J. (2000). Acta Cryst. C56, 416–417. [DOI] [PubMed]
  7. Huh, S., Sung, K.-M., Cho, Y., Jun, M.-J., Whang, D. & Kim, K. (1996). Polyhedron, 15, 1473–1479.
  8. Na, K.-I., Huh, S., Sung, K.-M. & Jun, M.-J. (1996). Polyhedron, 15, 1841–1846.
  9. Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Sánchez-Delgado, R. A., Valencia, N., Márquez-Silva, R.-L., Andriollo, A. & Medina, M. (1986). Inorg. Chem.25, 1106–1111.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037100/is2360sup1.cif

e-64-m1544-sup1.cif (31KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037100/is2360Isup2.hkl

e-64-m1544-Isup2.hkl (366.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES