Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 20;64(Pt 12):m1583–m1584. doi: 10.1107/S1600536808038129

Dibromido(di-2-pyridylamine-κ2 N,N′)mercury(II)

Khadijeh Kalateh a, Ali Norouzi b, Amin Ebadi c, Roya Ahmadi a, Vahid Amani a,*
PMCID: PMC2960074  PMID: 21581184

Abstract

In the mol­ecule of the title compound, [HgBr2(C10H9N3)], the HgII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from the chelating di-2-pyridylamine ligand and by two Br atoms. In the crystal structure, inter­molecular N—H⋯Br hydrogen bonds link the mol­ecules into centrosymmetric dimers. There are π–π contacts between the pyridine rings [centroid–centroid distances = 3.9662 (5) and 3.9321 (4) Å]. There also exists a C—H⋯π contact between the pyridine CH group and a pyridine ring.

Related literature

For related literature, see: Ahmadi et al. (2008); Kalateh et al. (2008); Khavasi et al. (2008); Tadayon Pour et al. (2008); Yousefi, Rashidi Vahid et al. (2008); Yousefi, Tadayon Pour et al. (2008). For related structures, see: Xie et al. (2004); Hughes et al. (1985).graphic file with name e-64-m1583-scheme1.jpg

Experimental

Crystal data

  • [HgBr2(C10H9N3)]

  • M r = 531.59

  • Triclinic, Inline graphic

  • a = 8.1284 (16) Å

  • b = 8.7645 (18) Å

  • c = 9.912 (2) Å

  • α = 113.45 (3)°

  • β = 98.41 (3)°

  • γ = 97.79 (3)°

  • V = 626.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 18.65 mm−1

  • T = 120 (2) K

  • 0.40 × 0.35 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: numerical (shape of crystal determined optically) (X-SHAPE and X-RED; Stoe & Cie, 2005)T min = 0.016, T max = 0.080

  • 7839 measured reflections

  • 3350 independent reflections

  • 3234 reflections with I > 2σ(I)

  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.140

  • S = 1.15

  • 3350 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 4.33 e Å−3

  • Δρmin = −6.54 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038129/hk2575sup1.cif

e-64-m1583-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038129/hk2575Isup2.hkl

e-64-m1583-Isup2.hkl (161KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Br1—Hg1 2.5106 (11)
Br2—Hg1 2.5549 (11)
N1—Hg1 2.301 (7)
N3—Hg1 2.350 (7)
N1—Hg1—N3 81.1 (2)
N1—Hg1—Br1 109.13 (17)
N3—Hg1—Br1 117.16 (17)
N1—Hg1—Br2 125.41 (17)
N3—Hg1—Br2 96.23 (18)
Br1—Hg1—Br2 119.68 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Br2i 0.86 2.62 3.472 (3) 170
C2—H2⋯Cg3ii 0.93 3.20 3.587 (3) 107

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg3 is the centroid of the N3/C6–C10 ring.

Acknowledgments

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

supplementary crystallographic information

Comment

Recently, we reported the syntheses and crystal structures of [Hg(4,4'-dmbpy) I2], (II), (Yousefi, Tadayon Pour et al., 2008), [Hg(5,5'-dmbpy)I2], (III), (Tadayon Pour, et al., 2008), [Hg(dmphen)I2], (IV), (Yousefi, Rashidi Vahid et al., 2008), {[HgCl(dm4bt)]2(µ-Cl)2}, (V), (Khavasi et al., 2008), [Hg(6-mbpy)Cl2], (VI), (Ahmadi et al., 2008) and [{HgBr(4,4'-dmbpy)}2(µ-Br)2], (VII), (Kalateh et al., 2008) [where 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'- bipyridine, 6-mbpy is 6-methyl-2,2'-bipyridine, dmphen is 4,7-diphenyl-1,10- phenanthroline and dm4bt is 2,2'-dimethyl-4,4'-bithiazole]. There are two HgII complexes, with formula, [Hg(N—N)Br2], such as [Hg(TPA)Br2], (VIII), (Xie et al., 2004) and [Hg(TPD)Br2], (IX), (Hughes et al., 1985) [where TPA is tris(2-pyridyl)amine and TPD is N,N,N',N'-Tetramethyl-o-phenylenediamine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound, (Fig. 1), the HgII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from di-2-pyridylamine and two Br atoms. The Hg-Br and Hg-N bond lengths and angles (Table 1) are within normal ranges, as in (VIII).

In the crystal structure, intermolecular N-H···Br hydrogen bonds link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contacts between the pyridine rings Cg2···Cg2i and Cg2···Cg3ii [symmetry codes: (i) x, -y, 2 - z, (ii) 1 - x,- y, 2 - z, where Cg2 and Cg3 are centroids of the rings A (N1/C1-C5) and B (N3/C6-C10), respectively] may further stabilize the structure, with centroid-centroid distances of 3.9662 (5) %A and 3.9321 (4) %A, respectively. There also exists a C—H···π contact (Table 1) between the pyridine CH group and pyridine ring.

Experimental

For the preparation of the title compound, (I), a solution of di-2-pyridylamine (0.25 g, 1.43 mmol) in methanol (20 ml) was added to a solution of HgBr2 (0.51 g, 1.43 mmol) in acetonitrile (20 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield; 0.55 g, 72.3%).

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). The highest and lowest peaks are located 0.69 Å and 0.78 Å from Hg1 atom, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound.

Crystal data

[HgBr2(C10H9N3)] Z = 2
Mr = 531.59 F000 = 480
Triclinic, P1 Dx = 2.820 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.1284 (16) Å Cell parameters from 1657 reflections
b = 8.7645 (18) Å θ = 2.3–29.2º
c = 9.912 (2) Å µ = 18.65 mm1
α = 113.45 (3)º T = 120 (2) K
β = 98.41 (3)º Prism, colorless
γ = 97.79 (3)º 0.40 × 0.35 × 0.25 mm
V = 626.1 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 3350 independent reflections
Radiation source: fine-focus sealed tube 3234 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.087
T = 120(2) K θmax = 29.2º
φ and ω scans θmin = 2.3º
Absorption correction: numerical(shape of crystal determined optically) h = −11→11
Tmin = 0.016, Tmax = 0.080 k = −11→10
7839 measured reflections l = −12→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.140   w = 1/[σ2(Fo2) + (0.0882P)2 + 2.3955P] where P = (Fo2 + 2Fc2)/3
S = 1.15 (Δ/σ)max = 0.059
3350 reflections Δρmax = 4.33 e Å3
145 parameters Δρmin = −6.54 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 0.28140 (3) 0.22806 (4) 0.84793 (3) 0.02226 (15)
Br1 0.03376 (10) 0.29535 (11) 0.71493 (10) 0.0259 (2)
Br2 0.58403 (10) 0.34148 (10) 0.83842 (9) 0.0219 (2)
N1 0.2053 (9) 0.1755 (9) 1.0425 (8) 0.0195 (12)
N2 0.3018 (9) −0.0818 (8) 0.9915 (8) 0.0190 (12)
H2A 0.3426 −0.1362 1.0395 0.023*
N3 0.3006 (9) −0.0591 (8) 0.7601 (8) 0.0192 (12)
C1 0.1347 (11) 0.2988 (10) 1.1369 (11) 0.0239 (15)
H1 0.1098 0.3845 1.1096 0.029*
C2 0.0991 (11) 0.3023 (11) 1.2678 (11) 0.0248 (16)
H2 0.0516 0.3881 1.3288 0.030*
C3 0.1363 (11) 0.1728 (11) 1.3080 (10) 0.0247 (15)
H3 0.1151 0.1727 1.3977 0.030*
C4 0.2037 (11) 0.0462 (11) 1.2157 (10) 0.0225 (14)
H4 0.2279 −0.0412 1.2407 0.027*
C5 0.2355 (9) 0.0519 (10) 1.0815 (9) 0.0178 (13)
C6 0.3175 (9) −0.1477 (10) 0.8430 (9) 0.0172 (13)
C7 0.3535 (10) −0.3113 (10) 0.7834 (10) 0.0215 (14)
H7 0.3679 −0.3693 0.8437 0.026*
C8 0.3671 (11) −0.3850 (11) 0.6355 (10) 0.0249 (15)
H8 0.3886 −0.4940 0.5944 0.030*
C9 0.3485 (12) −0.2952 (11) 0.5481 (10) 0.0262 (16)
H9 0.3575 −0.3414 0.4479 0.031*
C10 0.3158 (11) −0.1340 (12) 0.6165 (10) 0.0248 (16)
H10 0.3034 −0.0731 0.5587 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.0242 (2) 0.0212 (2) 0.0290 (2) 0.00845 (13) 0.00573 (13) 0.01720 (14)
Br1 0.0239 (4) 0.0253 (4) 0.0341 (4) 0.0070 (3) 0.0012 (3) 0.0194 (3)
Br2 0.0237 (4) 0.0208 (4) 0.0267 (4) 0.0057 (3) 0.0061 (3) 0.0151 (3)
N1 0.023 (3) 0.016 (3) 0.019 (3) 0.006 (2) 0.001 (2) 0.008 (2)
N2 0.026 (3) 0.015 (3) 0.022 (3) 0.007 (2) 0.004 (2) 0.013 (2)
N3 0.024 (3) 0.016 (3) 0.018 (3) 0.005 (2) 0.002 (2) 0.009 (2)
C1 0.025 (4) 0.015 (3) 0.032 (4) 0.005 (3) 0.003 (3) 0.011 (3)
C2 0.024 (3) 0.020 (3) 0.030 (4) 0.007 (3) 0.007 (3) 0.009 (3)
C3 0.029 (4) 0.024 (4) 0.022 (3) 0.006 (3) 0.009 (3) 0.010 (3)
C4 0.026 (3) 0.021 (3) 0.024 (4) 0.005 (3) 0.003 (3) 0.012 (3)
C5 0.014 (3) 0.017 (3) 0.020 (3) 0.001 (2) 0.002 (2) 0.007 (3)
C6 0.013 (3) 0.016 (3) 0.020 (3) −0.002 (2) −0.002 (2) 0.009 (3)
C7 0.024 (3) 0.017 (3) 0.024 (4) 0.004 (3) 0.004 (3) 0.010 (3)
C8 0.027 (4) 0.022 (4) 0.023 (4) 0.005 (3) 0.002 (3) 0.008 (3)
C9 0.037 (4) 0.021 (4) 0.017 (3) 0.005 (3) 0.003 (3) 0.006 (3)
C10 0.030 (4) 0.029 (4) 0.020 (3) 0.008 (3) 0.004 (3) 0.015 (3)

Geometric parameters (Å, °)

Br1—Hg1 2.5106 (11) C5—N1 1.327 (10)
Br2—Hg1 2.5549 (11) C5—N2 1.393 (10)
N1—Hg1 2.301 (7) C6—N3 1.342 (10)
N2—H2A 0.8600 C6—N2 1.384 (10)
N3—Hg1 2.350 (7) C6—C7 1.408 (11)
C1—C2 1.360 (13) C7—C8 1.376 (12)
C1—N1 1.376 (11) C7—H7 0.9300
C1—H1 0.9300 C8—C9 1.389 (13)
C2—C3 1.398 (13) C8—H8 0.9300
C2—H2 0.9300 C9—C10 1.385 (12)
C3—C4 1.368 (12) C9—H9 0.9300
C3—H3 0.9300 C10—N3 1.342 (11)
C4—C5 1.410 (11) C10—H10 0.9300
C4—H4 0.9300
N1—Hg1—N3 81.1 (2) C2—C3—H3 119.9
N1—Hg1—Br1 109.13 (17) C3—C4—C5 118.2 (8)
N3—Hg1—Br1 117.16 (17) C3—C4—H4 120.9
N1—Hg1—Br2 125.41 (17) C5—C4—H4 120.9
N3—Hg1—Br2 96.23 (18) N1—C5—N2 121.7 (7)
Br1—Hg1—Br2 119.68 (3) N1—C5—C4 122.9 (7)
C1—N1—Hg1 114.3 (5) N2—C5—C4 115.4 (7)
C5—N1—Hg1 128.2 (6) N3—C6—N2 121.6 (7)
C5—N1—C1 117.2 (7) N3—C6—C7 121.6 (7)
C6—N2—C5 135.0 (7) N2—C6—C7 116.9 (7)
C6—N2—H2A 112.5 C8—C7—C6 119.6 (8)
C5—N2—H2A 112.5 C8—C7—H7 120.2
C6—N3—Hg1 126.5 (5) C6—C7—H7 120.2
C10—N3—Hg1 115.6 (6) C7—C8—C9 119.4 (8)
C10—N3—C6 117.4 (7) C7—C8—H8 120.3
C2—C1—N1 123.6 (8) C9—C8—H8 120.3
C2—C1—H1 118.1 C8—C9—C10 117.2 (8)
N1—C1—H1 118.3 C8—C9—H9 121.4
C1—C2—C3 117.9 (8) C10—C9—H9 121.4
C1—C2—H2 121.0 N3—C10—C9 124.8 (8)
C3—C2—H2 121.1 N3—C10—H10 117.5
C4—C3—C2 120.2 (8) C9—C10—H10 117.7
C4—C3—H3 120.0
C1—N1—Hg1—N3 −166.6 (6) C6—C7—C8—C9 1.3 (12)
C5—N1—Hg1—N3 20.2 (6) C7—C8—C9—C10 −0.3 (13)
C1—N1—Hg1—Br1 −50.8 (6) C8—C9—C10—N3 −0.1 (14)
C5—N1—Hg1—Br1 136.0 (6) N2—C5—N1—C1 178.0 (7)
C1—N1—Hg1—Br2 102.0 (5) C4—C5—N1—C1 −2.2 (11)
C5—N1—Hg1—Br2 −71.1 (7) N2—C5—N1—Hg1 −9.0 (10)
C10—N3—Hg1—N1 168.0 (6) C4—C5—N1—Hg1 170.8 (6)
C6—N3—Hg1—N1 −20.2 (6) C2—C1—N1—C5 1.8 (12)
C6—N3—Hg1—Br1 −127.2 (6) C2—C1—N1—Hg1 −172.2 (7)
C10—N3—Hg1—Br1 61.0 (6) N3—C6—N2—C5 16.3 (13)
C6—N3—Hg1—Br2 104.8 (6) C7—C6—N2—C5 −164.2 (8)
C10—N3—Hg1—Br2 −67.0 (6) N1—C5—N2—C6 −16.8 (13)
N1—C1—C2—C3 −0.2 (13) C4—C5—N2—C6 163.3 (8)
C1—C2—C3—C4 −1.0 (13) C9—C10—N3—C6 −0.4 (13)
C2—C3—C4—C5 0.6 (12) C9—C10—N3—Hg1 172.2 (7)
C3—C4—C5—N1 1.0 (12) N2—C6—N3—C10 −179.2 (7)
C3—C4—C5—N2 −179.1 (7) C7—C6—N3—C10 1.4 (11)
N3—C6—C7—C8 −1.8 (11) N2—C6—N3—Hg1 9.2 (10)
N2—C6—C7—C8 178.7 (7) C7—C6—N3—Hg1 −170.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···Br2i 0.86 2.62 3.472 (3) 170
C2—H2···Cg3ii 0.93 3.20 3.587 (3) 107

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2575).

References

  1. Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407. [DOI] [PMC free article] [PubMed]
  2. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Hughes, C. M., Favas, M. C., Skelton, B. W. & White, A. H. (1985). Aust. J. Chem.38, 1521–1527.
  6. Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398. [DOI] [PMC free article] [PubMed]
  7. Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Stoe & Cie (2005). X-SHAPE and X-RED Stoe & Cie, Darmstadt, Germany.
  10. Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305. [DOI] [PMC free article] [PubMed]
  11. Xie, Y., Ni, J., Jiang, H. & Liu, Q. (2004). J. Mol. Struct.687, 73–78.
  12. Yousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339–m1340. [DOI] [PMC free article] [PubMed]
  13. Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038129/hk2575sup1.cif

e-64-m1583-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038129/hk2575Isup2.hkl

e-64-m1583-Isup2.hkl (161KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES