Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 26;64(Pt 12):o2433. doi: 10.1107/S1600536808038713

2,3,4,9-Tetra­hydro-1H-carbazole

S Murugavel a, P S Kannan b, A SubbiahPandi c,*, T Surendiran d, S Balasubramanian e
PMCID: PMC2960078  PMID: 21581401

Abstract

In the title compound, C12H13N, two methyl­ene C atoms of the cyclo­hexene ring are disordered over two sites with occupancies of 0.591 (10) and 0.409 (10); both disorder components adopt half-chair conformations. The crystal structure is stabilized by inter­molecular N—H⋯π and C—H⋯π inter­actions.

Related literature

For a related structure, see: Arulmozhi et al. (2008). For general background, see: Mi et al. (2003); Hewlins et al. (1984); Mohanakrishnan & Srinivasan (1995a ,b ); Kansal & Potier (1986); Phillipson & Zenk (1980); Saxton (1983); Abraham (1975). graphic file with name e-64-o2433-scheme1.jpg

Experimental

Crystal data

  • C12H13N

  • M r = 171.23

  • Orthorhombic, Inline graphic

  • a = 6.1067 (4) Å

  • b = 7.9488 (5) Å

  • c = 19.4512 (12) Å

  • V = 944.18 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.26 × 0.15 × 0.15 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: none

  • 13269 measured reflections

  • 1777 independent reflections

  • 1323 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.123

  • S = 1.07

  • 1777 reflections

  • 137 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038713/ci2708sup1.cif

e-64-o2433-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038713/ci2708Isup2.hkl

e-64-o2433-Isup2.hkl (87.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1ACg2i 0.86 2.62 3.327 (1) 140
C4—H4⋯Cg1i 0.93 2.86 3.645 (1) 143
C12—H12BCg2ii 0.97 2.83 3.577 (2) 135
C12—H12DCg2ii 0.96 2.72 3.577 (2) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.Cg1 and Cg2 are the centroids of the N1/C5–C8 and C1–C6 rings, respectively.

Acknowledgments

The authors are grateful to Dr J. Jothi Kumar, Principal of Presidency College (Autonomous), Chennai, for providing computer and internet facilities. Dr Babu Vargheese, SAIF, IIT-Madras, India, is thanked for his help with the data collection.

supplementary crystallographic information

Comment

Carbazole derivatives exhibit good charge transfer and hole transporting properties, which are being explored for a multitude of optoelectronic and photocatalytic applications, including organic light emitting diodes (OLEDs) (Mi et al., 2003). In carbazole derivatives, the preliminary study shows that the presence of oxygenated substituents increases their biological activity (Hewlins et al., 1984). The 2,3-disubstituted indoles have been used as bidentate synthons for the synthesis of various medicinally important carbazole alkaloids (Mohanakrishnan & Srinivasan, 1995a,b). Intercalation between the base pairs in DNA has been implicated for their anticancer activity. It was conceived that the benzo[b] carbazoles as isosteric analogs of pyrido[4,3-b]carbazoles, with oxygenated D-ring could mimic the anti-cancer activity of ellipticine. So it was of interest to study the anticancer activity of D-ring oxygenated benzo[b]carbazoles as it is believed that these molecules could form a stable intercalation complex with DNA (Kansal & Potier, 1986). Tetrahydrocarbazole derivatives are present in the framework of indole-type alkaloids of biological interest (Phillipson & Zenk, 1980; Saxton, 1983; Abraham, 1975). We report here the crystal structure of the title compound (Fig. 1).

Bond lengths are normal and are comparable to the corresponding values observed in 1-naphthyl-9H-carbazole-4-sulfonate (Arulmozhi et al., 2008). The dihedral angle between the C1–C6 and N1/C5—C8 rings is 0.6 (1)°. Both the major and minor conformers of the disordered cyclohexene ring adopt half-chair conformations.

The crystal structure is stabilized by intermolecular N—H···π and C–H···π interactions (Table 1).

Experimental

A mixture of cyclohexanone (0.12 mol) and glacial acetic acid (40 ml) was heated and then redistilled phenylhydrazine (0.1 mol) was added dropwise for 30 min. The mixture was refluxed on a water bath for a further period of 30 min. The reaction mixture was poured into ice-cold water with continuous stirring and brown-coloured solid separated out. It was filtered, washed repeatedly with water and recrystallized from methanol in the presence of a little decolorized carbon to give the title compound. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement

Atoms C10 and C11 of the cyclohexene ring are disordered over two positions (C10A/C10B and C11A/C11B) with refined occupancies of 0.591 (10) and 0.409 (10). The corresponding bond distances involving the disordered atoms were restrained to be equal. H atoms were positioned geometrically (C—H = 0.93Å and N—H = 0.86%A) and were treated as riding on their parent atoms, with Uiso(H)=1.2Ueq(C,N). In the absence of significant anomalous dispersion effects, Friedel pairs were merged before the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound, showing 30% probability displacement ellipsoids. Both disorder components are shown.

Crystal data

C12H13N F000 = 368
Mr = 171.23 Dx = 1.205 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1778 reflections
a = 6.1067 (4) Å θ = 2.1–31.1º
b = 7.9488 (5) Å µ = 0.07 mm1
c = 19.4512 (12) Å T = 293 (2) K
V = 944.18 (10) Å3 Block, colourless
Z = 4 0.26 × 0.15 × 0.15 mm

Data collection

Bruker Kappa APEXII area-detector diffractometer 1323 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.036
Monochromator: graphite θmax = 31.1º
T = 293(2) K θmin = 2.1º
ω and φ scans h = −8→8
Absorption correction: none k = −11→11
13269 measured reflections l = −28→28
1777 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.123   w = 1/[σ2(Fo2) + (0.0603P)2 + 0.0496P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
1777 reflections Δρmax = 0.14 e Å3
137 parameters Δρmin = −0.20 e Å3
15 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.7448 (2) 0.5987 (2) 0.95685 (8) 0.0547 (4)
H1A 0.8656 0.6513 0.9495 0.066*
C1 0.3210 (3) 0.4486 (2) 1.06567 (10) 0.0557 (5)
H1 0.1945 0.3846 1.0604 0.067*
C2 0.3803 (4) 0.5087 (3) 1.12920 (10) 0.0634 (5)
H2 0.2921 0.4854 1.1670 0.076*
C3 0.5689 (4) 0.6033 (3) 1.13826 (10) 0.0619 (5)
H3 0.6046 0.6419 1.1820 0.074*
C4 0.7035 (3) 0.6410 (2) 1.08415 (10) 0.0568 (5)
H4 0.8298 0.7045 1.0904 0.068*
C5 0.6448 (3) 0.5811 (2) 1.01954 (9) 0.0457 (4)
C6 0.4535 (3) 0.4849 (2) 1.00903 (9) 0.0429 (4)
C7 0.4433 (3) 0.4464 (2) 0.93742 (8) 0.0429 (4)
C8 0.6210 (3) 0.5184 (2) 0.90741 (9) 0.0473 (4)
C9 0.6730 (3) 0.5153 (3) 0.83301 (10) 0.0668 (6)
H9A 0.8252 0.4841 0.8267 0.080* 0.591 (10)
H9B 0.6521 0.6267 0.8138 0.080* 0.591 (10)
H9C 0.7893 0.4371 0.8240 0.080* 0.409 (10)
H9D 0.7193 0.6249 0.8182 0.080* 0.409 (10)
C10A 0.5287 (9) 0.3918 (9) 0.7958 (4) 0.0674 (15) 0.591 (10)
H10A 0.5876 0.2795 0.8019 0.101* 0.591 (10)
H10B 0.5318 0.4171 0.7470 0.101* 0.591 (10)
C11A 0.2927 (8) 0.3943 (9) 0.8204 (2) 0.0638 (13) 0.591 (10)
H11A 0.2083 0.3133 0.7941 0.096* 0.591 (10)
H11B 0.2308 0.5049 0.8122 0.096* 0.591 (10)
C10B 0.4709 (17) 0.4587 (13) 0.7953 (5) 0.076 (2) 0.409 (10)
H10C 0.3699 0.5527 0.7924 0.114* 0.409 (10)
H10D 0.5117 0.4282 0.7487 0.114* 0.409 (10)
C11B 0.3543 (15) 0.3125 (11) 0.8276 (3) 0.0651 (19) 0.409 (10)
H11C 0.2313 0.2806 0.7989 0.098* 0.409 (10)
H11D 0.4534 0.2173 0.8300 0.098* 0.409 (10)
C12 0.2741 (3) 0.3519 (3) 0.89757 (10) 0.0579 (5)
H12A 0.1293 0.3817 0.9141 0.069* 0.591 (10)
H12B 0.2943 0.2320 0.9043 0.069* 0.591 (10)
H12C 0.1428 0.4179 0.8941 0.069* 0.409 (10)
H12D 0.2390 0.2494 0.9212 0.069* 0.409 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0455 (8) 0.0620 (9) 0.0565 (9) −0.0161 (8) 0.0044 (7) 0.0019 (7)
C1 0.0518 (10) 0.0556 (11) 0.0597 (11) −0.0079 (9) 0.0078 (9) 0.0039 (9)
C2 0.0707 (12) 0.0693 (12) 0.0502 (10) 0.0015 (12) 0.0120 (9) 0.0040 (9)
C3 0.0752 (13) 0.0599 (11) 0.0507 (11) 0.0054 (11) −0.0054 (10) −0.0048 (9)
C4 0.0577 (11) 0.0495 (10) 0.0631 (12) −0.0038 (9) −0.0095 (10) −0.0022 (9)
C5 0.0447 (8) 0.0402 (8) 0.0522 (9) −0.0020 (7) −0.0005 (7) 0.0042 (7)
C6 0.0425 (8) 0.0374 (7) 0.0488 (8) 0.0012 (7) 0.0007 (7) 0.0036 (7)
C7 0.0422 (8) 0.0379 (8) 0.0487 (9) 0.0013 (7) −0.0007 (7) 0.0010 (7)
C8 0.0440 (8) 0.0468 (9) 0.0511 (9) 0.0018 (8) 0.0023 (7) 0.0017 (8)
C9 0.0601 (11) 0.0876 (15) 0.0526 (10) −0.0017 (12) 0.0084 (9) 0.0054 (11)
C10A 0.061 (3) 0.082 (4) 0.059 (2) 0.010 (3) 0.004 (2) −0.007 (3)
C11A 0.057 (2) 0.076 (3) 0.058 (2) 0.003 (2) −0.0071 (18) −0.010 (2)
C10B 0.084 (6) 0.097 (6) 0.046 (3) 0.009 (5) −0.008 (4) −0.005 (4)
C11B 0.071 (4) 0.067 (4) 0.057 (3) 0.003 (4) −0.011 (3) −0.018 (3)
C12 0.0515 (10) 0.0590 (11) 0.0632 (11) −0.0084 (9) −0.0038 (9) −0.0028 (9)

Geometric parameters (Å, °)

N1—C5 1.371 (2) C9—H9B 0.97
N1—C8 1.379 (2) C9—H9C 0.96
N1—H1A 0.86 C9—H9D 0.96
C1—C2 1.374 (3) C10A—C11A 1.519 (7)
C1—C6 1.397 (2) C10A—H10A 0.97
C1—H1 0.93 C10A—H10B 0.97
C2—C3 1.387 (3) C11A—C12 1.542 (5)
C2—H2 0.93 C11A—H11A 0.97
C3—C4 1.369 (3) C11A—H11B 0.97
C3—H3 0.93 C10B—C11B 1.501 (10)
C4—C5 1.391 (3) C10B—H10C 0.97
C4—H4 0.93 C10B—H10D 0.97
C5—C6 1.411 (2) C11B—C12 1.480 (6)
C6—C7 1.427 (2) C11B—H11C 0.97
C7—C8 1.359 (2) C11B—H11D 0.97
C7—C12 1.494 (2) C12—H12A 0.97
C8—C9 1.482 (3) C12—H12B 0.97
C9—C10B 1.505 (9) C12—H12C 0.96
C9—C10A 1.505 (6) C12—H12D 0.96
C9—H9A 0.97
C5—N1—C8 109.19 (14) H9C—C9—H9D 108.3
C5—N1—H1A 125.4 C9—C10A—C11A 113.3 (5)
C8—N1—H1A 125.4 C9—C10A—H10A 108.9
C2—C1—C6 118.99 (18) C11A—C10A—H10A 108.9
C2—C1—H1 120.5 C9—C10A—H10B 108.9
C6—C1—H1 120.5 C11A—C10A—H10B 108.9
C1—C2—C3 121.49 (19) H10A—C10A—H10B 107.7
C1—C2—H2 119.3 C10A—C11A—C12 112.0 (5)
C3—C2—H2 119.3 C10A—C11A—H11A 109.2
C4—C3—C2 121.30 (18) C12—C11A—H11A 109.2
C4—C3—H3 119.3 C10A—C11A—H11B 109.2
C2—C3—H3 119.3 C12—C11A—H11B 109.2
C3—C4—C5 117.72 (18) H11A—C11A—H11B 107.9
C3—C4—H4 121.1 C11B—C10B—C9 114.6 (7)
C5—C4—H4 121.1 C11B—C10B—H10C 108.6
N1—C5—C4 130.84 (17) C9—C10B—H10C 108.6
N1—C5—C6 107.17 (15) C11B—C10B—H10D 108.6
C4—C5—C6 121.99 (17) C9—C10B—H10D 108.6
C1—C6—C5 118.50 (16) H10C—C10B—H10D 107.6
C1—C6—C7 134.42 (16) C12—C11B—C10B 112.2 (7)
C5—C6—C7 107.08 (15) C12—C11B—H11C 109.2
C8—C7—C6 107.10 (14) C10B—C11B—H11C 109.2
C8—C7—C12 122.77 (16) C12—C11B—H11D 109.2
C6—C7—C12 130.10 (15) C10B—C11B—H11D 109.2
C7—C8—N1 109.45 (15) H11C—C11B—H11D 107.9
C7—C8—C9 125.70 (17) C11B—C12—C7 110.8 (3)
N1—C8—C9 124.85 (17) C7—C12—C11A 110.1 (2)
C8—C9—C10B 107.8 (4) C11B—C12—H12A 131.1
C8—C9—C10A 110.8 (3) C7—C12—H12A 109.6
C8—C9—H9A 109.5 C11A—C12—H12A 109.6
C10B—C9—H9A 130.4 C11B—C12—H12B 82.7
C10A—C9—H9A 109.5 C7—C12—H12B 109.6
C8—C9—H9B 109.5 C11A—C12—H12B 109.6
C10B—C9—H9B 88.7 H12A—C12—H12B 108.1
C10A—C9—H9B 109.5 C11B—C12—H12C 109.1
H9A—C9—H9B 108.1 C7—C12—H12C 109.8
C8—C9—H9C 110.3 C11A—C12—H12C 82.8
C10B—C9—H9C 109.0 H12B—C12—H12C 130.7
C10A—C9—H9C 85.6 C11B—C12—H12D 109.5
H9B—C9—H9C 128.2 C7—C12—H12D 109.4
C8—C9—H9D 109.9 C11A—C12—H12D 131.9
C10B—C9—H9D 111.5 H12A—C12—H12D 81.1
C10A—C9—H9D 128.3 H12C—C12—H12D 108.1
H9A—C9—H9D 84.9
C6—C1—C2—C3 −0.4 (3) C5—N1—C8—C7 −1.0 (2)
C1—C2—C3—C4 0.1 (3) C5—N1—C8—C9 177.78 (18)
C2—C3—C4—C5 0.0 (3) C7—C8—C9—C10B 14.1 (5)
C8—N1—C5—C4 −178.92 (19) N1—C8—C9—C10B −164.5 (5)
C8—N1—C5—C6 0.7 (2) C7—C8—C9—C10A −11.7 (4)
C3—C4—C5—N1 179.77 (19) N1—C8—C9—C10A 169.7 (3)
C3—C4—C5—C6 0.2 (3) C8—C9—C10A—C11A 40.6 (8)
C2—C1—C6—C5 0.6 (3) C10B—C9—C10A—C11A −46.8 (11)
C2—C1—C6—C7 −179.34 (19) C9—C10A—C11A—C12 −59.6 (9)
N1—C5—C6—C1 179.87 (15) C8—C9—C10B—C11B −43.8 (11)
C4—C5—C6—C1 −0.4 (3) C10A—C9—C10B—C11B 57.5 (12)
N1—C5—C6—C7 −0.20 (18) C9—C10B—C11B—C12 61.8 (14)
C4—C5—C6—C7 179.48 (17) C10B—C11B—C12—C7 −42.9 (10)
C1—C6—C7—C8 179.52 (19) C10B—C11B—C12—C11A 51.4 (8)
C5—C6—C7—C8 −0.39 (18) C8—C7—C12—C11B 14.2 (5)
C1—C6—C7—C12 1.6 (3) C6—C7—C12—C11B −168.1 (5)
C5—C6—C7—C12 −178.35 (17) C8—C7—C12—C11A −17.0 (4)
C6—C7—C8—N1 0.84 (19) C6—C7—C12—C11A 160.7 (3)
C12—C7—C8—N1 178.98 (16) C10A—C11A—C12—C11B −51.7 (7)
C6—C7—C8—C9 −177.92 (18) C10A—C11A—C12—C7 45.1 (7)
C12—C7—C8—C9 0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cg2i 0.86 2.62 3.327 (1) 140
C4—H4···Cg1i 0.93 2.86 3.645 (1) 143
C12—H12B···Cg2ii 0.97 2.83 3.577 (2) 135
C12—H12D···Cg2ii 0.96 2.72 3.577 (2) 149

Symmetry codes: (i) x+1/2, −y+3/2, −z+2; (ii) x−1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2708).

References

  1. Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, chs. 7 and 8. New York: Marcel Decker.
  2. Arulmozhi, R., Vennila, J. P., Babu, S. M., Kavitha, H. P. & Manivannan, V. (2008). Acta Cryst. E64, o1208. [DOI] [PMC free article] [PubMed]
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Hewlins, J. M. E., Oliveira-Campos, A. M. & Shannon, P. V. R. (1984). Synthesis, pp. 289–302.
  6. Kansal, V. K. & Potier, P. (1986). Tetrahedron, 42, 2389–2408.
  7. Mi, B. X., Wang, P. F., Liu, M. W., Kwong, H. L., Wong, N. B., Lee, C. S. & Lee, S. T. (2003). Chem. Mater.15, 3148–3151.
  8. Mohanakrishnan, A. K. & Srinivasan, P. C. (1995a). Indian J. Chem. Sect. B, 35, 838–841.
  9. Mohanakrishnan, A. K. & Srinivasan, P. C. (1995b). J. Org. Chem.60, 1939–1946.
  10. Phillipson, J. D. & Zenk, M. H. (1980). Editors. Indole and Biogenitically Related Alkaloids, ch. 3. New York: Academic Press.
  11. Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038713/ci2708sup1.cif

e-64-o2433-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038713/ci2708Isup2.hkl

e-64-o2433-Isup2.hkl (87.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES